光学扫描设备的制作方法

文档序号:6783235阅读:224来源:国知局
专利名称:光学扫描设备的制作方法
技术领域
本发明涉及一种光学扫描设备,其用于在第一操作模式下扫描第一类型记录载体并且用于在第二操作模式下扫描第二类型记录载体,所述第一类型记录载体具有第一信息层及第一厚度的第一透明层,所述第二信息层具有第二信息层及第二厚度的第二透明层,所述第二厚度不同于第一厚度,所述光学扫描设备包括一个双波长二极管激光器,其用于在所述第一模式下产生第一HD辐射束并在所述第二模式下产生第二LD辐射束;一个物镜系统,其被设计成在第一组共轭下操作以将在第一模式下在第一信息层上的HD束聚焦并且在第二组不同的共轭下操作以将在第二模式下在第二信息层上的LD束聚焦;以及第一衍射元件,其被布置在双波长二极管激光器和物镜系统之间的辐射路径上。
这样的一种光学扫描设备从JP-A 11-185292的英语摘要被公知。在此HD束和LD束被理解为分别表示被用来扫描具有较高信息密度的信息层及具有较低信息密度的信息层的束。
通常,在光学记录载体上的透明层旨在离信息层足够距离处,保护信息层免受环境影响、防止灰尘颗粒、划痕等,并且对信息层提供机械支撑。换句话说,透明层起到信息层的基片的作用。透明层的厚度是期望给出记录载体最理想刚性的厚度和期望与入射到透明层上扫描束的数值孔径(NA)相关的厚度之间的一个折衷。
在记录载体侧面上物镜系统的NA由分辨率所确定,扫描设备必须具有所述分辨率以读取或写入具有一给定密度的信息层。扫描设备的分辨率与NA/λ成比例,其中λ是扫描束的波长,并且其中所述分辨率与所述设备可以形成的最小扫描光点的大小成反比。为了扫描具有较大信息密度的记录载体如DVD(数字化视频光盘),应该采用此后被称为HD(高密度)扫描束的扫描束,所述HD扫描束比用于扫描具有较小信息密度记录载体如CD(光盘)的此后被称为LD(低密度)扫描束的扫描束具有较高的NA和较小的λ。对于具有较大信息密度因而需要较高NA的记录载体,通常有必要减小信息层的厚度,以便于减小记录载体相对于扫描设备光轴的倾斜对焦点或扫描光点的质量影响。随着具有较大信息密度的新颖记录载体的出现,具有不同透明层厚度的不同类型的记录载体将在市场问世。一种兼容的扫描设备将必须能够独立于透明层的厚度扫描不同类型的记录载体。用于两种类型记录载体的兼容扫描设备的物镜系统应该具有用于扫描第一类型记录载体的第一组共轭以及用于扫描第二类型记录载体的第二组不同的共轭。物镜系统的这两个共轭在此处被理解为分别表示物体平面即辐射源发射表面与物镜系统的第一主平面之间的距离,以及物镜系统的第二主平面与象平面即信息层平面之间的距离。扫描一个记录载体在此处被理解为表示用于读取、写入和/或清除信息等目的,彼此相对移动一个由扫描束构成的扫描光点及信息层。
为了在兼容扫描设备内的一个物镜系统中获得两个具有不同NA的扫描束,可能在这个物镜系统前面的辐射路径上或在这个物镜系统的第一表面上放置一个所谓的二向色环形装置,例如一个滤光片。这种二向色的滤光片传输HD扫描束并且阻挡或偏转LD扫描束的边缘,这样仅有LD扫描束的中心部分通过物镜系统传输到LD信息层。LD扫描束构成在LD信息层上的扫描光点,所述光点比由HD信息层上的HD扫描束所构成的扫描光点宽。特别地,对于其中LD扫描束不仅用于读取而且用于记录信息层,并且其中来自辐射源的最大辐射量应该到达信息层的兼容扫描设备,更佳的另一选择方案是在物镜系统之前的辐射路径上放置一个附加的透镜。这种可能被称为前准直仪透镜的透镜改变来自源的束的聚散度,以便于LD束仅充满物镜系统的中心部分并且LD束的NA要使在通过物镜系统的通道之后,束具有所要求的图象侧NA。所述前准直仪透镜应该仅被布置在LD扫描束的路径上。
具有不同波长的HD和LD扫描束可以由两个单独的辐射源例如发射不同波长的激光器二极管而产生。这些扫描束可以被组合,即在进入物镜之前通过一个二向色性的分束元件,例如传输其中的一个束的一部分并且在同一方向反射另一束的一部分的棱镜或半透明镜面使所述扫描束同轴。
为了减小兼容扫描设备的尺寸和重量,如所示,例如,在JP-A11-85282的英文摘要中,可以采用一种与束组合元件组合的所谓的双波长激光器模块。所述的双波长模块是包括两个光发射元件的单激光器芯片,其发射出不同的波长。所述束组合元件是一个靠近激光器芯片放置的衍射光栅,其仅对所述束之一产生衍射,以便于使这些束的主光线或束轴同轴。在这个扫描设备中不可能仅在LD束路径中放置一个前准直仪。
本发明的目的是提供一种如首段所说明的光学扫描设备,所述设备仅在LD束中被提供有一个透镜装置。这个扫描设备其特征在于第二衍射元件被布置在双波长二极管与物镜系统之间的辐射路径上,所述元件或者仅对于LD束或者仅对于HD束具有透镜功能。
众所周知具有两个折射表面的透镜可以由平面衍射元件来代替,所述平面衍射元件使一束的光线如此衍射,以便于束的朝向以其被折射透镜所改变的同样方法被改变。这样的衍射元件可能具有衍射光栅的形式,所述光栅具有与中间条轮流交替的弯曲光栅条。所述光栅条可以通过在所述元件表面上的凹槽而构成。本发明基于这样的认识即这种衍射元件的参数例如凹槽的深度可以这样选择,以便于所述元件仅针对具有给定波长的辐射束充当透镜。对于具有不同波长的辐射束,所述元件仅是一个透明板。在从双波长二极管激光器开始的辐射路径中布置一个被设计成只对LD束进行衍射的衍射元件具有这样的效果,即虽然衍射元件被布置在两个束的路径上,但是LD束与透镜相遇,而HD束不与透镜相遇。这个衍射元件改变了LD束的聚散度,这样在物镜系统的光瞳平面上,此束具有小于HD束的横截面并且仅覆盖这个光瞳的中心部分。也可能布置一个在从双波长激光器开始的辐射路径上仅对HD束进行衍射的一个衍射元件。这个衍射元件应该扩大HD束的横截面,以使这个束充满物镜系统的整个光瞳,而LD束的聚散度并不改变,并且使这个束仅充满光瞳的中心部分。
优选地,所述光学扫描设备的另外特征在于第一和第二衍射元件由第一和第二衍射结构所组成,所述结构分别被布置在透明体的入口表面和出口表面。
通过将这两个衍射元件结合成一个元件,元件的数目得到减小以使扫描设备变得简单且其制造成本降低。所组成的衍射元件可以通过众所周知的压制和再现技术而制造。通过同时采用第一模具和第二模具,合成的衍射元件可以通过一步制造出来,其中所述第一模具具有一个对应于第一衍射结构的内表面轮廓,第二模具具有一个对应于第二衍射结构的内表面轮廓。
所述扫描设备的特征还在于至少第一和第二衍射元件之一具有正透镜的功能。
具有正透镜功能的衍射元件可以将发散的LD源束的部分转换成聚敛的LD束,并且另一个衍射元件随后提供对这个束的进一步调节,以使其充满物镜系统光瞳的中心部分。
作为另一选择地,扫描设备可能的特征在于至少第一和第二衍射元件之一具有负透镜的功能。
具有负透镜功能的衍射元件可以将至少HD源的一部分转换成更发散的束,并且另一个衍射元件随后提供对这个束的进一步调节,以使其充满物镜系统的光瞳。
合成衍射元件的衍射结构也可能具有这样的设计,以便于它们提供两个正透镜功能或两个负透镜功能,而不是上述的一个正透镜功能和一个负透镜功能。这样的扫描设备设计确定出哪个衍射结构应该提供透镜功能并且透镜功能应该是什么,是正透镜功能或是负透镜功能。
在其中第二衍射元件只具有透镜功能以改变束之一的聚散度的扫描设备的实施例中,这个元件的衍射结构相对简单。因为随后第二衍射元件将相应源束之一的非对称部分转换以构成具有所要求聚散度的束,后提到的束可能显示出一些强度的对称性,在某些情况下这可被接受。
所述后提到的束在扫描设备中具有对称强度分布,所述扫描设备的特征在于将第二衍射元件设计成对于聚散度被调节的束能够从双波长激光器中选择出相应束的对称部分。
因为第二衍射元件应该不仅具有透镜功能,而且应该能够将LD束的主光线偏转,所以衍射结构稍微更复杂些。
优选地,扫描设备的进一步特征在于第一和第二衍射元件被布置成靠近双波长二极管激光器。
于是衍射元件可以小些,因为它们被布置在LD和HD束仍然具有小横截面的位置处。
优选地,扫描设备的这个实施例的进一步特征在于二极管激光器与面对激光器的衍射元件之间的距离处于1mm和4mm之间。
对于这样一个距离,这样衍射结构的间距使得这些结构可以方便地被制造。
出于同样的原因,优选地,扫描设备的这个实施例的进一步特征在于第一和第二衍射元件之间的距离处于2mm和8mm之间。
对于这样的一个距离,衍射结构的间距足够大能够方便地制造出这些结构。
扫描设备的进一步特征还可能在于束整形器被布置在双波长二极管激光器的前面,所述束整形器具有聚散度变化的入口面及反射出口面。
对于这样的束整形器,具有椭圆横截面的二极管激光束可以被转换成具有圆形横截面的束,而没有辐射损失。可以被靠近二极管激光器布置的以透镜形式的有效小束整形器在US-A5,467,335中被公开。通过在兼容的扫描设备中提供一个束整形器,HD束的强度也得到增加,以便于这个设备也适合于写入高密度信息层。
这样的扫描设备的进一步特征还可能在于束整形器的入口面与出口面可以分别由第三和第四衍射结构来构成。
可能被称为全息束整形器的这样束整形器可以以这样的方式被设计,以便于其只改变HD束的形状,并且对于LD束是不可见的。由于这个束整形器仅从双波长激光器的元件之一作用到束上,所以它仅需要与这个元件对准。
其中已经实施进一步结合的扫描设备的特征在于第一和第三衍射结构被合并在第一合成衍射结构中,并且第二和第四衍射结构被合并在第二合成衍射结构中,所述第一和第二合成衍射结构分别被布置在透明体的入口表面和出口表面。
另一可供选择的扫描设备的特征在于第一衍射结构被布置在椭圆入口表面且第二衍射结构被布置在环形出口表面,其中所述的扫描设备已经实施了进一步的结合,并且其中束整形器是一个具有圆柱形入口表面及环形出口表面的透镜。
利用这个束整形器,HD束和LD束均被整形。双波长激光器的这两个发射元件应该相对于束整形器被正确地定位。当这些元件的第一元件已经被定位后,通过旋转双波长激光器的外壳,可以将第二元件定位。
参考随后所说明及附图所举例说明的实施例,通过实例本发明的这些和其它方面是显而易见的,并且将通过这些实例被阐明。
在附图中

图1显示出一个兼容的扫描设备,其包括两个二极管激光器和在LD束路径上的一个前准直仪;图2显示出一个兼容的扫描设备,其具有用于组合HD和LD束的衍射元件和双波长二极管激光器;图3、4和5分别显示出合成衍射元件的第一、第二和第三实施例及其对LD和HD束的影响,以及图6显示间距作为在一个合成衍射元件实施例的两个衍射结构上的位置的函数;图7显示出这些衍射结构的频率;图8和9是合成衍射元件的第一和第二衍射结构实施例的平面图;图10显示在HD束和LD束中引入的相移作为衍射结构凹槽深度的函数;图11显示根据本发明的扫描设备的实施例;以及图12显示用于扫描设备的束整形器的实施例,所述束整形器可以与合成的衍射元件相结合。
在这些图中,相同的元件用同一参考数字来表示。
图1显示一个扫描设备,其具有用于写入且可能读取在短波长处的第一类型记录载体的第一光程,以及其具有用于写入和读取在长波长处的第二类型记录载体的第二光程。第一类型记录载体可能是数字化视频光盘(DVD)及第一波长,例如650nm,而第二类型记录载体可能是可写入的光盘(CDW)及第一波长,例如780nm。所述第一光程包括辐射源1,例如发射第一波长的发散辐射束2,即HD束的半导体或二极管激光器。半透明镜面4把束2的一部分反射向二向色分束器6。当需要时,衍射光栅3可以被布置在二极管激光器1和镜面4之间,所述光栅构成两个经衍射的束及未经衍射的束。经衍射的束被用于跟踪目的。为了清楚起见,该图仅显示出未经衍射的束。这三个被简要称为辐射束的辐射束被半透明镜面3反射向二向色分束器6,所述分束器对于第一波长具有高的传输并且经过束2却只有低的衰减。反射器8将束2反射向准直透镜10,所述准直透镜把发散束2转换成准直束12。该束经过物镜系统14,所述物镜系统把准直束12改变成用于扫描记录载体18的会聚束16。所述物镜系统可能包括一个单光学元件,但是它可能包括两个或多个光学元件,如图中所示。记录载体是第一高密度类型且包括具有厚度为例如0.6mm的透明层19及信息层20,会聚束16将在所述信息层上形成焦点或扫描光点21。从信息层20反射的辐射沿着束16和12的光程返回,并且由准直透镜10来会聚。所反射的束经过二向色分束器6及分束器4并被会聚到探测系统23上的探测器点24上。这个系统将束转换成电探测信号。表示存储在信息层20内的信息信号、以及用于在垂直于信息层的方向(焦点控制)及在垂直于跟踪方向(跟踪控制)上定位焦点21的控制信号可以来源于探测器信号。
焦点控制信号可以通过所谓的象散方法来产生。当分束器4相对于所反射及会聚束的主光线被定位在一个锐角时,这个分束器在这个束中引入象散。所述探测系统包括一个象限探测器,借助于此象限探测器可以探测出在探测系统平面内象散束的横截面形状。这个形状由焦点21相对于信息层20的位置来确定。透镜25可以被布置在分束器4和探测系统之间。这个透镜可能在探测系统的侧面具有球形凹面25并且可能被用作一个负伺服透镜来设置束的焦点。这可以通过沿着光轴移动这个透镜来实现。在分束器侧面的透镜25的表面27可以形成圆柱形的形状,以便于这个透镜也具备圆柱透镜功能。如果由倾斜分束器(skew beam splitter)这个功能所引入的象散太小,则可能采用此功能。透镜25仅是一个负透镜或仅是一个圆柱形透镜也是可能的。如果有必要,则可以布置用于校正由分束器4所引入慧形象差的元件来取而代之,或者再加上此透镜。
用于扫描第二类型记录载体的光程包括辐射源31,例如发射第二波长例如780nm的发散辐射束32,即LD束的半导体激光器。光栅33可能被布置在其光程上以同光栅3相类似的方法构成三个束。二向色分束器6反射大部分,例如90%的LD束的辐射,并且将此束剩余的辐射传输到附加探测器7。这个被称为前馈传感器的探测器供给一个输出信号,此输出信号与来自二极管激光器31的束强度成比例,并且可以用于控制这个束的强度。由分束器6所反射的LD束跟随与HD束相同的路径以到达第二类型记录载体38。这个记录载体包括具有厚度为例如1.2mm的透明层39及信息层40。
记录载体18和38被画成具有半透明信息层20的单、双层记录载体,但是它们也可能是具有不同厚度透明层的单独的单层记录载体。
LD束应该被带到信息层40上的焦点或扫描光点41上。物镜系统14被设计成能够在第一组共轭的第一模式下操作,其中来自源1的HD束被聚焦到信息层20上;并且在第二组共轭的第二模式下操作,其中来自源31的LD束被聚焦到信息层40上。从信息层40反射的辐射沿着LD束的路径返回到记录载体38。另一个分束器(未显示出)可以被布置在二向色分束器6和衍射光栅之间,以便于将所反射的辐射反射向另一个探测系统(未显示出)。用于LD束的这个探测系统与用于HD束的探测系统23具有相同的功能。优选地,通过分束器6的反射LD束的辐射被用于读取并控制信息层40上扫描光点41的位置,其中所述反射LD束的辐射例如占这个反射束总辐射的10%,并且其入射到探测系统23上。通过这种方式,不再需要第二探测系统,并且扫描设备被简化。如果有必要,通过向分束器6添加一些偏振灵敏度,并且通过在分束器和物镜系统之间,优选地在准直透镜和物镜系统之间的LD束路径上布置一个四分之一波片15,则入射到探测系统上的LD束的强度可以被增加。LD束在其前往及来自记录载体38的路程中,其经过这个波片两次,这样其偏振方向相对于来自二极管激光器31的LD束的偏振方向旋转了90°。由于这一偏振旋转,由记录载体反射的大部分LD束经过分束器6,而入射到信息层40的LD束的强度并没有减小。
物镜系统14为第一模式而设计,以便于将第一波长的经准直的HD束通过透明层19会聚到信息层20上的焦点21上。由于会聚束16在经过透明层19所引起的球面象差在物镜系统14中得到补偿。所述物镜系统遵从正弦条件。如果在实施例中不存在透明层19,则物镜系统的球面象差应该得不到补偿。在第二模式下,LD束经过具有厚度不同于透明层19厚度的透明层39。这个物镜系统并没有得到由透明层39的厚度所引起的球面象差的补偿。然而,已经建立起球面象差主要由物镜系统的外部环形区域所引起,通过所述物镜系统的外部环形区域,LD束的边界光线经过。在围绕焦点41的小区域内,显示出象差的会聚LD束的波前在物镜孔径的中心部分是球面形的。扫描光点41包括一个小的中心区域及围绕中心区域的大环形区域,其中中心区域具有由物镜孔径中心部分所发射的光线所构成的大强度,大环形区域具有由物镜孔径外部区域所发射的光线构成的较小强度。扫描光点中心部分的质量足以用于扫描信息层40,并且通过仅采用从物镜孔径中心部分所发射的光线来构成这个光点,可以获得一个良好扫描光点。在物镜系统前面或在其上可以布置一个二向色吸收或偏转环,所述环吸收或偏转LD束的辐射并且传递HD束的辐射。然后物镜系统传输整个HD束,但只传输LD束的中心部分。通过这种方式,LD相当大部分的强度被损失,并且扫描光点41的剩余强度太小以致于不能借助这个光点来记录信息。
特别是对于应该能够在第二信息层40上记录信息的兼容扫描设备,如图1所示,一个更佳的另一选择方案是仅在LD束的路径上布置正透镜34。这个透镜将来自源31的发散束转换成较小发散的束35并且可以被称为前准直透镜。LD束35被准直透镜10转换成LD束36,LD束仅充满物镜系统孔径的中心部分。
图1中具有两个分开的二极管激光器1和31及二向色分束器6的扫描设备相对复杂且大。如果如图2所示采用双波长二极管激光器51,则可以获得一个简单且更紧凑的系统。双波长二极管激光器是一个组合半导体设备,其具有在两个不同波长处发射辐射束54、55的两个元件51、52。虽然发射元件之间的距离要尽可能地小,但是辐射束的主光线并不重合。为了使这两束同轴,在所述束的路径上布置一个专用衍射元件57。这个元件具有交替的凹槽和平地的相位结构。凹槽的深度被选择成使所述元件充当所述束之一例如LD束32的光栅,而对于另一束而言它是一个透明层。所述光栅结构被设计成对LD束进行衍射,使其主光线与HD束的主光线达到重合。具有双波长激光器50和专用衍射元件52的扫描设备在JA-A 11-185282的英语摘要中被加以公开。
在图2的设备中,HD束和LD束不需要单独的探测系统。经反射的HD束和经反射的LD束入射到同一探测系统23上。这些束在探测系统中分别构成探测器光点24和24′。图2中的设备既适合于读取高密度记录载体又适合于读取低密度记录载体。然而,当两个发射元件51、52在这个设备中彼此非常靠近时,则不可能在仅在LD的路径上布置一个正的或前准直透镜,这样这个设备也不太适合于在信息层40内写入信息。
根据本发明,通过在来自双波长激光器设备50的束的辐射路径中布置第二衍射元件,这个问题可以得到解决。这个第二衍射元件也具有交替的凹槽和平地的相结构,并且凹槽的深度被选择成使所述元件仅充当LD束的衍射元件,而所述元件对于HD仅是一个透明层。
第二衍射元件可能是一个包括透明基片的单独元件,其中所述透明基片的一侧被提供有衍射结构。优选地,第一和第二衍射元件被结合成一个合成的衍射元件,这个衍射元件包括一个某一厚度的透明基片,所述透明基片的一侧被提供有第一衍射结构并且其对面被提供有第二衍射结构。因而在该设备中的元件数量及制造这个设备的成本都得到降低。如果使用由两个模具,这两个模具具有分别对应于第一和第二衍射结构的内部表面,则通过一个步骤的模制和再现技术,合成的衍射元件可以相对容易地制造出来。
图3显示出合成衍射元件60、HD束54和LD束55的路径的第一实施例,其中所述路径是分别从双波长激光器的发射元件51和52到图2中的分束器4,并且所述路径经过衍射元件60。图3所示辐射路径部分的光轴与HD束54的主光线57相重合。合成的衍射元件包括基片61,所述基片对双波长束51和52为透明。在发射元件51、52的侧面,基片被提供有衍射结构63,例如一个基本上具有圆形凹槽和平地的菲涅耳透镜,所述透镜充当LD束55的正透镜。这个衍射结构把发散束55转换成会聚束65。在已经经过基片61后,LD束65的横截面小于HD束54的横截面。在远离发射元件51、52的侧面,基片61被提供有第二衍射结构64,所述第二衍射结构把会聚束65转换成发散束66,并且其边界光线基本上平行于对应的HD束54的边界光线。衍射结构64充当LD束的负透镜,并且可能也是一个菲涅耳透镜类型的结构。所述两个衍射结构63和64的凹槽深度被选择成使这些结构对HD束54没有影响,即它们并不改变这个束的方向或聚散度。
所述衍射结构63和64可以被构成为全息图。优选地,这些全息图的原始结构,即用于构成模具的结构是计算机产生的结构,其中借助于模具制造出衍射元件60。
在图3的实施例中,准直结构的数值孔径很小。考虑到入射角取决于涂层和公差要求,这是有利的。在这个实施例中,构成束66的辐射来源于源束的非对称部分55。这由虚线58来指示,所述虚线表示在束55内的最大强度。由于在束55中的非对称性,束66也显示出一些强度的不对称性,这对于用于读取和写入低密度信息层的束是可接受的。
然而,如图4所示,这种强度的不对称性可以被避免。在这个图的实施例中,离开合成衍射元件的束66的辐射来源于束65,所述束65是来自发射元件52的束的对称部分。最大强度的线68与光轴57平行。图4中的实施例要求非对称的衍射结构73和74,即这样的结构,这些结构不仅改变LD束的聚散度而且相对于光轴对所述束的部分进行偏转。
图5显示出另一个实施例,其中衍射元件80带来HD束的变化,而不是LD束的变化。第一衍射结构83构成HD束78的负透镜,并且把这个发散束转换成更发散的束76。在第二衍射结构84的侧面,HD束76的横截面大于LD束77的横截面。第二衍射结构把HD束76转换成发散减小的束77,HD束的边界光线基本上平行于对应的LD束75的边界线。对于应该具有用于写入的高强度的LD束,图5中的实施例具有的优点是这个束并不遭受如果采用衍射结构则可能出现的衍射损失。这种衍射损失只可能减小被用于读取的HD束的强度。
在图5所示的实施例中,有一种简单的衍射结构83,其仅具有透镜功能并且选择来自源51的束的非对称部分78以构成束77,如果这个束的强度分配的一些非对称性可以被接受,则其可能以与图3实施例所示的相同方法被使用。如果束77应该具有对称强度分配,则选择源束对称部分78这样的更为复杂的衍射结构83应该以与图4实施例所示的相同方法被采用。
在全息图上一给定位置上的间距或光栅周期由那个位置处辐射的入射角来确定,这意味着间距是变化的。借助于斯涅耳折射定律、光栅方程式和扫描设备的几何要求,可以得出图4中全息图的光栅间距P的下述方程式,所述光栅间距P作为到第一全息图入射角sin(ρ)的函数P1(ρ)=t.λs.n.+(g.n+d).ρ.(1-NAo/Nai)]]>P2(ρ)=-t.λs.n+g.n.ρ.(1-Nao/Nai)]]>在这些等式中t是基片71的厚度;λ是LD束的波长;n是基片71的折射率;s是激光器元件51和52之间的距离;g是激光器和第一全息图73之间的距离Nao是入射到准直透镜10上LD束所要求的数值孔径,以及Nai是来自激光器元件52的LD束的子束部分的数值孔径,所述子束部分应该被转换成带有Nao的束。
针对参数g和t,通过比较众多不同数值的P1(ρ)和P2(ρ)值,为两个全息图建立起如果距离g增加则间距增加;如果基片厚度增加则间距增加,以及对于一个不同于所述两个全息图的已知数值ρ,间距为零。
对于此处所讨论的没有制造问题的这类全息图,间距不应该太小。这意味着距离g应该尽可能地小,并且厚度t应该尽可能地大,而同时扫描设备的其它设计参数应该加以考虑。对于此处所讨论的扫描设备,g和t的适当数值为1mm≤g≤4mm2mm≤t≤8mm对于扫描设备的实际实施例,距离g=2mm且厚度t=3mm是优选值。对于这些值以及n=1.5且s=0.1mm,在边界光线入射位置处的间距值P(+Nai)和P(-Nai)及在由第一全息图所捕捉的LD束主光线入射位置处的间距值P(0)在下面给出P1(+Nai)=4.618μm P2(+Nai)=-7.136μm
P1(0)=15.7μmP2(0)=-15.7μmP1(-Nai)=-11.241μm P2(-Nai)=78.5μm对于其它ρ(即对于在全息图其它位置处的其它入射角)值的间距可以从图6中获得。P1和P2作为ρ函数的变化分别由这个图中的曲线90和91表示。对应光栅频率的变化,即每单位长度(μm)光栅凹槽数量Q1=1/P1和Q2=1/P2的变化在图7中分别由曲线93和94所示。
具有上述参数值的第一全息图73和第二全息图74分别在图8和图9中表示出。全息图73和全息图74的光栅凹槽分别由95和97来表示,而且这些凹槽之间的平地分别由96和98来表示。这些图清楚地显示出光栅间距的变化。
温度特性的计算显示考虑到散焦作为温度的函数,较小距离g和较大厚度t是有利的。如同已经谈及到的,全息图的凹槽深度d应该使这些凹槽在束之一(在图4中为HD束)中引入N.2π的相移,且在另一LD束中引入(2N+1)π的相移。这些全息图对后述束具有最大的影响,而它们对于前述束是不可见的。由具有波长λ的束中的全息图光栅所引入的相移Δ由下式给出Δ=2π.d..(n-1)/λ.
图10显示出对于具有λ=655nm的HD束以及对于λ=785nm的LD束,作为凹槽深度d函数的相移(曲线100及曲线101)。相移Δ的单位是2π。从图10中可以得出d=3.9μm是第一深度,对于这个深度,HD束的相移是π弧度的偶数且LD束的相移是奇数的π弧度。LD束的相移也是奇数的π,即对于d=2.3μm为3π弧度。于是HD束的相移并不正好为π弧度的偶数,但是在某些条件下这个d值可用。制造具有2.3μm凹槽深度的全息光栅比制造具有3.9μm凹槽深度的全息光栅要容易。在图5所示的实施例中,HD束的相移应该为奇数的π弧度,且LD束的相移应该为偶数的π弧度。在这个情况下的第一凹槽深度为d=4.7μm。对于d=3.3μm,HD束的相移仍然是奇数的π弧度,且LD束的相移接近偶数的π弧度,以便于这个深度也可用。
优选地,全息光栅对第一衍射级次闪耀。这意味着凹槽壁被倾斜,以便于最大量的辐射在第一级次之一被衍射,且最小量的辐射在另一级次被衍射。第一衍射级次的闪耀角θ由下式给出Sin(θblaze)=λP.(n-1)]]>因为间距P在全息图上变化,所以各间距在全息图上也变化。在图4的实施例中,在第一全息图中的闪耀角从+19.9°经0°变化到-8.1°。
图11显示出一个其中已经实施本发明的兼容扫描设备。这个设备不同于图2中的设备的地方在于单衍射元件57已经由前述的合成衍射元件60或70或80所取代,以便于仅在LD束路径上或仅在HD束路径上有效地引入一个透镜。借助于这个透镜,确保在物镜系统14的孔径处LD束66或67或75具有比HD束小的横截面,而LD束具有足够的能量在信息层40上写入信息。优选地,衍射元件被布置在束的横截面仍然小的位置处,因此接近双波长二极管激光器。在这个设备中,探测系统23既被用于经反射的HD束也被用于经反射的LD束,所述束分别构成探测器光点24和24′。这些光点应该正好在探测系统上重合。这可以通过在X、Y或Z方向上调节合成衍射元件60或70或80而实现。
在其中二极管激光器被用作辐射源的扫描设备中,所谓的束整形器可以被靠近二极管激光器布置,以便于增加扫描束的边缘强度。二极管激光器发射出这样的束,所述束在平行于有源层(active layer)的平面即所谓的侧向平面上的环形孔径小于在垂直于有源层的平面即所谓的横向平面上的环形孔径。在离开二极管激光器一些距离处,在所谓的二极管激光器远声场处,这种二极管激光器的束具有一个椭圆形的横截面。在用于扫描信息层的扫描设备中,应该采用一种圆形且小的、优选为衍射限制的扫描光点。为此,借此扫描光点被构成的物镜系统必须由具有圆形横截面的辐射束来填充。如果所述物镜系统由具有椭圆横截面的二极管激光器来照明,则在物镜系统入口的孔径尺寸应该使孔径被充满在椭圆的短轴方向上,而在椭圆的长轴方向一部分辐射量将落到孔径外部。通过在二极管激光器与物镜系统之间布置一个束整形器可以避免这样的辐射损失,所述束整形器将椭圆形束转换成圆形束。在US-A5,467,335中公开了一种引人注目的束整形器。图12显示出这种束整形器110,这种束整形器是一个具有圆柱形入口表面112和环形出口表面113的透镜元件,并且其可以接近二极管激光器120布置。这个激光器包括多个掺杂各异的层,其中仅有条形有源层122被显示出。这个条由两个部分透明的镜面小平面123和124所限制,以便于当来自电流源129的电流经过激光器时,产生的激光器辐射可以离开有源条2。在有源条122和前面小平面4的座标XYZ三轴系统中XY平面上的横截面是矩形。由于这样的形状,由二极管激光器所发射的束不是对称的,但是在平行于有源条122的XY平面上即侧向平面上具有孔径角β1,所述孔径角β1小于在YZ平面上即横向平面上的孔径角β2。在侧向平面上激光束的边界光线由参考数字125和126表示,并且其在横向平面上由参考数字127和128表示。入口表面112具有部分圆柱体的形状,此圆柱体的圆柱轴平行于Y轴。对于YZ平面上的光线,入口平面是在例如空气和具有例如折射率为n的透镜介质之间的平界面,以便于这些光线被偏转向Z轴达到由n所确定的程度。换句话说,其为缩小的角度放大率1/n出现在入口表面112处的YZ平面上。在XZ平面上,入口表面112具有曲率R并且这个表面引入一个n的角度放大率。束整形器110的出口表面113在横向平面上具有这样的曲率R1,并且其被布置这样的一个Z位置上,以便于其曲率中心基本上与由激光器小平面124的表面112所构成的图象相重合。表面113以未折射形式在横向平面上传递光线,并且在这个平面上的角度放大率基本上等于1。在侧向平面上,出口表面具有这样的曲率半径R2,以便于其曲率中心与由激光器小平面124中心的表面112所构成的虚象相重合,这样在这个平面上的角度放大率约等于1。因为由入口表面112所构成的两个虚象沿着Z轴位于不同的位置上,所以出口表面113应该具有一个略微环形的形状,以便于将这些图象组合成一个图象。可以理解为环形意味着在侧向平面上表面的曲率半径不同于横向平面上表面的曲率半径。这在图12中借助于出口表面的非共面外围曲线来表示。关于图12中束整形器更详细的细节及实施例,请参考US-A5,467,335。
包括一个双波长激光器二极管的本发明中的扫描设备可以被提供有一个束整形器。如果采用如US-A5,467,335中所说明的那种束整形器,则HD束和LD束均得到整形。如果HD束应该具有足够的强度来写入信息,则优选地采用仅对HD束进行整形的衍射束整形器。所述束整形器在其入口与出口表面上被提供有衍射结构。束整形衍射元件可以与组合衍射元件例如前述的元件60相结合。在这样的结合衍射元件中的入口表面处的合成衍射结构是衍射结构63和束整形所需要的衍射结构的叠加,并且在出口表面处的合成衍射结构是衍射结构64和束整形所需要的衍射结构的叠加。与束整形衍射结构的这种结合也同样可能适合于前述的其它合成的衍射元件70和80。也有可能衍射元件60、70或80的两个衍射结构分别与图12中所示的透镜束整形器相结合。然后每个这种表面被提供有一个全息的衍射结构,例如在图8和9中所示的结构修改。双波长二极管激光器的两个发射元件应该相对于结合的透镜束整形器被正确地定位。当这些元件之一的第一元件已经被定位后,通过旋转双波长激光器的外罩可以将第二元件定位。衍射元件60或70或80或对其的修改也可能与不同于图12所示类型的束整形器与结合。
权利要求
1.一种光学扫描设备,其用于在第一操作模式下扫描第一类型记录载体并且用于在第二操作模式下扫描第二类型记录载体,所述第一类型记录载体具有第一信息层及第一厚度的第一透明层,所述第二类型记录载体具有第二信息层及第二厚度的第二透明层,所述第二厚度不同于第一厚度,所述光学扫描设备包括一个双波长二极管激光器,其用于在所述第一模式下产生第一HD辐射束并在所述第二模式下产生第二LD辐射束;一个物镜系统,其被设计成在第一组共轭下操作以将在第一模式下在第一信息层上的HD束聚焦并且在第二组不同的共轭下操作以将在第二模式下在第二信息层上的LD束聚焦;以及第一衍射元件,其被布置在双波长二极管激光器和物镜系统之间的辐射路径上,所述光学扫描设备的特征在于第二衍射元件被布置在双波长二极管与物镜系统之间的辐射路径上,所述元件或者仅对于LD束或者仅对于HD束具有透镜功能。
2.如权利要求1所述的光学扫描设备,其特征在于第一和第二衍射元件由第一和第二衍射结构所组成,所述结构分别被布置在透明体的入口表面和出口表面。
3.如权利要求1或2所述的光学扫描设备,其特征在于至少第一和第二衍射元件之一具有正透镜的功能。
4.如权利要求1或2所述的光学扫描设备,其特征在于至少第一和第二衍射元件之一具有负透镜的功能。
5.如权利要求1、2、3或4所述的光学扫描设备,其特征在于将第二衍射元件设计成对于聚散度被调节的束能够从双波长激光器中选择出相应束的对称部分。
6.如权利要求1至5中任何一项所述的光学扫描设备,其特征在于第一和第二衍射元件被靠近双波长二极管激光器布置。
7.如权利要求1至6中任何一项所述的光学扫描设备,其特征在于二极管激光器与面对激光器的衍射元件之间的距离处于1mm和4mm之间。
8.如权利要求1至7中任何一项所述的光学扫描设备,其特征在于第一和第二衍射元件之间的距离处于2mm和8mm之间。
9.如权利要求1至8中任何一项所述的光学扫描设备,其特征在于束整形器被布置在双波长二极管激光器的前面,所述束整形器具有聚散度变化的入口面及反射出口面。
10.如权利要求9所述的光学扫描设备,其特征在于束整形器的入口面与出口面可以分别由第三和第四衍射结构来构成。
11.如权利要求10所述的光学扫描设备,其特征在于第一和第三衍射结构被合并在第一合成衍射结构中,并且第二和第四衍射结构被合并在第二合成衍射结构中,所述第一和第二合成衍射结构分别被布置在透明体的入口表面和出口表面。
12.如权利要求9所述的光学扫描设备,其中所述束整形器是一个具有圆柱形入口表面及环形出口表面的透镜元件,其特征在于第一衍射结构被布置在椭圆入口表面且第二衍射结构被布置在环形出口表面。
全文摘要
在既用于扫描高密度HD的记录载体(38)又用于扫描低密度LD的记录载体(18)的光学扫描设备中,一种双波长二极管激光器(50)被用来产生HD扫描束和LD扫描束。通过靠近二极管激光器(50)布置一个合成的衍射元件(60),可以获得一种适合于写入LD信息层(40)的紧凑设备,其中所述合成的衍射元件具有用于组合HD束和LD束的第一衍射结构(63)和或者仅为LD束或者仅为HD束充当透镜的第二衍射结构(64)。
文档编号G11B7/135GK1397068SQ01804111
公开日2003年2月12日 申请日期2001年9月17日 优先权日2000年9月25日
发明者P·T·尤特, J·M·A·范登埃伦贝姆德 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1