光学拾取头装置的制作方法

文档序号:6783239阅读:225来源:国知局
专利名称:光学拾取头装置的制作方法
技术领域
本发明涉及用以通过光磁方式在信息记录媒体上进行信息记录或重放的光学拾取头装置。
以下,就传统的光学拾取头装置的结构与动作进行说明。图7所示是传统技术中的光学拾取头装置的光学系统与信息记录媒体的配置。
首先,说明传统光学拾取头装置的结构。如图7所示,半导体激光单元107内设有半导体激光元件101和用以检测聚焦误差信号及跟踪误差信号的伺服信号接收元件102。在半导体激光元件101与信息记录媒体114之间的光路中,从半导体激光元件101侧开始依次设置偏振光分束器111、准直透镜112与物镜113。偏振光分束器111固定在半导体激光单元107的上面。并且,在偏振光分束器111的半导体激光元件101侧的表面上,形成有衍射光栅109。再有,在半导体激光元件101与信息记录媒体114之间的光路外的偏振光分束器111一侧(图7中的右方),设有信息信号接收元件104,而在偏振光分束器111的信息信号接收元件104侧的侧面设有渥拉斯顿棱镜116。
接着,就上述传统的光学拾取头装置的动作进行说明。从半导体激光元件101出射而又经信息记录媒体114反射的光(以下称“返回光”),在依次透过物镜113与准直透镜112后入射至偏振光分束器111。该偏振光分束器111使返回光的一部分朝渥拉斯顿棱镜11的方向反射,继而形成分支。在渥拉斯顿棱镜116中,因P偏振光与S偏振光的折射率不同,射入渥拉斯顿棱镜116的返回光中的P偏振光成分与S偏振光成分被分开。在如此分开为两种成分的信息信号光各自的聚光位置,设有分为两部分的信息信号接收元件104,然后基于该信息信号接收元件104的输出进行信息信号的检测。另一方面,直接透过偏振光分束器111的返回光,经衍射光栅109衍射后,入射至伺服信号接收元件102。然后,基于该伺服信号接收元件102的输出,检测出聚焦误差信号及跟踪误差信号。又,图7中以虚线表示半导体激光元件101的出射光与返回光。
一般说来,半导体激光元件出射光的强度,如图8A中的曲线T所示,具有依赖于出射角的特性。因此,上述传统的光学拾取头装置中,当物镜113在信息记录媒体114的径向偏离时,物镜113所收集光的强度就会降低,因此,如图8B的曲线U所示,跟踪误差信号的信号量也会下降,从而使伺服动作不稳定。
为了达成上述目的,本发明的光学拾取头装置采用这样的结构,它包括将激光照射于信息记录媒体的半导体激光元件,以及经上述信息记录媒体反射而返回的所述激光再反射的反射部件;其特征在于所述反射部件中所述激光的反射率随偏离所述激光光轴的程度而增大。从半导体激光元件出射的激光的强度,具有随偏离光轴中心而降低的出射角依赖性,但是,根据此光学拾取头装置的结构,反射部件中的激光的反射率具有随偏离激光光轴而增大的反射特性,因此可以修正激光强度的出射角依赖性。因此,可以抑制物镜在信息记录媒体的径向偏移时的跟踪误差信号的信号量降低。其结果,可以使跟踪误差信号强度的物镜偏移依赖性显著低于传统装置的值,从而可以实现稳定的伺服动作。
并且,在所述本发明的光学拾取头装置中,最好设置接收经所述反射部件反射的激光的接收元件。
再有,上述本发明的光学拾取头装置的结构中,作为所述反射部件,最好采用使经所述信息记录媒体反射而返回的所述激光形成分支的偏振光性分光部件。在这种场合,所述偏振光性分光部件最好采用偏振光分束器。并且,这种场合的理想状态是,经所述信息记录媒体反射而返回的所述激光,在所述偏振光性分光部件的反射面上的入射角为45°时所述激光的P偏振光成分的反射率成为最小。根据此理想状态例,在利用P偏振光成分检测跟踪误差信号的光学拾取头装置中,可以防止物镜在信息记录媒体的径向偏移时跟踪误差信号信号量下降。并且,这种场合,经所述信息记录媒体反射而返回的所述激光,在所述偏振光性分光部件反射面上的入射角为45°时所述激光的S偏振光成分的反射率成为最小。据此理想状态例,在利用S偏振光成分检测跟踪误差信号的光学拾取头装置中,可以防止物镜在信息记录媒体的径向偏移时跟踪误差信号信号量下降。
并且,所述本发明的光学拾取头装置中,还设有将从所述半导体激光元件出射的所述激光分为包括前子光束和后子光束的多个子光束的衍射部件,以及检测跟踪误差信号的部件;理想的状态是,所述前子光束或所述后子光束的经由所述信息记录媒体反射的光,再经所述反射部件反射,然后利用该反射光检测出所述跟踪误差信号。根据此理想状态例,跟传统技术相比,物镜在信息记录媒体的径向偏移时的跟踪误差信号强度对物镜偏移的依赖性可以显著降低,因此可以实现稳定的伺服动作。
并且,在所述本发明的光学拾取头装置中,还设有将从所述半导体激光元件出射的所述激光分为包括前子光束和后子光束的多个子光束的衍射部件,以及检测信息信号与跟踪误差信号的部件;理想的状态是,所述前子光束或所述后子光束的经由所述信息记录媒体反射的光,再经所述反射部件反射,该反射光进而由偏振光性发光部件分为P偏振光成分与S偏振光成分,上述两个光束在同一受光区域被检测,于是检测出所述信息信号与所述跟踪误差信号。根据此理想状态例,可以防止物镜在信息记录媒体的径向偏移时,由P偏振光成分与S偏振光成分获得的信息信号与跟踪误差信号的信号量的下降。
图2A表示本发明第一实施例的光学拾取头装置所采用的半导体激光元件出射的激光强度对出射角的依赖关系;图2B表示本发明第一实施例的光学拾取头装置所采用的偏振光分束器反射率对入射角的依赖关系;图2C表示本发明第一实施例的光学拾取头装置的跟踪误差信号强度对物镜偏移量的依赖关系。
图3为本发明第二实施例的光学拾取头装置的结构图。
图4为图3所示光学单元的剖面图。
图5为图4所示受光基片的平面图。
图6为图3与图4所示的全息图光学元件的局部平面图。
图7表示传统技术中光学拾取头装置的光学系统与信息记录媒体的配置。
图8A为传统光学拾取头装置所用的半导体激光元件出射激光的强度对出射角的依赖关系;图8B为传统光学拾取头装置的跟踪误差信号强度对物镜偏移的依赖关系;
以下,借助实施例对本发明进行更为具体的说明。
首先,参照

图1与图2对本发明第一实施例的光学拾取头装置进行说明。
图1为本发明第一实施例的光学拾取头装置的结构图。如图1所示,在半导体激光元件1和以CD(小型光盘)与DVD(数字通用光盘)等为代表的用于信息记录或重放的信息记录媒体7之间的光路中,从半导体激光元件1侧开始依次设有将从半导体激光元件1出射的激光分为包含前子光束与后子光束的多个子光束的三光束生成用衍射光栅2、准直透镜3、偏振光分束器4、上向反射镜5以及物镜6。并且,在偏振光分束器4与信息信号接收元件13之间的光路中,从偏振光分束器4侧开始依次设有分束器8、聚光透镜11以及渥拉斯顿棱镜12。另外,在偏振光分束器4与伺服信号接收元件10之间的光路中,从偏振光分束器4侧开始依次设有分束器8和聚光透镜9。再有,偏振光分束器4的反射面,相对于半导体激光元件1出射的激光L1(图1中以虚线表示)及信息记录媒体7的反射光(以下也称“返回光”)L2(图1中以虚线表示)的光轴a(图1中以点划线表示)倾侧45°。这里所说的偏振光分束器4的反射面,如图2B的Y曲线所示,具有这样的反射特性当返回光L2的入射角为45°时的反射率最低,且其反射率随返回光L2的入射角偏离45°(也就是,偏离返回光L2的光轴a)程度而增加。
为了实现如上所述的反射特性,偏振光分束器4最好具有如下的结构。即对于从半导体激光元件1出射的激光,如为波长λ=780nm的激光,例如可以采用将MgF2(折射率n=1.38)与SiO2(折射率n=1.4538)以λ/4的膜厚交替淀积各6层(共12层),再用玻璃(折射率n=1.5113)夹持的结构。在MgF2与SiO2的淀积膜(反射面)上,如果波长λ=780nm的激光以入射角45°入射,当入射角为45°时反射率为最小,而且其反射特性为下凸的抛物线形(参照图2B)。
从半导体激光元件1出射的激光L1的光强度,具有图2A的曲线X所示的跟出射角的依赖关系,其强度随着偏离光轴中心的程度而降低。如果就这样,当物镜6在信息记录媒体7的径向偏移时,物镜6所收集到的激光L1的光强度就会降低,其结果,使跟踪误差信号的信号量也降低,从而使伺服动作不稳定。但是,如上所述本实施例中偏振光分束器4的反射面具有这样的特性返回光L2的入射角为45°时的反射率最低,且反射率随返回光L2的入射角偏离45°的程度而增加(参照图2B),由此可以使半导体激光元件1出射的激光L1的光强度的出射角依赖性得到修正。因此,可以抑制物镜6在信息记录媒体7的径向偏移时的跟踪误差信号的信号量的降低。其结果,如图2C的曲线Z所示,与传统技术(图8B)相比,跟踪误差信号强度的物镜偏移依赖性显著减小,由此就消除了使伺服动作不稳定的情况。
并且,如果使得返回光L2对偏振光分束器4的反射面的入射角为45°时返回光L2的P偏振光成分的反射率为最小,就可防止物镜6在信息记录媒体7的径向偏移时P偏振光成分的光通量的减少。
并且,如果使得返回光L2对偏振光分束器4的反射面的入射角为45°时返回光L2的S偏振光成分的反射率为最小,就可防止物镜6在信息记录媒体7的径向偏移时S偏振光成分的光通量的减少。
以下,就本实施例的光学拾取头装置的动作进行说明。
如图1所示,半导体激光元件1出射的激光L1在透过三光束生成用衍射光栅2时,被分为三束0次衍射光与±1次衍射光;之后,入射至准直透镜3。入射至准直透镜3的激光L1在通过准直透镜3时由发散光束变为平行光束,其后透过偏振光分束器4。透过偏振光分束器4的激光L1经上向反射镜5反射后,经物镜6会聚在信息记录媒体7上。经信息记录媒体7反射的光成为返回光L2,反向通过上述光路,再次入射至偏振光分束器4。入射至偏振光分束器4的返回光L2中的一部分被反射(下文将经偏振光分束器4反射的返回光L2称为“反射分支光”),随后入射至分束器8。
入射至分束器8的反射分支光的一部分直接透过分束器8,经由聚光透镜11聚光后入射至渥拉斯顿棱镜12。入射至渥拉斯顿棱镜12的光,于是被分为P偏振光成分与S偏振光成分,之后由信息信号接收元件13所接收。然后,通过对这两部分光(P偏振光成分与S偏振光成分)的差动检测,获得信息信号RF。
另一方面,入射至分束器8的反射分支光中剩余的部分为分束器8所反射,经由聚光透镜9聚光后为伺服信号接收元件10所接收。然后,以像散方式检出聚焦误差信号,以三光束方式检出跟踪误差信号。
如此,本实施例中,采用了通过偏振光分束器4的反射分支光来检出跟踪误差信号的结构;而且,如上所述,当返回光L2的入射角为45°时偏振光分束器4反射面的反射率最小,且反射率随返回光L2的入射角偏离45°的程度而增加,因此可以抑制物镜6在信息记录媒体7的径向偏移时跟踪误差信号的信号量的降低,从而可以制造出伺服动作稳定的光学拾取头装置。
而且,本实施例中,以用三光束方式来检出跟踪误差信号的方法为例进行说明,但实际上并不只限于这种方式,例如采用相位差方式或推挽方式甚至差动推挽方式等均可获得与上述同样的效果。
并且,本实施例中,以设有含准直透镜3及物镜6的无限系统型的光学系统的光学拾取头装置为例作了说明,但是,本实施例并不受此结构的限定,例如对于采用只含物镜6的有限系统型的光学系统的场合,可以取得和上述相同的效果。
并且,信息信号RF也可以用来自偏振光分束器4的反射分支光检出,这样,即使物镜6在信息记录媒体7的径向上偏移,信息信号的信号量也几乎不会恶化,可以获得品质良好的信息信号。
并且,本实施例中,以采用渥拉斯顿棱镜12将返回光L2分离为P偏振光成分与S偏振光成分、检出信息信号的光磁方式的光学拾取头装置为例进行说明;但是,本实施例同样适用于光学拾取头装置,该装置不用渥拉斯顿棱镜12(不进行P偏振光成分与S偏振光成分的分离),而将经聚光透镜11会聚的光全部接收,通过读取光通量的改变来检出信息信号。当然,这种场合可以用非偏振光的分束器取代偏振光分束器4。
接着,参照图3~图6就本发明实施例2的光学拾取头装置进行说明。
图3为本发明第二实施例的光学拾取头装置的结构示图;图4为图3所示光学单元的剖面图;图5为图4所示的受光基片的平面图;图6为图3与图4中所示的全息光学元件的局部平面图。如图3所示,本实施例中,构成光学拾取头装置的所有元件,除准直透镜3、上向反射镜5和物镜6以外,均作为光学单元14集成为一体。再有,图3中7表示信息记录媒体。
以下,就光学单元14的结构进行说明。半导体激光元件1,如图4、图5所示设置在受光基片23上形成的凹陷部分。在受光基片23上进一步形成含多个元件的受光元件26、27与28,以及受光元件29、30。具体而言,受光元件26由6个元件26a、26b、26c、26d、26e与26f构成,受光元件27同样由6个元件27a、27b、27c、27d、27e与27f构成,而受光元件28则由2个元件28a与28b构成。如图3与图4所示,受光基片23,设置在有多个端子24的插件15的内部,在插件15的上面设有由三光束生成用衍射光栅18与衍射光栅19一体形成的全息光学元件16,也作为该插件的上盖。再有,如图6所示,衍射光栅19由透镜效果不同的两个衍射光栅区19a与19b构成。并且,图6中的曲线及其间隔,表示衍射光栅的栅线间距的曲线及其间隔的大致情况。如图3与图4所示,全息光学元件16上装有由偏振光分束器20、反射镜21与渥拉斯顿棱镜22一体形成的复合微型棱镜17。
偏振光分束器20的反射面,相对半导体激光元件1出射的激光L1(图3、图4中以虚线表示)与返回光L2(图3、图4中以虚线表示)的光轴b(图3中以点划线表示)成45°倾侧。本例的偏振光分束器20的反射面具有这样的特性如图2B的曲线Y所示,当返回光L2的入射角为45°时的反射率最小,且其反射率随返回光L2偏离入射角45°(即偏离返回光L2的光轴b)的程度而增加。这种反射特性,可以用跟上述第一实施例相同的方法实现。
半导体激光元件1出射的激光L1的光强度,如图2A的曲线X所示,同样存在出射角依赖性,该光强度随偏离光轴中心的程度而下降。于是,物镜6在信息记录媒体7的径向偏移时,物镜6所收集的激光L1的光强度就会下降;结果,使跟踪误差信号的信号量降低,令伺服动作变得不稳定。但是,如上所述,本实施例中,偏振光分束器20的反射面在返回光L2的入射角为45°时反射率最小,且反射率随返回光L2偏离入射角45°的程度而增加,因此,可以修正半导体激光元件1出射的激光L1的光强度的出射角依赖性。其结果,可以抑制物镜6在光记录媒体7的径向偏移时的跟踪误差信号的信号量的降低。结果,如图2C的曲线Z所示,与传统技术(图8B)相比,跟踪误差信号强度对物镜偏移的依赖性显著降低,从而消除了伺服动作的不稳定。
接着,就本实施例的光学拾取头装置的动作进行说明。
如图3、图4所示,半导体激光元件1出射的激光L1在透过三光束生成用衍射光栅18时,被分开为0次衍射光与±1次衍射光等三束光,在透过偏振光分束器20后,入射至准直透镜3。入射至准直透镜3的激光了L1,在透过准直透镜3时由发散光束变为平行光束后,随即为上向反射镜5反射,然后经由物镜6会聚在信息记录媒体7上。经信息记录媒体7反射的光即返回光L2,反向经过上述光路,再次入射至偏振光分束器20。
入射至偏振光分束器20的返回光L2中有一部分直接透过偏振光分束器20(以下,将透过偏振光分束器20的返回光L2称为“透过分支光”),再入射至衍射光栅19,分别为两个不同的衍射光栅区19a与19b衍射与聚光。也就是,入射至衍射光栅区19a的透过分支光中的主光束经衍射后形成+1次衍射光与-1次衍射光,前者入射至受光部件26的元件26d、26e与26f,后者入射至受光部件27的元件27a、27b与27c。同样地,入射至衍射光栅区19b的透过分支光中的主光束经衍射后形成+1次衍射光与-1次衍射光,前者入射至受光部件26的元件26a、26b与26c,后者入射至受光部件27的元件27d、27e与27f。这里,聚焦误差信号FE可通过D-SSD(双光点直径检测Double Spot Size Detection)法,以下式(式1)表述的运算被检出。[式1]FE={(26b+26e)+(27a+27c+27d+27f)}-{(26a+26c+26d+26f)+(27b+27e)}再有,上面的(式1)中26a、26b等表示元件的符号,也同样用来表示入射至元件的光强度。
并且,图5中25为微型反射镜,用来将半导体激光元件1的出射光反射至三光束生成用衍射光栅18的方向,为求简明,经衍射光栅19衍射的子光束被省略。
另一方面,入射至偏振光分束器20的返回光L2的剩余部分,由偏振光分束器20反射(以下将经偏振光分束器20反射的光L2称为“反射分支光”),之后再经反射镜21反射,入射至渥拉斯顿棱镜22。入射至渥拉斯顿棱镜22的反射分支光,于是又被分离为P偏振光成分与S偏振光成分;受光单元28的两个元件28a与28b将主光束的各偏振光成分接收。并且,两个子光束分别由受光单元29、30将其P偏振光成分与S偏振光成分集中接收。这里,跟踪误差信号TE通过三光束法经由下式(式2)表述的运算检出。[式2]TE=29-30并且,信息信号RF,例如采用MD的RAM光盘与MO光盘时,用下式(式3)表述的差运算检出。[式3]RF=28a-28b并且,如采用CD、CD-ROM、CD-R、CD-RW、MD等的ROM光盘,DVD、DVD-ROM、DVD-RAM等的光盘时,用下式(式4)表述的运算加以检出。[式4]RF=28a+28b再有,以上给出的(式2)~(式4)中,29、28a等表示受光单元及其元件的符号,也同时用来表示入射在受光单元及其元件上的光强度。
如上所述,用来自偏振光分束器20的反射分支光检测出跟踪误差信号,可以取得跟上述第一实施例相同的效果,制成伺服动作稳定的光学拾取头装置。而且,构成光学拾取头装置的必要部件几乎可以全部一体化集成,从而可以制作小型、轻量的光学拾取头装置。并且,由于信息信号RF也用来自偏振光分束器20的反射分支光检测出,即使当物镜6在信息记录媒体7的径向偏移时,信息信号的信号量也几乎不出现恶化,从而可以获得品质良好的信息信号。
工业上的利用可能性依据本发明的光学拾取头装置,利用在反射部件上的激光的反射率随激光相对光轴的偏离程度而增加的反射特性,可以修正激光强度的出射角依赖性。因此,可以抑制物镜在信息记录媒体的径向偏移时跟踪误差信号的信号量的降低。其结果,与传统技术相比,跟踪误差信号的信号强度对物镜偏移的依赖性显著降低,从而可以提供能实现稳定伺服动作的光学拾取头装置。
权利要求
1.一种光学拾取头装置,其中设有把激光照射到信息记录媒体的半导体激光元件,以及使经所述信息记录媒体反射而返回的所述激光反射的反射部件;其特征在于,所述反射部件中所述激光的反射率随着对所述激光光轴的偏离而增加。
2.如权利要求1所述的光学拾取头装置,其特征在于,还设有接收经所述反射部件反射的激光的光接收元件。
3.如权利要求1所述的光学拾取头装置,其特征在于,采用使经所述信息记录媒体反射而返回的所述激光分开的偏振光性分支部件作为所述反射部件。
4.如权力要求3所述的光学拾取头装置,其特征在于,所述偏振光性分支部件为偏振光分束器。
5.如权力要求3所述的光学拾取头装置,其特征在于,当经所述信息记录媒体反射而返回的所述激光对所述偏振光性分支部件的反射面的入射角为45°时,所述激光的P偏振光成分的反射率最低。
6.如权力要求3所述的光学拾取头装置,其特征在于,当经所述信息记录媒体反射而返回的所述激光对所述偏振光性分支部件的反射面的入射角为45°时,所述激光的S偏振光成分的反射率最低。
7.如权利要求1所述的光学拾取头装置,其特征在于还设有将所述半导体激光元件出射的所述激光分支为包含前子光束与后子光束的多个子光束的衍射部件,以及检测跟踪误差信号的部件;所述前子光束或所述后子光束的经所述信息记录媒体反射的光,为所述反射部件所反射,利用该反射光检测出所述跟踪误差信号。
8.如权利要求1所述的光学拾取头装置,其特征在于还设有将所述半导体激光元件出射的所述激光分支为包含前子光束与后子光束的多个子光束的衍射部件,以及检测信息信号与跟踪误差信号的部件;所述前子光束或所述后子光束的经所述信息记录媒体反射的光,为所述反射部件所反射,该反射光又经偏振光性分支部件分支为P偏振光成分与S偏振光成分等两个光束,通过在同一受光区域检测所述两个光束来检出所述信息信号与所述跟踪误差信号。
全文摘要
在半导体激光元件1与信息记录媒体7之间的光路中,从半导体激光元件1侧开始依次设置三光束生成用衍射光栅2、准直透镜3、偏振光分束器4、上向反射镜5以及物镜6。使偏振光分束器4的反射面具有这样的反射特性其反射率在返回光L2的入射角为45°时最低,且随返回光L2的入射角偏离45°的程度而增加。依据这种结构可实现这样的光学拾取头装置,在该装置中,即使其物镜在信息记录媒体的径向上偏移,跟踪误差信号的信号量几乎不发生恶化。
文档编号G11B7/135GK1397069SQ01804366
公开日2003年2月12日 申请日期2001年2月1日 优先权日2000年2月4日
发明者高须贺祥一, 井岛新一, 中西直树, 中西秀行 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1