用于在存储设备中阻尼盘振动的装置和方法

文档序号:6772016

专利名称::用于在存储设备中阻尼盘振动的装置和方法
技术领域
:本发明涉及在存储设备中的、用于减小在这种存储设备盘转动时的振动的阻尼机械装置。
背景技术
:盘驱动是一种重要的数据存储技术。读写头直接和盘表面进行通讯,该盘表面包含盘表面轨道上的数据存储介质。附图1A介绍了典型的现有技术的硬盘驱动器,它可以是一个大容量的盘驱动器10。盘驱动器10包含激励器支架30,它又进一步包括声音线圈32(voicecoil),激励器轴40,悬架或者头臂50(headarms)。滑动器/头单元60置于数据存储盘12上。附图1B介绍了典型的现有技术大容量盘驱动器10。激励器20包含带有声音线圈32,激励器轴40,头臂50和滑动器/头单元60的激励器支架30。提供主轴马达80用来旋转盘12。自从20世纪80年代以来,大容量盘驱动器10使用声音线圈激励器20将读写头定位在特定的轨道上。头固定在头滑动器60上,当盘驱动器10工作的时候,它向着远离旋转盘12的表面12-1的方向滑动一小段距离。通常对给定的盘表面12-1每个头滑动器有一个头。在一个盘驱动器上通常有多个头,但由于经济上的原因,通常只有一个声音线圈激励器20用来对头臂50进行定位。声音线圈激励器20还由固定磁激励器20构成,它与由声音线圈32感应产生的时变电磁场相互作用,用来通过激励器轴40产生杠杆作用。杠杆作用移动头臂50,以在特定的轨道上定位头滑动器单元60。激励器支架30通常被认为包含声音线圈32、激励器轴40、头臂50和型铁支架70。型铁支架机械地将头滑动器60结合到激励器支架50上。激励器支架30可以和单头臂50一样少。单头臂52可以和两个头滑动器60和60A相连(如图1B所示)。附图1C介绍了现有技术的盘驱动器10单盘片的横断面视图。附图1D介绍了现有技术的盘驱动器10中双盘片的横断面视图。每个盘驱动器10包含了一个盘基座100和封盖110,它们将由主轴马达80驱动旋转的盘12封装。读写头定位误差是失败和性能降低的重要因素。定位误差部分由盘抖动引起。在旋转过程中,当盘折曲、振动的时候,发生盘抖动。一些盘抖动的问题是由于驱动盘的马达的不稳定性引起的。这种类型的摆动问题通常由主轴马达制造商声明。在现有技术中做了很多尝试以声明盘振动问题。美国专利号6,239,943B1,题名为“硬盘驱动挤压膜阻尼”的专利指导尝试声明盘抖动问题。该专利中所述“主轴马达……产生转动……单盘或多盘或者一堆盘……以如下方式安装旋转的底盘面或顶盘面(或二者)紧密地与盘驱动器的铸造表面相邻。在残留的气隙中挤压膜的作用提供了很大的盘振动的阻尼……通常对于2英寸〔盘〕驱动器使用的气隙为0.004-0.006”〔英寸〕,对于3英寸〔盘〕驱动器来说使用的气隙为0.006-0.010”英寸”(第2栏,第12-21行)。“根据所提出的理论……,由盘和底座之间的挤压膜作用产生的阻尼不应该是转速的函数”(第5栏,第53-55行)。“在两个盘系统中,只通过对底盘施加挤压膜阻尼就可以取得顶盘振动的大量减少。这一点相当重要因为在实际设计中,对底盘之外的盘增加阻尼是很困难的。”(第5栏,第65行至第6栏,第2行)。尽管很多发明者都很尊重美国专利6,239,943,但是他们在该文献的见解中也发现了一些不足。众所周知,在访问旋转盘表面的激励器上读写头的结合关系带来了盘驱动器操作上的成功。由于接近盘的旋转速度,在一个读写头部件和其激励器上施加了相当大的气动力。这些施加在激励器上、读写头上或者激励器和读写头上的很大的气动力并没有在所引用的专利中说明。同时也有很大的涉及旋转速度的间隙距离,它们没有在所引用的专利中予以解释,同时,有很多发明者的试验数据表明用来减小轨道位置误差的气隙要比该专利和其他现有技术所述的要大一些。在声学地和力学地物理系统中,从与波相关的现象的发展中获得很多见识,但这些都没有在所引用的专利中提到。增加的记录密度和增加的主轴转速是盘驱动器工业中竞争的主要因素。随着记录密度和主轴转速的增加,头定位精度和头移动的稳定性也必须增加。然而,随着主轴转速的增加,气流引发的振动也增加了,这就导致头滑动器悬架的更大幅度的振动,导致读写头定位误差。此外,作用在旋转盘上的气流引发的振动会导致盘抖动,它会促使轨道定位误差。因此,减小气流引起的振动对于减小头定位和读写误差是十分重要的。
发明内容本发明包含减小气动力的阻尼机械装置,该力作用在一个存储设备中的至少一个旋转的盘上。本发明取得了减小盘抖动的效果,减小了激励器支架周围至少几种气流引起的振动,因而减小了头定位和读写误差。一个或多个旋转盘的盘表面旋转速度会对盘旋转于其中的空气穴中的气动力产生相当大的影响。这些气动力会施加在读写头部件上、其激励器上以及旋转盘上,产生盘抖动、头定位误差和读写误差。在此将边界层定义为固体表面附近相对于固体表面来说几乎没有相对速度的空气区域。这一区域由固体表面和空气的摩擦作用产生。该区域的厚度近似和流体的粘度与表面速度的商的平方根成正比。气动理论说明了下面的情况旋转盘表面产生了旋转的空气边界层。该边界层的转动平行于盘表面的运动。固定表面,例如与旋转盘表面相对的盘驱动器空腔的基座或者封盖也会产生一个边界层。当固定表面和盘表面之间的距离大于旋转盘表面边界层厚度的时候,与旋转盘表面流动方向相反会产生一股逆流。这股空气逆流会施加在盘表面上,导致盘抖动,也会施加在读写头部件上,导致头部件振动。该空气的逆流以及其它气动力,会引发盘抖动、头定位误差和读写误差。将密封盘外壳中的旋转盘的物理系统视为形成声学和机械振动的共振空腔是很有用的。很多发明者的试验和仿真发现靠近旋转盘、以比理论或者现有技术报告都大的距离提供一个阻尼表面可以减小这种空腔的共振频率或者自然频率。所发明的阻尼机械装置包含与旋转盘表面相邻、阻尼表面和盘表面之间有一定距离或者气隙的固定阻尼表面。对于等于或者小于边界层厚度的气隙,盘抖动效果的改进是显著的。然而,在试验的条件下发明者们也看到很明显的阻尼效果,这种条件下工作的盘驱动器密封内部的气隙比理论或者现有技术中表明的值都大。阻尼机械装置的阻尼表面和旋转盘表面之间减小了的距离或者气隙阻止了旋转盘表面和阻尼表面之间空气逆流的产生。气隙也使得空气逆流和作用在盘表面上、包括其激励器在内的读写头部件上的其它气动力的影响最小化。这就减小了盘抖动,改善了头定位并且提高了盘驱动器的整体性能。附图1A介绍了典型的现有技术的硬盘驱动器,它可能是一个大容量盘驱动器10;附图1B介绍了典型的现有技术的大容量盘驱动器10;附图1C介绍了现有技术盘驱动器10的单盘的横断面视图;附图1D介绍了现有技术盘驱动器10的双盘的横断面视图;附图2A介绍了主轴马达80和一个在盘上表面12和盘空腔的顶表面之间有气流和在盘下表面12和盘空腔的底面之间也有气流的盘12的横断面视图;附图2B介绍了由旋转气流产生的在外径区域附近的强烈的动力(或者压力)图,它导致盘振动的产生;附图2C介绍了在附图2A的盘上表面12和盘空腔表面顶部之间的气流状况,它说明了两个独立的边界层的形成;附图2D介绍了附图2A的下盘表面12和盘空腔表面底部之间的气流状况,它说明了只有一个边界层的形成;附图3介绍了以7200转/分的转速工作的3.5英寸传统的两个盘的盘驱动器10的旋转速度的盘振动谐波;附图4介绍了现有技术中公开的传统的57,000道/英寸(TPI)的盘驱动系统中头位置偏差信号(PES)谱,其被试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES谱;附图5介绍了支持本发明多种方面和使用单头的薄盘驱动器10的分解示意图;附图6介绍了附图5中介绍的使用单头的薄盘驱动器10的顶视图;附图7介绍了根据本发明某些方面采用阻尼机械装置120的盘驱动器10的顶视图,在阻尼表面(未画出)在盘12第一盘表面的第一间隙内的地方提供大于180度的径向覆盖;附图8介绍了阻尼机械装置120的某些优选实施例的透视图,它包含提供至少第一表面122的至少一个板极(plate),当装在盘驱动器10中的时候,该板在旋转盘12的第一盘表面附近提供第一间隙,这一点可以从附图11A-12A中进一步看到;附图9介绍了采用附图7阻尼机械装置120的可替代的实施例的盘驱动器10的顶视图,在阻尼表面(未画出)处于盘12的第一盘表面的第一间隙内的地方提供小于180度的径向覆盖;附图10A和10B介绍了关于轨道位置误差的试验结果,它们使用类似于附图8和9中介绍的阻尼机械装置120的气流稳定器,从离线伺服轨道写装置(offlineservotrackwritesetup)获得;附图11A和11B介绍了本发明单盘12盘驱动器10的两种可替换的优选实施例的横断面视图;附图11C介绍了本发明双盘12盘和14盘驱动器10的一种优选实施例的横断面视图;附图12A介绍了与附图11A至11C相关的更详细的横断面视图;附图12B介绍了关于附图12A所示标准化间隙高度Gap1的振动盘表面12阻尼系数的弹性声学耦合效应的理论结果;附图12C介绍了关于附图12A所示标准化的第一阻尼表面122的振动盘表面12阻尼系数的弹性声学耦合效应的理论结果;附图13A、13B和14分别介绍了在内径、中径和外径处试验确定的从0到1KHz激励器振动谱;附图15A和15B分别介绍了关于附图12A的Gap1为0.6mm和0.2mm的振动盘表面12功率谱的弹性声学耦合效果的试验结果;附图16A和16B分别介绍了对于盘转速为7200转/分和5400转/分的关于附图12A的各种Gap1值的振动盘表面12的功率谱的弹性声学耦合效果的试验结果;附图17介绍了关于振动盘表面12位移频率谱的弹性声学耦合效果的试验结果,分别使用25mm径向宽度的阻尼机械装置570和不使用阻尼机械装置560;附图18介绍了在传统57,000道/英寸(TPI)盘驱动系统580和在使用降低30%PES的25mm阻尼机械装置590的盘系统中头位置偏差信号(PES)的谱,其被试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES的谱;附图19介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种径向宽度的阻尼机械装置的盘系统中头位置偏差信号(PES)的谱,其被试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES的谱;附图20介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种径向宽度的阻尼机械装置的盘驱动器中试验确定的头位置偏差信号(PES)级;附图21介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种覆盖角和径向宽度为一英寸或25mm的阻尼机械装置的盘系统中试验确定的头位置偏差信号(PES)级;附图22介绍了材料的扩展和附图2A和12A的分析用于本发明另外的优选实施例;附图23A-23E介绍了前面附图中在阻尼机械装置120中使用的极板的各种形状、边缘和材料。具体实施例方式一个或多个旋转盘的盘表面旋转速度,在一个或多个盘旋转的空气穴中可以对气动力产生很大的影响。这些气动力可以作用在读写头部件上、其激励器上以及旋转盘上,产生头定位和读写误差以及盘抖动。正如在简介中指出的,边界层是在固体表面附近和固体表面基本上没有相对速度的空气区域。这一区域由固体表面和空气之间的摩擦作用产生。这一区域的深度大体上与粘度与表面速度的商的平方根成正比。附图2A介绍了主轴马达80和一个盘12的横断面示意图,气流位于该盘上表面12-1和盘空腔顶表面之间,同时还有气流位于该盘下表面12-2和盘空腔的底面之间。盘表面是以恒定转速旋转的。理论上,旋转盘表面总是产生与盘表面的运动平行转动的空气边界层。固定的表面,诸如与旋转盘表面相对的盘驱动器空腔中的基座或封盖,也会产生一个边界层。当固定表面和盘表面之间的距离大于旋转盘表面边界层的厚度时,从旋转盘表面逆着流动的方向会产生一股逆流。这股逆流会作用在盘表面上,导致盘振动,也可能作用在读写头部件上,导致头部件振动。盘旋转越快,作用在读写头部件和所附的激励器上的气动作用就越大。附图2A也可以对这种物理系统表现声学和机械共振的倾向提供进一步的认识。将由工作硬盘驱动器包围的旋转盘的物理系统视为形成声学和机械振动的共振腔是十分有用的。发明者的仿真和试验发现通过在旋转盘附近比理论或者现有技术报告提到的更远的距离上提供一个阻尼表面,这种空腔的共振频率或者自然频率可以得到减小。附图2B节选自2001年11月9日韩国Seoul,Yonsei大学信息存储设备中心(CISD)举行的HDD动力学和振动国际论坛中Dae-EunKim教授题名为“ResearchandDevelopmentIssuesinHDDTechnologyActivitiesofCISD(HDD技术研究和发展问题CISD活动)”的报告,它介绍了由旋转气流产生的外径区域附近的强烈的动力(或压力)视图,这种力导致盘振动的产生。在外径附近的气流,在盘12和14之间经历了不稳定的周期性漩涡,导致共振谐波机械振动(resonantharmonicmechanicalvibration),使盘12和(或)盘14摆动。此外,在由盘基座100和(或)封盖110(在附图1C和1D中看得最清楚)形成的密封区域附近,形成了有强湍流的气体区域。附图2C和2D进一步讨论这种现象。附图2C介绍了盘表面和非旋转表面之间典型的气流,显示了两个独立的边界层的形成。在传统的硬盘驱动器中,流动方式有多种二次流(secondaryflow),在盘附近沿径向向外,在外壳处向内,它们控制着空气流。空气流在外围附近和轴附近由轴向气流连接。当盘和固定表面间的间隙大于边界层的厚度时,在内部区域相当数量的空气和主气流隔离开。隔离的空气近似作为一个刚体以盘角速度的一半旋转。这些流动特征产生很大的漩涡并加速了盘倾斜效应,这就产生了严重的位置偏差信号(PES)问题。在涉及到径向表面运动的情况下,边界层通常按照与粘度与径向速度(弧度/秒)的商的平方根成正比来计算。表1显示了对每分钟转数(RPM)的边界层厚度。附图2C表明在一组盘的盘顶部区域存在大漩涡,该组盘或许只有一个盘。该漩涡产生一个机械力导致盘抖动。在仿真中发现在旋转盘表面附近,朝着其边缘,气流速度接近10米/秒。在边界层的边缘,离盘表面大约一个边界层厚度的地方,气流速度几乎为0。此外从盘表面,由于和固定表面的摩擦作用形成逆流。已经发现消除与盘表面相邻的漩涡可以改善机械稳定性。通过产生一个相当窄以至于二次流几乎不存在的间隙,如附图2D所示,气流采用Couettee流动模式,在外壳和盘之间几乎是直线型切向速度剖面。因此,在本发明的一个实施例中,阻尼机械装置定位在与旋转盘表面相邻处,用来大大减少固定表面和旋转盘表面之间的距离。位于阻尼机械装置和盘表面之间的减小了的距离或者空气间隙可以近似为旋转盘的边界层厚度。作为选择,空气间隙可以小于近似的边界层厚度。在阻尼机械装置和旋转盘表面之间的减小了的距离或者空气间隙可以阻止旋转盘表面和固定表面之间空气的逆流的产生。空气间隙也可以使空气逆流的作用和施加在盘表面和包含激励器的读写头部件上的其它气动力达到最小。这就可以减少盘抖动并改善头定位。当空气间隙是边界层厚度更小的一部分时,可以进一步改善头定位并降低盘抖动。附图3曲线表示作为以7200转/分的转速工作的3.5英寸传统双盘盘驱动器10(其结构如附图1D和2B中所示)的旋转速度的盘振动谐波,其中盘12和盘14是由流体动力支撑马达80驱动的1.27mm厚铝制盘。在顶盘外径处轴向盘振动的测量由激光多普勒速度仪来测量。垂直轴线表明在以米为单位从100皮米到100纳米以对数刻度表示的外径位移。在左边圈出的尖峰表示旋转速度的谐波,而右边圈出的尖峰表示盘振动模式。附图4所示为一曲线,用来说明在现有技术所公开的传统57,000道/英寸(TPI)的盘驱动系统中试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES谱的头位置偏差信号(PES)谱。左侧的轴线表示以纳米为单位的NRRO谱,右侧的轴线等效地表示NRROPES占轨道间距的百分比。轨迹迹线表明PES读数在三个标准偏差内,它大约是35.7纳米或者轨道间距的百分之七。PES尖峰400是由漩涡流的吸附效应(inducedeffect)所引起。在区域410内的PES尖峰由盘振动所引起。附图3和附图4表明了共振或者驻波现象。附图3中盘振动模式的共振频率和附图4区域402内的PES尖峰有很高的关联性。附图5介绍了支持本发明多种方面和使用单头的典型薄盘驱动器10的分解示意图。薄盘驱动器优选应用在诸如多媒体娱乐中心或者置顶盒中。薄盘驱动器最好只使用单头,这样可以进一步减小基座100表面和盘12表面之间的间隙。在盘驱动器中使用单头可以降低制造成本并增加制造的可靠性。在附图5所示的典型结构中,驱动器10包含印刷线路板部件102、盘驱动器基座100、主轴马达80、盘12、声音线圈激励器30、盘夹82(diskclamp)和盘驱动器封盖110。声音线圈激励器30还可以包括头/滑动器60上的单读写头,并且盘驱动器封盖110还可以包括至少一个区域112,用来提供与盘12上表面接近的固定顶表面。附图6介绍了附图5中薄盘驱动器10的顶视图。需要注意的是当装配以及处于正常工作状态时,区域112应该在声音线圈激励器30的激励器支架50和头滑动器60所经过的区域之外。区域112可以提供一个无间隔的连接表面。区域112还可以提供简单连接的表面,而没有任何穿孔或者孔。附图7介绍了根据本发明的某些方面采用阻尼机械装置120的盘驱动器10的顶视图,在阻尼表面(图中未画出)处在盘12第一盘表面的第一间隙内的地方,它提供大于180度的径向覆盖。附图8介绍了阻尼机械装置120某些优选实施例的透视图,它包含提供至少一个第一表面122的至少一个极板,当装配在盘驱动器10中时,在旋转盘12的第一盘表面附近它提供第一间隙,从附图11A-12A可以进一步看到。需要注意的是本发明的各种实施例可以提供多于一个阻尼表面给其它盘表面,它们可以属于或者不属于其它盘。附图9介绍了采用阻尼机械装置120的可替代实施例的盘驱动器10的顶视图,在阻尼表面(未画出)处于盘12表面的第一间隙内的地方,它提供小于180度的径向覆盖。在一些实施例中,阻尼表面可能形成一个或多个极板。附图7和9所示的阻尼表面每个最好形成被截切的圆环或者C形,它分别包含与主轴马达相对的内边界140和与主轴马达相背的输出边界142。阻尼表面还可以包含第一非径向边界144和第二个非径向边界146。在附图23A-23E中介绍各种优选的极板。在此阻尼机械装置120又称作盘阻尼器,盘阻尼设备,阻尼设备和气流稳定器。阻尼机械装置120还可以包括远离旋转轴的屏蔽或者壁墙,在附图22进一步讨论的一些优选的情况下,它刚性地连接在附图8所示至少一个极板上。附图10A和10B介绍了关于轨道位置误差的试验结果,它使用类似于附图8和附图9中所介绍的阻尼机械装置120的气流稳定器,从离线伺服轨道写装置获得的。附图10A中垂直轴线所示为轨道位置以微英寸为单位的均方根偏差。方框520所示为没有阻尼机械装置120的实验轨道位置误差结果,它表明均方根误差为0.056微英寸。方框522所示为采用阻尼机械装置120的实验轨道位置误差结果,它表明均方根误差为0.036微英寸。附图10B的垂直轴线所示为每微英寸的概率密度。水平轴线表明以微英寸为单位的轨道位置偏差。轨迹迹线524表明不使用阻尼机械装置120时在各种位置偏差下的概率密度。轨迹迹线526表明使用阻尼机械装置120的时候在各种位置偏差下的概率密度。附图11A和11B介绍了本发明单盘12盘驱动器10的两种可替代实施例的横断面视图。附图11C介绍了本发明双盘12盘和14盘驱动器10的一个实施例的横断面视图。附图11A-11C介绍的阻尼机械装置120可以包括一个极板,用来在第一间隙处紧靠第一盘12提供至少一个阻尼表面122。附图11C介绍了阻尼机械装置120,它还在第二个间隙处紧靠第二个盘14的地方提供第二个阻尼表面124。附图12A更详细介绍了与附图11A-11C有关的阻尼机械装置120和相邻盘12和14的横断面视图,特别是对附图11B。阻尼机械装置120包括通过附图11A-11C中所示的空气层Gap1独立于盘12第一盘表面12-1的第一阻尼表面122。需要注意的是在附图11A中,第一盘表面12-1是盘12的底盘表面。在附图11B和11C中,第一盘表面12-2是盘12的底盘表面。阻尼机械装置120还可以包括第二个阻尼表面124,在这种情况下它通过附图11C和12A中所示的空气层Gap2独立于第二个盘14表面14-1。上述每个间隙至多是一个最好小于1mm的第一距离,每个间隙最好大于0.3mm。最好每个间隙在0.35mm和0.6mm之间。这些间隙的一个或者多个最好小于边界层的厚度。在某些实施例中,这些间隙的一个或者多个最好小于边界层厚度的一小部分。一些发明者通过盘12的弹性振动波场和间隙中相邻空气介质的声音压力波场之间的弹性声音耦合效应,来描述盘12振动的阻尼,该间隙将第一盘表面12-1和第一阻尼表面122分开。这些发明者将弹性声音耦合效应定义为在盘12弹性振动波场和位于第一盘表面12-1和第一阻尼表面122之间间隙内的声音压力波场产生的耦合。这些发明者的试验结果指出空气层间隙的声音压力波对盘12的弹性振动波产生很强的阻尼力。发明者们还介绍了由盘14弹性振动波场和间隙中相邻空气介质的声音压力波场之间类似的弹性声学耦合效应产生的盘14振动的阻尼,该间隙将第二盘表面14-1和第二阻尼表面124隔开。下面的表2所示为各附图仿真或者试验的情况。附图12B介绍了与附图12A标准化间隙高度Gap1有关的振动盘表面12阻尼系数的弹性声音耦合效果的理论结果。无量纲单位的标准化间隙高度大约相应于0到10的范围。阻尼系数按照理论上振动理论所定义方式定义。在粘性阻尼中,阻尼力与振动体的速度成正比。粘性阻尼系数c表达为c=-F/v,此处F是阻尼力,v是振动物体的速度。负号表明阻尼力与振动体速度的方向相反。附图12C介绍了与附图12A标准化第一阻尼表面122有关的振动盘表面12阻尼系数的弹性声学耦合效应的理论结果。水平轴线所示为阻尼表面122面积对盘表面12面积放大10倍的比值,这可以从附图7和9的顶视图中更好地看到。附图13A、13B和14分别介绍了在内径处、中径处和外径处试验测定的从0到1KHz的激励器振动谱,它使用激光多普勒振动仪记录以7200RPM旋转的双盘的3.5英寸盘驱动器的激励器的读数得到。该激励器是完全装配的激励器,它包括悬挂设备,头万向接头部件和四通道读写头。轨迹迹线530和532所示分别为没有阻尼机械装置120和有阻尼机械装置120的激励器振动频率范围。阻尼机械装置120是一个如附图7、8和11C所示的极板,它定位在离两个盘12和14各自表面0.5mm的间隔内。这个极板的径向宽度为2/3英寸或大约17mm。尖峰534是在轨迹迹线530中大约258Hz的涡流声波感应激励器共振,它在轨迹迹线532中几乎完全消除了。尖峰536是在轨迹迹线530中大约346Hz的涡流声波感应激励器共振,它在轨迹迹线532中几乎完全消除了。消除这些共振尖峰对有关盘表面的激励器的整体轨道定位能力是有利的。附图15A和15B分别介绍了关于附图12A中Gap1为0.6mm和0.2mm的振动盘表面12功率谱的弹性声音耦合效应的试验结果。垂直轴线表示以米为单位以对数形式表示的外径位移,它们的范围是100皮米到100纳米。发明者们认为在区域540和550的尖峰归因于盘振动。当间隙减小到0.2mm时,间隙为0.6mm的尖峰542变为尖峰552。附图16A和16B分别介绍了对于盘转速为7200转/分和5400转/分的与附图12A中各种Gap1值有关的振动盘表面12功率谱的弹性声学耦合效应的试验结果。所报告的振动数据是使用激光多普勒速度仪测量的顶部盘外径处产生的轴向盘振动。附图17介绍了振动盘表面12位移频谱的弹性声音耦合效应的试验结果,分别使用径向宽度为25mm的阻尼机械装置570和不使用阻尼机械装置560。附图18介绍了在传统57,000道/英寸(TPI)盘驱动系统580和在采用25mm阻尼机械装置590能降低30%PES的盘系统中头位置偏差信号(PES)的谱,其被试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES谱。左侧的坐标轴表示以纳米为单位的NRROPES。右侧的坐标轴相应地表示NRROPES占轨道间距的百分比。轨迹迹线580表明PES在三个标准差内的读数,大约为36纳米或者相当于轨道间距的7%。轨迹迹线590表明PES在三个标准差内的读数,大约24纳米或者相当于轨道间距的4.7%。附图19介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种径向宽度的阻尼机械装置的盘系统中头位置偏差信号(PES)谱,其被试验确定为非重复性振摆(Non-RepeatableRunOut)(NRRO)PES的谱。来自25mm、17mm和12.5mm径向宽度的阻尼机械设备120的结果分别由轨迹迹线602、604和606表示。附图20介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种径向宽度的阻尼机械装置的盘驱动器中试验确定的头位置偏差信号(PES)级。在附图19和20所介绍的试验中,一个数据轨道的间距是0.44微米。垂直轴表示三个标准差的PES级。方框600表明当不采用阻尼机械设备时的试验结果。方框602、604和606表示当采用径向宽度分别为一英寸、2/3英寸和半英寸的阻尼机械设备时的试验结果。阻尼机械装置120是附图23E所示的极板。试验结果表明25mm径向宽度的阻尼机械装置具有最低的PES级,它支持了大宽度阻尼机械装置比小宽度阻尼机械装置能更多地减小PES的假设。附图21介绍了在传统57,000道/英寸(TPI)盘驱动系统600和在采用各种覆盖角和径向宽度为一英寸或25mm的阻尼机械装置的盘驱动器中试验确定的头位置偏差信号(PES)级。在这些试验中,一个数据轨道的间距是0.44微米。垂直轴表明三个标准差的PES级。方框600表明不采用阻尼机械装置的试验结果。方框612、614和616表明当阻尼机械装置分别使用200度、130度和80度的覆盖角时试验结果。附图21所述的试验结果支持了大角度阻尼机械装置比小角度阻尼机械装置更能减小PES的假设。附图22介绍了材料的扩展和附图2A和12A的分析用于本发明另外的优选实施例。如附图11A和12A所述,阻尼机械装置120包含第一阻尼表面122,它通过附图11A-11C所示的空气层Gap1与盘12的第一盘表面12-1隔离。阻尼机械装置120还包括第二阻尼表面124,在这种情况下,它通过空气层Gap2与第一盘12的第二盘表面12-2隔离。阻尼机械装置120包含“垂直平面”盘阻尼器,该盘阻尼器包含通过HGap1与盘12外缘12-3隔离的第一垂直表面130。在第一垂直表面130和盘12外缘之间的水平间隙,在空气介质中产生密封盘边缘波场,有利于稳定盘12。如附图12A,Gap1-4中每个最多是一个最好小于1mm的第一距离。每个间隙还最好大于0.3mm。每个间隙最好在0.35mm至0.6mm之间。这些间隙的一个或者多个最好小于边界层厚度。在某些实施例中,这些间隙的一个或者多个最好小于边界层厚度的一小部分。本发明考虑使用盘封盖110,以提供至少第一阻尼表面122作为阻尼机械装置120的一部分,同时使用盘封盖110提供第一垂直表面130。附图22还介绍了包含第三阻尼表面126的阻尼机械装置120,该表面通过第三间隙Gap3与属于第二盘14的第三盘表面14-1隔离。阻尼机械装置120还可以包括“垂直平面”盘阻尼器,该盘阻尼器包含通过HGap2与盘14外缘14-3分离的第二垂直表面132。在第二垂直表面132和盘14外缘14-3之间的水平间隙在空气介质中产生了密封盘边缘波场,有利于稳定盘14。阻尼机械装置120还包括通过第四间隙Gap4与第四盘表面14-2分离的第四阻尼表面128。每个水平间隙至多是一个第二距离,它最好小于1mm。每个间隙最好大于0.3mm。每个间隙优选在0.35mm和0.6mm之间。水平间隙的一个或者多个最好小于边界层厚度。在某些实施例中,这些水平间隙的一个或者多个最好小于边界层厚度的一小部分。本发明还考虑使用盘基座100,用于提供至少第四阻尼表面128作为阻尼机械装置120的一部分,同时也使用盘基座100进一步提供第二垂直表面132。附图23A-23E介绍了前面附图中阻尼机械装置120中使用的极板的各种形状、边缘和材料。需要注意的是仅在附图23E中画出了边界140-146以简化其它的附图,但不意味着限制权利要求的范围。附图23A介绍了在边界140,144和146上包含带孔的尖锐的阶梯边缘(sharpstepedge)的铝制极板120。孔的直径最好是5mm以便最佳地减少激励器振动。附图23B介绍了硬塑料最好是诸如LEXAN等聚碳酸酯(polycorbonate)材料的极板120,它包括在边界140、144和146上的楔形边缘。附图23C介绍了硬塑料极板120,在边界140、144和146上它包含尖锐的阶梯边缘。附图23D介绍了铝制极板120,在边界140、144和146上它包含圆形斜面边缘。附图23E介绍了铝制极板120,在边界140、144和146上它包含尖锐的阶梯形边缘。在使用铝制极板的实施例中,这些极板最好在一个或多个表面上包含加铝(AluminumPlus)涂层。本发明还考虑到了如附图23A-23E所示的极板,它们包括在激励器和它的部件附近形成的用来阻止漩涡的指状元件(finger)。前面各图所示的采用阻尼机械装置120的盘驱动系统也受益于噪音等级的降低。下面的表3介绍了对采用以7200转/分旋转的两个盘的几种盘驱动器进行的试验。这些试验使用了附图23D中介绍的优选阻尼机械装置120,其间隙为0.5mm,径向宽度为2/3英寸,或者17mm,覆盖角为200度。上述实施例作为例子提供而并不是限制下面权利要求的范围。权利要求1.一种盘驱动器,包含多个盘,所述盘中的第一包含第一盘表面,所述盘中的第二个包含第二个盘表面;盘基座;激励器,它提供一通信地连接到所述第一盘表面的读写头部件以及一通信地连接到所述第二盘表面的第二读写头部件,所述激励器旋转地与所述盘基座相连;与所述盘基座刚性连接的主轴马达,所述主轴马达提供的目的是沿着旋转轴以工作转速旋转所述盘;阻尼机械装置包含固定地连接在所述盘基座上的极板并且还包括第一阻尼表面,它通过第一间隙与所述第一盘表面关于所述盘的所述旋转轴至少分离175度,在径向宽度上关于所述盘的所述旋转轴至少分离16毫米;所述阻尼机械装置还包括第二阻尼表面,它通过第二间隙与所述第二盘表面关于所述盘的所述旋转轴至少分离175度,在径向宽度上关于所述盘的所述旋转轴至少分离16毫米,其中包含所述第一间隙和所述第二间隙的间隙集中的每个部件最多是一个固定的距离;当所述第一盘表面和第二盘表面以所述盘工作转速旋转时,用来减小作用在所述第一盘表面和所述第二盘表面上的气动力以稳定所述盘表面的所述阻尼机械装置;当所述第一盘表面和第二盘表面以所述盘工作转速旋转时,用来减小作用在所述激励器上气动力的所述阻尼机械装置;与所述盘基座结合的盘封盖,用来形成包含主轴马达、所述多个盘、所述激励器和所述阻尼装置的外壳。2.权利要求1所述的盘驱动器,其中所述工作转速至少是每分钟5400转。3.权利要求2所述的盘驱动器,其中所述工作转速大于每分钟5400转。4.权利要求1所述的盘驱动器,其中以所述工作转速旋转的所述盘从所述第一盘表面产生边界层厚度,其中所述固定距离大约就是边界层的厚度。5.权利要求4所述的盘驱动器,其中所述固定距离小于所述边界层厚度。6.权利要求1所述的盘驱动器,其中所述极板由包含非除气(non-outgassing)的硬塑料和金属合金集合的至少一个部件组成,其中金属合金包含大部分包含铝、铜和铁集合的部件。7.权利要求6所述的盘驱动器,其中极板主要由铝合金组成。8.权利要求7所述的盘驱动器,其中所述极板包含一个涂层,它经过处理用来抑制所述铝合金的除气。9.权利要求6所述的盘驱动器,其中所述极板主要由所述还包含非除气聚碳酸酯的非除气硬塑料组成。10.权利要求1所述的盘驱动器,其中所述第一盘包含所述第二盘表面30。11.权利要求1所述的盘驱动器,其中所述盘簇中的成员包含第三盘表面;其中所述阻尼机械装置还包括通过所述第三间隙与所述第三盘表面隔离的第三阻尼表面;其中所述间隙集还包括第三间隙。12.权利要求11所述的盘驱动器,其中所述盘簇的成员包含第四盘表面;其中所述阻尼机械装置还包括通过所述第四间隙与所述第四盘表面分离的第四阻尼表面;其中所述间隙集还包括所述第四间隙。13.权利要求1所述的盘驱动器,其中所述盘簇还包括所述盘的第三个。14.权利要求1所述的盘驱动器,其中与所述盘旋转平面平行的所述第一阻尼表面的横断面包含具有内环边界和外环边界的被截切的圆环;其中所述内环边界和外环边界都是以所述盘的所述旋转轴附近为中心的。15.权利要求14所述的盘驱动器,其中与所述旋转平面平行的所述第一阻尼表面的横断面是所述被截切的圆环。16.权利要求14所述的盘驱动器,其中所述与所述旋转平面平行的第一阻尼表面的所述横断面的内边界与所述内环边界是不同的。17.权利要求14所述的盘驱动器,其中所述与所述旋转平面平行的第一阻尼表面的所述横断面的外边界与所述外环边界是不同的。18.权利要求1所述的盘驱动器,其中所述第一阻尼表面是相连的。19.权利要求18所述的盘驱动器,其中所述第一阻尼表面是简单连接的。20.权利要求18所述的盘驱动器,其中所述相连的第一阻尼表面包含至少一个孔。21.权利要求20所述的盘驱动器,其中所述孔的直径在1mm和6mm之间。22.权利要求1所述的盘驱动器,其中所述极板包含与所述主轴马达相对的内边界。23.权利要求22所述的盘驱动器,其中所述内边界包含圆形的边界;其中所述圆形的边界接近由圆形圆圈、椭圆形圆圈、倾斜的圆圈(beveledrounding)、斜切圆圈和刀边圆圈构成的集合中至少一个部件。24.权利要求1所述的盘驱动器,其中所述固定的距离最多是1mm。25.权利要求24所述的盘驱动器,其中每个间隙集元素至少是0.35mm。26.权利要求25所述的盘驱动器,其中所述固定的距离最多是0.6mm;并且其中所述间隙集元素中每个最少为0.35mm。27.一种盘驱动器,包含至少一个包含第一盘表面的盘;至少一个激励器,它提供读写头组件,其可通信地连接到所述第一盘表面;以工作转速旋转所述至少一个盘的设备;用来阻尼和所述第一盘表面有关的所述激励器的设备,所述阻尼设备包括用来提供第一阻尼表面的设备,该阻尼表面通过第一间隙与所述第一盘表面分离;当所述至少一个盘以所述工作转速旋转时,用来减小作用在所述至少一个盘的所述第一盘表面上的气动力以稳定所述至少一个盘的设备;以及当所述至少一个盘以所述工作转速旋转时,用来减小作用在所述激励器上的气动力的设备;其中间隙集中每个部件最多是固定的距离,所述间隙簇包含所述第一间隙。28.权利要求27所述的盘驱动器,其中所述工作转速至少是5400转/分。29.权利要求27所述的盘驱动器,其中以所述工作转速旋转的所述盘从所述第一盘表面产生了边界层厚度;其中所述固定的距离大约是所述边界层的厚度。30.权利要求29所述的盘驱动器,其中所述固定的距离小于所述边界层的厚度。31.权利要求27所述的盘驱动器,还包括所述激励器,它提供通信地连接到第二盘表面的第二读写头部件。32.权利要求31所述的盘驱动器,其中所述阻尼设备还包括通过第二间隙与所述第二盘表面分隔的第二阻尼表面;其中所述间隙集还包含所述第二间隙。33.权利要求32所述的盘驱动器,其中所述第一盘包含所述第二盘表面。34.权利要求27所述的盘驱动器,其中所述第一阻尼表面通过所述第一间隙与所述第一盘表面关于所述盘的所述旋转轴分离至少175度。35.权利要求27所述的盘驱动器,其中所述第一阻尼表面通过所述第一间隙与所述第一盘表面关于所述盘的所述旋转轴在宽度上分离至少16mm。36.权利要求27所述的盘驱动器,其中所述固定距离最多是1mm;并且所述间隙集元素中每个至少是0.35mm。37.一种盘驱动器减小跟踪定位误差的方法,包括步骤将包含至少第一盘表面的至少一个盘以工作转速进行旋转,该盘与至少一个激励器相关,激励器是用来提供通信地连接到所述第一盘表面附近的读写头部件;阻尼所述关于所述第一盘表面的激励器,所述阻尼步骤包括步骤提供通过第一间隙与所述第一盘表面分隔的第一阻尼表面;根据与所述盘工作转速和所述间隙集部件相关的气流,减小作用在所述激励器上的气动力;根据与所述盘工作转速和所述间隙集部件相关的气流,减小作用在所述第一盘表面上的气动力,用于稳定所述第一盘表面;其中每个间隙集部件最多是一个固定的距离,所述间隙集包含所述第一间隙。38.权利要求37所述的方法,其中所述工作转速至少为5400转/分。39.权利要求37所述的方法,其中所述固定距离最多为1mm。40.权利要求37所述的方法,其中所述间隙集元素中每个最少为0.35mm。41.权利要求37所述的方法,其中所述第一阻尼表面通过第一间隙与所述第一盘表面关于所述盘旋转轴分离至少175度。42.权利要求37所述的方法,其中所述第一阻尼表面通过第一间隙与所述第一盘表面关于所述盘旋转轴在宽度上至少分离16mm。43.一种盘驱动器,包含至少一个包含第一盘表面的盘;至少一个激励器,它提供通信地连接到所述第一盘表面附近的读写头部件;阻尼机械装置,它提供通过第一间隙与第一盘表面分离的第一阻尼表面;其中所述至少一个盘以与所述阻尼装置和所述激励器相关的工作转速旋转;其中间隙集元素中每个最多是一个固定的距离;其中所述盘驱动器还包括根据与所述盘工作转速和所述间隙集元素相关的气流,用来减少作用在所述激励器上气动力的所述阻尼机械装置;根据与所述盘工作转速和所述间隙集元素相关的气流,用来稳定所述第一盘的阻尼机械装置;其中所述间隙集包括所述第一间隙。44.权利要求43所述的盘驱动器,其中所述工作转速至少是5400转/分。45.权利要求43所述的盘驱动器,其中所述第一阻尼表面通过所述第一间隙与所述第一盘表面关于所述盘的所述旋转轴分离至少180度。46.权利要求43所述的盘驱动器,其中所述第一阻尼表面通过所述第一间隙与所述第一盘表面关于所述盘的所述旋转轴分离至少200度。47.权利要求43所述的盘驱动器,其中所述第一阻尼表面通过所述第一间隙与所述第一盘表面关于所述盘的旋转轴在宽度上分离至少16mm。48.权利要求43所述的盘驱动器,还包含盘基座;刚性连接在所述盘基座上的主轴马达,所述提供的主轴马达用来以工作转速关于旋转轴旋转所述盘;以及与所述盘基座相连的盘封盖,用来形成包含主轴马达、所述至少一个盘、所述激励器和所述阻尼机械装置的外壳。49.权利要求48的盘驱动器,其中所述阻尼机械装置在所述外壳的边界上减小了噪声。50.权利要求43所述的盘驱动器,其中所述固定距离最多是1mm;以及其中所述间隙集元素的每一个至少是0.35mm。全文摘要气动力产生盘和激励器振动,导致存储设备比如硬盘驱动器中轨道定位偏差。本发明提供了各种阻尼机械装置和阻尼方法,以减轻这些问题。文档编号G11B33/08GK1400600SQ0212629公开日2003年3月5日申请日期2002年5月10日优先权日2001年5月10日发明者姜声宇,金晟薰,格雷戈里·特兰,文森特·古延,斯科特·特兰,尼古莱伊·伊凡诺夫,约瑟夫·布拉格申请人:三星电子株式会社
再多了解一些
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1