增强性能的介质的顶盖层的制作方法

文档序号:6763411阅读:237来源:国知局
专利名称:增强性能的介质的顶盖层的制作方法
技术领域
本发明一般涉及高密度数据介质的热写入领域,更具体地说,涉及用于近场光学和电子束写入的高密度数据记录产品的具体组成及形成方法。
背景技术
相变介质是提供高密度数据存储的应用广泛的装置,这种介质包括CD-RW、DVD-RAM和DVD-RW格式。在这类介质中,数据存储在通常为微米大小的特定位置,并根据目标区域的微结构进行存储和擦除。微结构可以是结晶态或非晶态。在结晶态介质中进行位写入需要将所需区域熔融,并快速将所述区域急冷(淬火)到玻璃态。位擦除则涉及利用较缓慢和温和的加热转换所述玻璃态,使之产生再结晶。所以写入和擦除过程都要求将相当大量的能量加到相变介质中,也称为相变层或数据层中,所述层在过去通常是锗、锑和碲的三元化合物GeSbTe,又称为GST。
在这种设置中,相变介质的烧蚀或引入介质中的化学变化可能非常不合乎需要,并会在介质中引入缺陷和/或妨碍在介质上写入和擦除数据位的能力。在过去为防止不需要的烧蚀或化学变化需将GST层包复在非晶硫化锌-氧化硅(ZnS-SiO2)介质材料的厚膜中。包复层可以防止对相变介质的烧蚀和化学变化,且由于其对可见光的透明性而与记录过程兼容。此外,包复层对从低熔融温度GST层传导的热量有显著的热阻。这种光学堆叠还可包括铝(Al)层或金(Au)层,它们用作镜面并对其它层提供高传导散热。典型的ZnS-SiO2/GST/ZnS-SiO2/Al堆叠可以嵌入在聚碳酸酯中,既耐用又方便最终用户使用。
最新的存储器设计已开始采用近场光学系统或电子束进行热写入。例如,参阅美国专利5557596,”Ultra High Density StorageDevice(超高密度存储装置)”,1996年9月17日授予发明人Gary AGibson。所述`596专利向可移动平台上的信息存储介质区域提供产生电子束的多个电子发射器,以便存储和检索信息。一个基于微机电系统(MEMS)技术的微移动器相对于电子发射器移动平台,以便能够与平台上所选的存储介质区域进行并行通信。在所述`596专利中,数据存储介质包括二极管,其顶层是相变材料,能在结晶态和非晶态之间(或在电性能不同的两个结晶态之间)进行可逆变化。利用电子束局部影响相变层中的状态变化来写入数据。通过利用电子束查询位同时监测在二极管中引发的电流来检测位。所述引发的电流取决于查询区域中相变层的局部状态。
在近场光学和电子束热写入系统中,由于各种原因不能使用上述厚堆叠(ZnS-SiO2/GST/ZnS-SiO2/Al或ZnS-SiO2/GST/ZnS-SiO2)。首先,近场写入要求光学探头在介质表面的比一个波长小得多的范围内通过,这一般与所采用的典型ZnS-SiO2覆盖层厚度不兼容,与用来覆盖介质的聚碳酸酯也不兼容。在电子束热写入时,电子束通常不能穿透比较厚的覆盖层,除非采用极高的电子束能量,而这是不实际的。而且,厚覆盖层会使电子束充电和偏转,这也不合乎要求。
但是,数据层的烧蚀和化学改变的问题依然存在于近场光学和电子束热记录方案中。
最好能提供一种设计,它具有在高密度和超高密度介质中抑制烧蚀和化学改变的优点,同时又能以较有效的方式对所述介质进行近场光学和电子束热写入和擦除。

发明内容
本发明的第一方面提供一种数据存储和检索介质。所述数据存储和检索介质包括数据层,它能借助于施加能量束来存储和擦除数据;以及淀积在数据层上的单独顶盖层,所述单独顶盖层对于能量束是比较透明的并包括以下材料组中的至少一种材料外延材料、导电材料、坚固高熔点材料以及坚固高熔点材料和薄介质层的组合。
本发明的第二方面提供一种数据存储和检索介质,它包括可变数据层,它具有被能量束改变的能力;以及淀积在数据层上的单独顶盖层,所述单独顶盖层对于能量束是比较透明的包括以下材料组中的至少一种材料坚固高熔点材料、导电材料、外延材料以及坚固高熔点材料和薄介质层的组合。
本发明的第三方面提供数据存储和检索介质的制造方法,所述方法包括提供能够借助于施加能量束而发生变化的数据层;以及在数据层上淀积顶盖层,所述顶盖层对于能量束是比较透明的并包括以下材料组中的至少一种材料坚固高熔点材料、导电材料、高度各向异性分层材料以及外延材料。
本发明的第四方面提供数据存储和检索介质的制造方法,所述方法包括提供能够借助于施加能量束而发生变化的数据层;以及在数据层上淀积顶盖层,所述顶盖层对于能量束是比较透明的并包括以下材料组中的至少一种材料外延材料、导电材料、高度各向异性分层材料、坚固高熔点材料以及坚固高熔点材料和薄介质层的组合。
对于本专业的技术人员来说,在读了对附图中所示的优选实施例的详细说明后,对本发明各方面的这些和其它优点就可一目了然。


附图中以实例方式而非限制的方式说明本发明,附图中图1示出典型的光电二极管(光束)或阴极二极管(电子束)数据存储和检索器件;图2示出传统光学记录介质所采用的以前的分层结构,具体地说是ZnS-SiO2/GST/ZnS-SiO2/Al结构;图3示出采用外延层作为顶盖层的介质结构;图4示出采用导电顶盖层(例如多晶或导电非晶顶盖层)的介质分层结构;图5示出采用高度各向异性顶盖层(例如由分层硫属元素化物组成)的介质分层结构;以及图6示出形成可重写光学介质分层材料,采用由超薄层坚固高熔点材料(例如钼)构成的顶盖层,其上可任选地覆盖有薄介质层。
具体实施例方式
本发明包括采用不同材料的各种顶盖层,其中,使用这些材料有助于在具有近场和电子束记录装置时提高介质的写入和读出总效率。在本文中,词语”材料”包括所有种类的化合物、合金和元素的其它组合。而且,词语”包复层”和”顶盖层”可以互换,二者都指基层以外或以上堆叠的最顶层或最外层。另外,词语”数据层”可以理解为相似或不同材料的多个物理层。实际上,”数据层”在许多情况下可包括由不同材料组成的多个薄膜层。
数据存储和检索器件的不同形式包括例如光电二极管和阴极二极管、光电晶体管和阴极晶体管、光电导和阴极电导器件、光致发光和阴极发光器件以及它们的组合和变型。此外,也可与一个或多个上述器件形成各种类型的结,例如异质结,以便获得所需的检测结果。在异质结中,在结的相对两侧使用两种不同的半导体。这些结的形成以及它们的性质可以得益于采用本发明的介质,并且本发明在某些方面使用这些器件和结的结构来提供对以前所用的介质的改进。
图1示出典型的光电二极管(光束)或阴极二极管(电子束)数据存储和检索器件130。数据存储层132放置在附加层134上,形成二极管135。二极管可以是能提供内置场以分离电荷载流子的任何类型,例如p-n结,pin-结,或萧特基阻挡层器件,依所用材料而定。
发射器138将光束或电子束导向存储层132。所述系统通过局部改变存储层132上区域142的状态来写入数据位。存储区域142的不同状态在读出功能时提供位检测的对比。
在读出功能时,发射器138发射较低功率密度的束,局部激励二极管135的存储区141和142中的电荷载流子。如果在存储层132中载流子被激励,所产生的载流子数量(“产生效率”)将取决于光束或电子束入射的存储区141、142的状态。
影响产生效率的因素有存储层的带结构和成对复合。所产生的一种符号载流子(电子或空穴)的一部分在内置场的作用下将扫掠过二极管界面136(“聚集效率”)。可以通过电压源144在界面136上施加附加场。可以通过在界面136两端取得的检测信号来监测载流子通过二极管界面136而产生的电流,以确定数据存储区141、142的状态。聚集效率取决于读出光子入射的区域内和周围的复合速率和迁移率以及内置场的影响。
因此,读出光子或电子在二极管135两端所产生的电流变化就取决于局部产生效率和局部聚集效率。这两种因素都受光子或电子入射区域的状态的影响。存储层132的相变材料可以包括许多种相变材料,例如具有适当电特性(例如带隙、迁移率、载流子寿命以及载流子密度等)的基于硫属元素化物的相变材料。
本发明用能与近场光学记录的近距要求或电子束记录的电子透明度要求兼容的覆盖层来取代在传统光学记录介质中通常采用的Zn-SiO2覆盖层。对于光学记录,顶盖或覆盖层如果对器件写入或读出束尽可能透明则对设计会十分有利。覆盖层可在高温熔融,而不受写入过程的影响,与数据层没有化学反应,与数据层没有相互扩散,并可提供良好的机械质量,例如机械稳定性。对于近场记录,覆盖层可以很薄。对于电子束记录,覆盖层可以很薄并由低原子序数元素和/或低质量密度元素组成,可对电子有最大的透明度。在本文中,具有”低”原子序数的元素或材料是指原子序数一般低于75的元素或材料,如果不涉及到钨,通常低于45。在本文中,词语”低质量密度”一般是指低于或类似于Si(硅)的质量密度,大约为2.33g/cm3,原子序数为28。与传统光学记录以前所采用的覆盖层相比,近场光学和电子束记录中可以采用不同类型的顶盖层。在本文中,词语”能量束”用来表示聚焦的能量束,例如近场光学无衍射有限光束或电子束,以便与传统光学记录中所使用的束相区别。
图2示出传统光学记录介质所采用的以前的分层结构。图中示出ZnS-SiO2/GST/ZnS-SiO2/Al结构,铝层201在底部,上面是ZnS-SiO2层202,GST相变层淀积在ZnS-SiO2层202上面,第二ZnS-SiO2层204淀积在GST相变层上面。
如果用这些二维材料作为相变层,这种层主要但不完全包括基于柳属元素的材料。这些二维分层材料包括以下各类材料III-VI族化合物InTe,InSe,GaSe,GaS,以及GaTe的六方晶(亚稳)形式,VI-VI族化合物GeS,GeSe,SnS,SnSe,SnS2,SnSe2,以及SnSe2-xSx,金属双硫属元素化物SnS3,ShSe2,WS2,WSe2,MoS2,和MoSe2,过渡金属硫属元素化物TiS2,TiS3,ZrS2,ZrS3,ZrSe2,ZrSe3,HfS2,HfS3,HfSe2,和HfSe3,Ga2S3,Ga2Se3,Ga2Te3,In2S3,In2Se3,In2Te3,GeS2,GeAs2,以及Fe2S4的某些变形,例如某些结晶结构,以及具有二维层结构的所有三元材料,包括具有二维层结构的三元硫属元素化物,例如ZnIn2S4和MnIn2S4。堆叠中可以用的其它材料在目前待批的美国专利申请序列号10/286,010(2002年10月31日提交,发明人Gary AGibson,题目为”Two-Dimesional Materials andMethods for Ultra-High Density and Data Storage”)中有所讨论。
通常。在上述材料和材料组合上的顶盖层可以对存储和检索介质提供某些好处。第一,顶盖层可以防止在对介质写入、擦除或读出数据的过程中因诸如烧蚀或与环境污染物反应等有害情况造成的损坏。一般来说,写入(非晶化)过程对介质的损害最大,其次是擦除(再结晶),再次是读出。顶盖也可防止介质在不使用时的缓慢而不可逆的变化。这种缓慢而不可逆的变化包括组成物的放气,室温下与环境污染物的反应以及其它有害效应。
第二,顶盖层可以提供延伸在整个介质上的导电触点。当相变层的电阻率相当高时,顶盖中的电导率很重要。当相变层具有较高电阻时,与二极管顶层(顶部相变层)的触点(所述触点远离发生数据存储的区域或偏离在其一侧)在数据区和触点之间提供相当高的串接电阻,这是有利的。
第三,顶盖层有助于写入或擦除过程。例如,顶盖层可以提供在这些过程中产生较好的温度分布的热性能,或在某些情况下,在擦除时可用作相变层再结晶的模板。
顶盖层的结构和性能取决于上述三个潜在好处中哪一个适用于所面临的特定情况。在所有情况下,除非大部分电子束穿透顶盖,否则位就不能读出,所以顶盖一般必需或者较薄或者用具有长穿透深度的材料制成。长穿透深度通常要求材料具有较低的平均原子序数和/或低质量密度。一般来说,材料越薄,质量密度和/或可采用的原子序数越大。而且,束能量越高,质量密度越大,且原子序数的要求可以放松。而且,顶盖层在许多实例中必需较好地附着到相变层上。为了防止损坏,顶盖层材料需要比较坚固,并具有较高的熔点,以耐受写入和擦除过程。
基于上述,钼(Mo)是比较坚固的难熔材料。Mo可以用较薄的分层工艺分层,并能经受写入过程。Mo也有适当的导电率。可用作顶盖层的某些低质量密度,低Z材料一般不如Mo坚固,所以使用这些材料就要求有较大的厚度,以经受写入过程,从而中和了与低质量密度相关联的好处。
在目前的设计中,顶盖构造成有利于超高密度探头(近场光学探头或聚焦的电子束)。一般来说,如果导电材料对于适当波长的光子或适当能量的电子不是足够透明,所述导电材料的工作可能就不能满足要求。在这种情况下关键的设计参数是所采用的层的特性,而不仅是所用的材料。一种材料对于给定能量的电子可具有长穿透深度,但一层只有在具有适当的穿透深度和厚度的组合时才能对电子有足够的透明并在给定条件下工作得符合要求。
本发明采用的分层可以提供上述好处,并具有以下属性外延材料、导电材料、具有较低的平均原子序数和/或低质量密度的材料、和/或坚固的高熔点材料要足够薄以便对电子有适当的透明,例如Mo。某些以前的分层设计例如前述ZnS-SiO2设计,可以具有低Z水平,但这些层通常使用时厚度太大,对在例如电子束应用中所采用的低能量电子不够透明。
通常低质量密度和低Z材料对应于趋向提供较长电子穿透深度的情况。电子穿透深度的长度取决于这两项因素质量密度和原子序数,以及入射电子的能量。所以,本发明可适用于对能量束比较透明的顶盖层,此处”比较透明”表示能量束的大部分能量都能穿透顶盖层。当能量束是电子束时,低质量密度和低原子序数特性是主要有关的。一般来说,低质量密度/低原子序数属性对光不提供长穿透深度。但应理解在本发明中采用的材料和层对所采用的能量束一般”比较透明”。
在本发明中采用的外延材料可包括例如外延立方晶系材料,比如氟化钙(CaF2)。CaF2在Si(111)上以单晶形式生长,常用的硅衬底具有平行于材料表面的硅111平面。CaF2对于在Si(111)上外延生长的薄膜提供晶格匹配的顶盖层。在Si(111)上外延生长的薄膜实例包括InSe和GaSe。CaF2通常在大约1400℃熔融,一般不起反应,由原子序数较低的元素组成,且通常对可见光透明。CaF2也可用作缓冲层(如果需要这种缓冲层的话),以便在InSe/GaSe异质结和衬底硅之间提供电隔离。
图3示出利用外延立方晶系材料(例如CaF2)的介质的典型结构。由图3可见,Si(111)层301形成底层。在Si(111)层301上生长p型GaSe的第一薄膜层302。尽管晶格失配,但GaSe很易在Si(111)层上外延生长。然后在GaSe的第一薄膜层302上生长n型InSe的第二薄膜层303。或者InSe可直接生长在GaSe晶体上,不用硅衬底。
在这种配置中,InSe第二薄膜层303形成介质的相变层或记录层。此时所得到的结构是三维各向异性结构,而顶盖材料可以直接设置在所述三维结构上方的InSe第二薄膜层303上。
InSe/GaSe/Si组合在InSe/GaSe和GaSe/Si界面304和305形成结,它们具有低的界面和表面复合,高空间均匀度,比较高的迁移率,长载流子寿命,以及很少的晶粒边界。InSe/GaSe/Si堆叠还具有较低缺陷密度的平滑表面。
在相变层或InSe第二薄膜层303上设置外延立方晶系材料的顶盖层,在此实例中为CaF2。外延顶盖层在非晶位再结晶时可用作生长模板。这个模板可以增加擦除速度或促使再结晶材料具有和周围矩阵相同的定向。再结晶的正确定向可以减少某些种类缺陷的形成。例如,在再结晶材料和矩阵之间的大角度晶粒边界可以防止恢复起始电性能,从而防止全擦除。高角度晶粒边界在各向异性的材料例如InSe中特别有害。
在设计中也可采用特性类似于CaF2的其它立方晶系材料,只要它们与InSe/GaSe层晶格匹配,并能根据光学介质的应用提供必需的有利特性,例如不发生反应,具有低质量密度,由较低序数的原子元素组成,以及对可见光有适当的透明度等。
可以采用的第二类顶盖层是导电多晶或非晶顶盖层,例如石墨或sp2-键接的非晶碳。sp2-键接的非晶碳通常不发生反应,在较高的温度熔融,并具有适当的导电率。石墨是半金属,它能强烈吸收可见光且具有适中的导电率。
可以采用的另一类顶盖层是电绝缘顶盖层,例如铍、sp2-键接的非晶碳或非晶氮化硼。铍是电绝缘体,且和sp2-键接的非晶碳一样是良导热体。
对应电子束记录,sp2-键接的非晶碳和铍以及它们的混合物,由于它们较低的原子序数和较低的质量密度,在这种结构中可以提供某些优势。其它低原子序数的材料,例如铝,由于可能与数据层相变材料发生反应,因而不是最佳的选择。
导电顶盖层降低了对横向载流子传输的需求且能使任何二极管偏压在横向上更为均匀,从而可改进异质结二极管的聚集效率。顶盖层的高导热性在写入和擦除过程中使位深度上的温度更为均匀从而提高了介质结构的整体可靠性,防止了因表面温度过高而造成的损坏。换句话说,在执行读出或写入任务时,具有高导热性的材料可以较好地散热,因此,由于防止了因高温导致的损坏或材料的过度改变而可以进行更受控的位写入或读出。但是,太高的热传导会限制位的最小尺寸和间隔。
图4示出使用导电多晶或非晶顶盖层的器件的典型结构。还是硅Si(111)层401形成底层。在Si(111)层401上生长p型GaSe的第一薄膜层402。然后在GaSe的第一薄膜层402上生长n型InSe的第二薄膜层403。或者InSe可直接生长在GaSe晶体上,不用硅衬底。除InSe和GaSe外的其它相变材料也可用在存储介质上。
在这种配置中,InSe第二薄膜层403形成介质的相变层或记录层。此时所得到的结构是三维各向异性结构,顶盖材料可直接设置在所述三维结构上方的InSe第二薄膜层403上。
InSe/GaSe/Si组合在InSe/GaSe和GaSe/Si界面404和405形成结,它们具有上述有利的特性。在相变层或InSe第二薄膜层403上设置石墨或sp2-键接非晶碳的导电顶盖层406。在某些实例中石墨可以和铍组合在一起形成顶盖层406。对于电子束写入和读出,可优选采用sp2-键接的非晶材料。或者,在相变层或InSe第二薄膜层403上设置由sp3-键接的非晶碳,或铍,或非晶氮化硼构成的绝缘顶盖层406。sp3-键接的非晶碳通常不导电,因此使用这种材料可以提供某些好处(化学惰性和低质量密度),但也有不导电的缺点。
在这种配置中可以用作顶盖层的第三种分层结构是高度各向异性的分层材料,例如石墨。可以采用各种分层硫属元素化物,包括(但不限于)GaSe,WSe2,MoS2,MoTe2,GaS,和InS。对于分层硫属元素化物的详尽讨论可参阅W.Jaegermann等人的文章“Electronicproperties of van der Waals-epitaxy films and interfaces”,发表在”Electron Spectroscopies Applied to Low-DimensionalMaterials”,由H.P.Hughes and H.I.Starberg编辑,Kluwer AcademicPublishers,Dordrecht,2000。这些六方晶材料具有很强的热力学趋势生长成单一方向和连续层。这样在某些情况下,比之用非晶或多晶各向同性材料所构建的层,这些各向异性材料可构建更薄的连续层。与上述各向异性材料的连续层相比,非晶或多晶各向同性薄膜较为粗糙。各向异性材料在其终端表面还具有较低密度的悬挂键,所以很不易发生反应,并有低的界面复合速率。此外,许多分层材料,例如石墨、MoTe2和SnSe2都具有较小的带隙,在层平面内是相对导电的。这种导电率有助于设计异质结器件,这些异质结器件基于难于以薄膜形式掺杂的半导体(例如InSe和GaSe)。数种这些分层各向异性材料可以像GaSe一样在数据层材料例如InSe上生长,并可提供针对上述外延立方晶系材料所述的有利效应。
图5示出利用高度各向异性材料例如分层硫属元素化物作为顶盖层的设计。硅Si(111)层501形成底层。在Si(111)层501上生长p型GaSe的第一薄膜层502。然后在GaSe的第一薄膜层502上生长n型InSe的第二薄膜层503。InSe可直接生长在GaSe晶体上,不用硅衬底。
InSe的第二薄膜层503形成介质的相变层或记录层。InSe/GaSe/Si组合在InSe/GaSe和GaSe/Si界面504和505形成结,它们具有上述有利的特性。在相变层或InSe第二薄膜层503上淀积类似于石墨的高度各向异性材料或各种分层硫属元素化物的顶盖层506,分层硫属元素化物包括(但不限于)GaSe,WSe2,MoS2,MoTe2,GaS,和InS。
在某些情况下所述设计可包括超薄层坚固导电材料,例如钼(Mo),加上可选的薄介质层,例如二氧化硅(SiO2),以获得附加的化学和机械稳定性,如图6所示。由图6可见,硅Si(111)层601上覆盖有GaSe薄膜层602,其上覆盖有InSe组成的数据层603。淀积在InSe数据层603上的是坚固的导电层604,其上覆盖有薄介质层605。在所述结构中,Mo具有较高的原子序数,且不利地限制着电子的传输。但,Mo加上SiO2介质顶盖就有可能完全擦除位,并在有反复的写入-擦除循环时可限制损坏。将薄介质层与坚固的Mo层一起使用,就可用较薄的Mo层。使用较薄的Mo层就可改进电子或光的传输,而同时仍保持顶盖层有足够的整体坚固性。而且,介质层有助于保护Mo层在写入或擦除过程中不与周围环境发生破坏性的反应。
所述设计还可采用由两种或多种所列材料组成的顶盖层,例如碳-SiO2双层。所以本专业的技术人员应理解,本设计可应用于利用具有上述特性和功能的其它材料的其它分层设计来进行高速和高密度的光学写入和擦除。
虽然以上已对用特殊的顶盖层实现相变介质增强性能的方法作了说明,目的是示明本发明可以最有利地使用的方式,但应理解本发明不仅限于此。所以,本专业的技术人员所作的任何修改、变化或等效结构均应视为在所附权利要求书所限定的本发明的范围之内。
权利要求
1.一种数据存储和检索介质,它包括能够借助于施加能量束来存储和擦除数据的数据层,以及淀积在所述数据层上的单独的顶盖层,所述单独顶盖层对所述能量束相对透明并包括以下材料组中的至少一种材料外延材料;导电材料;坚固高熔点材料;和与薄介质层结合的坚固高熔点材料。
2.如权利要求1所述的数据存储和检索介质,其特征在于所述外延层包括能以单晶形式在Si(111)上生长的外延材料。
3.如权利要求2所述的数据存储和检索介质,其特征在于所述外延材料是氟化钙。
4.如权利要求1所述的数据存储和检索介质,其特征在于所述导电材料包括石墨。
5.如权利要求1所述的数据存储和检索介质,其特征在于所述导电材料包括碳。
6.如权利要求1所述的数据存储和检索介质,其特征在于所述能量束包括近场光学无衍射有限电子束。
7.如权利要求1所述的数据存储和检索介质,其特征在于所述能量束包括电子束。
8.如权利要求1所述的数据存储和检索介质,其特征在于所述坚固高熔点材料包括Mo。
9.一种制造数据存储和检索介质的方法,所述方法包括形成可以借助于施加能量束来改变的数据层;以及在所述数据层上淀积顶盖层,所述顶盖层对于所述能量束是相对透明的并包括以下材料组中的至少一种材料外延材料;导电材料;坚固高熔点材料;和与薄介质层结合的坚固高熔点材料。
10.如权利要求9所述的方法,其特征在于所述坚固高熔点材料包括钼。
全文摘要
提供一种介质存储器件及所述器件的制造方法。所述器件包括数据层(303,403,503,603),它能够借助于施加能量束(140)例如近场光学无衍射有限束或电子束来存储和擦除数据。将单独的顶盖层(306,406,506)淀积在数据层(303,403,503,603)上。单独的顶盖层(306,406,506)对所述能量束(140)相对透明并可由各种材料形成,包括(但不限于)外延材料、导电材料和坚固高熔点材料,例如钼。
文档编号G11B7/243GK1604213SQ200410056369
公开日2005年4月6日 申请日期2004年8月3日 优先权日2003年10月3日
发明者A·柴肯, G·吉布森 申请人:惠普开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1