超低浮动高度滑动器设计的制作方法

文档序号:6763692阅读:404来源:国知局
专利名称:超低浮动高度滑动器设计的制作方法
技术领域
本发明涉及用于磁盘驱动器的空气轴承滑动器的设计。更特别地,本发明涉及滑动器空气轴承表面的模块设计,以便实现超低浮动高度。
背景技术
磁盘驱动器是普通信息存储设备,它基本上由一组可旋转的磁盘组成,通过磁性读写元件存取这些磁盘。这些数据传输元件(通常被称作换能器)通常由滑动器本体支撑并嵌入在滑动器本体内,滑动器本体放置在形成在磁盘上的个别的数据轨道之上的相对近的位置上,以便进行读写操作。为了相对于磁盘表面适当地定位换能器,形成在滑动器本体上的空气轴承表面(Air bearingsurface,以下简称ABS)受到一流动气流,它提供充足的上升力,以便使滑动器和换能器“浮动”在磁盘的数据磁道上。磁盘的高速旋转,在实质上平行于磁盘的切向速度的方向上沿着磁盘的表面产生一股气流或风。气流配合滑动器的ABS,使得滑动器能够浮动在旋转磁盘之上。事实上,通过此自动空气轴承,悬浮的滑动器与磁盘表面是分开的。滑动器的ABS通常被配置在面对旋转磁盘的滑动器表面上,并且在各种条件下,大大影响磁盘上浮动的能力。
ABS设计的其中一些主要目的是使滑动器及其换能器尽可能靠近旋转磁盘的表面浮动,并且在任何浮动的情况下都维持恒定的近间距。空气轴承滑动器和旋转磁盘之间的高度或分离间隙一般被定义为浮动高度。通常,所安装的换能器或读/写元件在旋转磁盘表面之上浮动仅仅大约几微英寸。滑动器的浮动高度被看成是影响所安装读/写元件的磁盘读取和记录能力的最关键的参数之一。例如,减小或者具有相对小的浮动高度是有利的。相对小的浮动高度允许换能器在不同的数据比特位置和磁场之间实现更大的分辨率,其中此磁场来自磁盘表面上所接近定义的区域。同样,低浮动的滑动器被认为是对磁盘提供了改善的高密度记录或存储容量,这通常受换能器和磁介质之间的间距的限制。因此,狭窄的分离间隙允许短波长信号来被记录或者读取。同时,随着使用相对小然而强大的磁盘驱动器的轻型和紧凑型笔记本电脑的流行度的增加,对于具有较低浮动高度的渐进变小的滑动器本体的需求在不断地增大。
同时也观察到,恒定的浮动高度是有利的,通过特定的ABS设计可以更加容易地实现。浮动高度的波动被认为是不利地影响所附有的换能器或读/写元件的分辨率和数据传输能力。当浮动高度相对恒定时,被记录或者读取的信号的振幅不会变化太多。另外,浮动高度的改变可以导致滑动器组件和磁性旋转磁盘之间无意识的接触。滑动器通常被认为是描述它们与旋转磁盘预定接触的直接接触、假接触或者浮动滑动器。无论是哪种滑动器,通常期望避免与旋转磁盘表面不必要的接触,以便减少滑动器本体和磁盘两种的磨损。记录介质的劣化或磨损可能导致所记录数据的丢失,同时滑动器的磨损还导致换能器或磁性元件最终的故障。
经常引起浮动高度改变的是执行读取或写入操作时滑动器穿过旋转磁盘的连续高速运动。例如,依靠滑动器的径向位置,磁盘的各自线速度改变。在旋转磁盘的外边缘可以观察到较高的速度,同时在内边缘可以发现较低的速度。结果,空气轴承滑动器在相对于磁盘不同的径向位置处以不同的相对速度浮动。因为滑动器一般以较高的速度浮动较高,所以当定位在磁盘的外部区域之上时,浮动高度具有增大的趋势。同时,在磁盘的内部区域处的较低的速度会引起滑动器低速浮动较低。因此,滑动器设计必须解决径向位置和相对速度的改变对浮动高度的值得注意的影响。
滑动器的浮动高度也同样受到倾斜变化所产生的不利影响。倾斜角被定义并且测量为滑动器本体纵轴和与磁盘旋转相切的气流方向之间形成的角度。当所安装的滑动器被定位在旋转磁盘的内部或者外部边缘时,它的纵轴通常相对于气流的方向是倾斜的。滑动器的纵轴可以被定义为沿着滑动器本体长度运行的参考中心线。这些角度方位或倾斜角一般随着旋转式激励器臂的变化而变化,并且万向悬挂组件以它的枢轴点转动,从而在穿过旋转磁盘的弓形路径上移动滑动器。鉴于对具有相对小的致动器臂的高密度磁盘驱动器的需求的增长,由于缩短的臂长,曾经更多的出现大的倾斜角。经常注意到,在倾斜值大于零的情况下,滑动器在减小值处被加压,其中此减小值会引起浮动高度不期望的降低。即使相对适度的倾斜角范围也会不利地影响滑动器的浮动能力。结果,ABS设计不断地尝试最小化滑动器灵敏度,以改变倾斜。
浮动高度的另一个波动可能被识别为滑动器滚动。通过滑动器纵向侧之间的浮动高度的差别来测量和定义滚动角。每当滑动器在相对于气流方向的倾斜处浮动时,在ABS和磁盘之间会趋向于发生不等压力分配。此不平衡引起滑动器滚动,其中滑动器本体的一侧比其它侧更加接近于磁盘。然而无论浮动条件的任何改变,滑动器最好定位在恒定的滑动器滚动,其中此浮动条件包括旋转磁盘内部和外部轨道之间切向速度方面的差别,并且在磁盘表面之上连续的侧向移动或者改变倾斜角。
如图1所示,为通用双体船滑动器5所已知的ABS设计可以形成有一对平行的轨道2和4,它们沿着面对磁盘的滑动器表面的外边缘延伸。包括具有各种表面面积和几何结构的三个或更多附加轨道的其它的ABS结构也同样得到发展。两个轨道2和4典型的沿着至少从前缘6到后缘8的滑动器体长的一部分延伸。前缘6被定义为这样的滑动器边缘,其中当滑动器5的长度朝着后缘8延伸之前,旋转磁盘经过此前缘。如所示,尽管具有一般与此加工处理相关联的大的不期望的容许误差,前缘6可以被弄尖。如图1所示,换能器或磁性元件7一般被安装在沿着滑动器后缘8的某一位置处。轨道2和4形成空气轴承表面,其中在此表面上滑动器浮动,并且当与气流接触时,提供必要的提升,其中气流是由旋转磁盘产生的。当磁盘旋转时,所产生的风或气流沿着双体船滑动器轨道2和4的下面和之间运行。当气流在轨道2和4的下面经过时,在轨道和磁盘之间的气压增加,从而提供正的加压和提升。双体船滑动器通常产生足够量提升,或者正的负载力,以便使得滑动器在旋转磁盘之上的适当高度处浮动。在轨道2和4不存在的情况下,滑动器本体5大的表面面积将产生非常大的空气轴承表面面积。通常,当空气轴承表面面积增加时,所产生的提升量也被增加。在没有轨道的情况下,滑动器将因此离旋转磁盘浮动的太远,从而失去了前述的具有低浮动高度的所有的好处。
如在图2中所描述的,磁头万向架组件40经常提供一滑动器,其中此滑动器具有描述滑动器浮动高度的多自由度,例如垂直间隔或螺距角和滚动角。如图2所示,悬架74在移动磁盘76(具有边缘70)之上持有HGA 40,并且在由箭头80所指示的方向上移动。在图2中所示的磁盘驱动器的操作中,致动器72在磁盘76(例如内径ID、中间直径MD和外径OD)的各种直径上以弧形78移动HGA。
虽然双体船滑动器在提供足够的浮动高度方面最初是有效的,但是它们对于改变的倾斜角范围和其它不利的浮动条件特别地敏感。当倾斜角增加时,例如当浮动滑动器跨越过旋转磁盘时,在轨道下面的气压分配变得扭曲。如图1所示,通过相对较高的速度访问磁盘的内侧和外侧部分,在每一轨道下面以不均匀的量引入空气,这一般引起滑动器滚动。结果,滑动器受到不均匀分布的压力,这可以引起滑动器在一个方向上滚动,以致在ABS轨道之间浮动高度不一致。因此,所安装的换能器不能够有效地操作或准确地执行它的数据传输操作。不管ABS轨道对于各种倾斜范围和其它不利的浮动条件的灵敏度如何,此轨道设计被广泛认为是一般配置,它提供有效的加压或者提升,以便能够使滑动器浮动。
为了抵消浮动滑动器本体的正加压,以便提供低的并且恒定的浮动高度,形成ABS是公知的,它同样提供负的或低的加压,以便使得滑动器本体朝磁盘方向拉动或拖动。例如,负压空气轴承(NPAB)或自动装载滑动器已经是已知的,它提供反作用的负压加载。在此双重加压方案中,ABS可以通常形成具有前缘、后缘、侧轨道、和在侧轨道之间在基本的H形方向上延伸的横穿轨道。横穿轨道产生低压区域,它后部横穿轨道并且在侧轨道之间,其中此横穿轨道通常定位在比滑动器的后缘更加接近于前缘。低压区域产生负压或负荷,它抵消沿着ABS侧轨道部分产生的正压此负向和正向力的反作用已经知道,它增加滑动器的稳定性和空气轴承坚硬性,提供迅速的滑动器浮动,并且减小它对于在例如改变磁盘速度和径向运动情况下进行变化的灵敏度,其中此变化的情况会引起浮动高度的波动。根据在磁盘内部和外部轨道之间速度的改变,补偿在正反压力方面的改变,有助于保持实质上恒定并且稳定的浮动高度这样的整体目标。然而,在低压方案中所产生的偏置力可以经常出现不期望的影响,此影响实际地引起浮动高度的变化。由于在轨道下面空气的不相等加压或分配,NPAB滑动器在倾斜条件下也经常出现值得注意的滚动和浮动高度的减小。
所有对于空气轴承滑动器的上述ABS结构和修改都企图实现低的并且恒定的浮动高度。通过这些ABS设计来提供不同的有效程度,其中这些ABS设计都没有很好的控制浮动高度或螺距和滚动角。例如,许多现存的ABS设计已经被观察到在磁盘的外轨道区域之上出现极大增加的滑动器滚动角。当从内部轨道到外部轨道区域移动的时候,这些结构同样一般也没能控制滑动器螺距角的增大。
对于磁盘的记录密度已经随着对于空气轴承滑动器的低浮动高度的需要而增加。在现有技术中,小于10nm的浮动高度被认为是超低浮动高度。如上所述,低浮动高度的一个问题是存在磁头/磁盘接触的更大的危险,这有可能导致滑动器磁头和/或磁记录磁盘的损坏。鉴于此,需要一种坚固和稳定的ABS设计,特别地用于超低浮动高度执行过程。坚固是因为ABS设计具有稳定的浮动高度,并且对于外部变化例如制造公差、空气特性和环境条件(例如温度)不敏感。

发明内容
本发明提供一种具有多个空气轴承表面(ABS)的低压空气轴承滑动器,它即使在变化的温度环境中也能够提供超低和恒定的浮动高度。该设计可以被认为是″模块″,其中对于滑动器的各个参数例如凸度、曲面和低压,通过滑动器各种零件的大小和定位来被分别地控制。换句话说,控制这些参数中的一个可以有效地从这些参数彼此影响地″去耦″。例如,除了通过改变后部ABS的大小之外,可通过控制侧ABS结构的长度和定位来控制滑动器的凸度灵敏度。曲面灵敏度可以通过设定侧ABS结构的宽度来控制。最终,一旦滑动器的曲面和凸度灵敏度被设定,对于滑动器的整体浮动高度可以通过适当定位低剖面构件来设定,其中该构件在它们之间产生低压区域,结果对于滑动器产生低浮动高度。


图1是具有读和写元件组件的浮动滑动器的透视图,其中此滑动器具有锥形传统双体船空气轴承滑动器结构。
图2是根据本发明(未按比例绘制)的所安装的空气轴承滑动器的平面图。
图3是根据本发明一具体实施方式
所构建的低压滑动器的底部平面图。
图4是图3的后部空气轴承表面的部分平面图。
图5是包括图3的滑动器的磁头挠性组件的侧视图。
图6a和6b是对于根据本发明具体实施方式
所构建的图3滑动器的比较设计。
具体实施例方式
图3是对于根据本发明具体实施方式
的低压滑动器的滑动器10的底部平面图。为了说明下述的ABS的特定特征,应该理解没有显示的整个滑动器本体可以由基底材料例如Al2O3TiC组成。在图3中所表示的滑动器10包括前部空气轴承表面12。空气轴承表面通过前部台阶14从滑动器10的前缘13划出。在此具体实施方式
中,前部台阶14具有相对于前部空气轴承表面的深度。在此具体实施方式
中,深度是在2和10微英寸之间。在滑动器10的内部和外部边缘处提供双侧空气轴承表面15,16。虽然提供此两表面,但是本发明并不被限制于此数目。空气轴承表面15、16的每一个在较低高度处分别包括二级结构15a、16b。在此具体实施方式
中,二级结构15a-16b在高度等于前部台阶14的高度的位置处。在滑动器10的后缘处提供后部空气轴承表面17。这些空气轴承表面在此具体实施方式
中的相同高度处。空气轴承表面17包括第一矩形面18,它比后部矩形面19相对来说要大(在下面将更详细地描述)。在此具体实施方式
中。后部空气轴承表面17具有二级结构17a和17b,它们都在与二级结构15a、16a相同的高度处。二级结构15a、16a、17a和前部台阶14提供用于引入空气的加压和用于滑动器10的提升力。磁记录装置或磁头位于在它后缘处的滑动器本体中(在图3中没有特别显示)。
可以提供大量静态阻力减小衬垫20a-g,它们比这些空气轴承表面延伸更高。静态阻力减小衬垫可以由与滑动器本体相同的物质组成,并且在它们的末端包括似钻石碳物质,以便减小起动摩擦力,并且防止对滑动器空气轴承表面和其它部件的损坏。
滑动器10包括负压区域21,它通过前部台阶14和/或连同低剖面条22a和22b一起的前部空气轴承表面12来包含。在此具体实施方式
中,低剖面条22a-b具有相对窄的宽度(例如在30和60微米之间)。同样,在此具体实施方式
中,低剖面条的高度与侧和后部ABS的前部台阶14和二级结构15a、16a、17a相同。
图3滑动器的设计可以被认为是在设计中的某种″模块″,因为存在至少三个元件,它们的尺寸可以被分别选择,以便表达滑动器特性的不同方面。
例如,凸度或凸起是滑动器的一个特征。它指从滑动器的前缘到后缘的空气轴承表面的曲率。第一矩形面18根据滑动器10的长度被设计成狭窄并且根据滑动器的面对面尺寸被设计成宽。第二矩形面被设计成非常狭窄(例如制造工艺的掩模对准容许误差的数量级;例如5毫英寸(英寸的百万分之一)或130微米)。由于后部ABS 17提供这样一高压区域,所以减小第二矩形面19的宽度将减小滑动器的浮动高度,以致能够得到低于用于超低浮动的10纳米阈值。因为区域如此狭窄,所以此区域接触记录介质的机会就大大减小。即使当接触出现,接触面积也将非常小,导致在此条件下最小损坏读/写元件和滑动器本身。
在图4中表示第二矩形面19的放大图。第二矩形区域在第一矩形区域的后缘18a处开始,朝向滑动器的后缘31。如图4所示,第二矩形区域19的宽度可以比读/写元件30部分的宽度要小。因此,在产生第二矩形区域19的浸蚀操作期间,必须小心操作以便防止或者通过蚀刻或者通过腐蚀对读/写元件31部件的破坏。控制后部ABS 17的尺寸,能够产生滑动器,以致降低滑动器中的凸度的灵敏度。首先,由于凸起是对于滑动器的纵长参数,所以根据ABS表面曲率的改变,狭窄的空气轴承表面导致最小的浮动高度改变。第二,后部ABS 17的前段实质上是平坦的,由于凸起,它同时也降低了滑动器的浮动高度灵敏度。
参考图3,在操作期间,侧空气轴承表面15和16供应对于滑动器的滚动刚性。这些ABS的尺寸不但影响滑动器对于凸度的灵敏度,而且影响对于滑动器第二参数,即曲面(或也称作交叉凸度)的灵敏度。曲面指的是在滑动器本体侧之间的滑动器中的曲率。特别地,侧ABS 15、16的面对面宽度使得滑动器对于曲面更加敏感。同样侧ABS15、16的从前到后缘的宽度使得滑动器对于凸度更加敏感。侧ABS15、16的定位会影响整个浮动高度。这些衬垫越靠近滑动器的后缘,它们变成导致更高浮动高度的承载就越多。此外,两侧ABS有助于确定对于磁盘驱动器高度改变的整体浮动高度灵敏度。
基于以上所述,能够看出,后部ABS 17和侧ABS 15、16的定位和大小的控制能够用于控制由曲面和凸度对滑动器浮动高度的影响。在滑动器中看到的曲面和凸度的数量将直接关系对于滑动器的操作环境。参照图5,表示磁头万向架组件40的侧视图。在图5中,滑动器10经过环氧41与挠性件42耦合。在此具体实施方式
中,环氧是标准环氧和传导环氧(例如银环氧)的化合。传导环氧在滑动器和悬架之间形成导电通路。由于滑动器10、环氧41和悬架物质(一般由不锈钢构成)的热膨胀的失配,温度的改变引起滑动器轮廓(即凸度和曲面)的改变。
在寒冷温度(例如5C)下,由于挠性件42物质的收缩,凸度和曲面增加。在比较热的温度(例如60C)下,由于挠性件物质的膨胀,凸度和曲面减少。由于凸度和曲面,对滑动器浮动高度的影响彼此相反。当凸度增加时,对于滑动器的浮动高度增加,同时曲面的增加使得滑动器的浮动高度减少。因此,侧ABS15和16和后部ABS 17的尺寸和定位能够被控制,以致在一定的温度变化范围内,滑动器对于凸度和曲面的浮动高度灵敏度能够彼此近似相等。换句话说,在比较冷的温度下,由于凸度增加所引起的滑动器浮动高度的增加被由曲面增加所引起的滑动器浮动高度的减小而抵消。在比较高的温度下,由于凸度减小所引起的滑动器浮动高度的减小被由曲面减小所引起的滑动器浮动高度的增加而抵消。
超低浮动高度的一个潜在的必要条件是随着高度的改变,浮动高度几乎不会没有变化。由于高度变化而引起的浮动高度改变与在滑动器本体中产生的低压区域高度相关。参考图3,低压区域存在于低剖面条22a和22b之间。在先有技术的设计中,低压区域一般包含在侧ABS轨道内部。因此,为了减少低压区域,ABS轨道将需要被扩展或者移动,大大地影响浮动高度。根据本发明的具体实施方式
,低剖面条22a和22b的高度和它们的宽度被选择,以致没有提供空气轴承表面,但是仍然充分地产生低于室温的压力地区。在此实例中,低剖面条22a和22b的宽度每一个被设定为30毫英寸。可选择的,它们的宽度可以被设定为如同后缘ABS部分19一样的制造照相平版印刷的容许误差。由于低剖面条不是空气轴承表面,所以他们没有必要朝着滑动器本体的侧边缘放置,但是作为替代可以朝着滑动器本体中心向内移动,以便减少由低压区域所提供的吸力。
参照图6a和6b,表示本发明附加的具体实施方式
。在图6a中,侧ABS 15,16进一步朝滑动器的后缘移动。由于侧ABS进一步朝着后缘移动,所以这些ABS承受着导致滑动器浮动高度增大的更多的负荷。同样的,当与图3中相同结构比较时,后部ABS 17制造的比较小,同时第二矩形部分19制造比较宽。在后部ABS的前缘处,后部17同样包括与二级结构17a相同高度的二级结构17b。最终,低剖面构件22a、22b已经向外移动,以便增加低于室温的压力区域。如同在图6a中所表示的,当与图3比较时,由于侧ABS已经朝着滑动器后缘移动,所以滑动器对于曲面的灵敏度已经增加。由于侧ABS的尺寸和后部ABS的第一部分的尺寸没有改变,所以滑动器对于凸度的灵敏度没有一点改变,因此表示对于一个参数的灵敏度如何改变而不影响另一个参数的改变的实例。在图6a的实例中,一旦曲面/凸度的灵敏度被设定,经过设定低剖面条分离和设定后部ABS的第二矩形部分宽度,滑动器的整个浮动高度能够被单独设定。
参照图6b,滑动器设计被再次改变。在图6b中,前部ABS 14包括以前部方向从ABS延伸的第二部分14a和以后部方向从ABS延伸的第三部分14b。第三部分用于破坏低剖面构件22a、22b所包括的低压区域。侧ABS 15,16从前缘到后缘变得狭窄,导致凸度灵敏度的降低。一旦凸度和曲面灵敏度已经设定,整个浮动高度可以通过控制后部ABS 17的第二矩形部分19的宽度(例如通过变宽)来设定。同样,在此具体实施方式
中,侧ABS 15,16和后部ABS 17包括朝向滑动器前缘的延伸部分15c、16c、17c。当滑动器位于移动磁盘的内径处时,这些延伸部分提供附加的加压。
虽然参照上述应用已经描述了本发明,但此最优方案的描述并不意味着是限制意义上的解释。应该知道,本发明的所有方面并不被限制于在此所阐述的特定描述、结构或尺寸,其中依靠各种空气动力原则和变量,并且可以例如通过使用如在California,Berkeley,University of California,的计算机机械实验室开发的计算机模拟程序的计算机模拟过程来确定。在参考本发明所公开的内容之后,对于所属技术领域的专业人员来说,所公开装置的形式和细节上的各种修改和本发明其它的变化是显而易见的。所以可以预料所附加的权利要求将覆盖属于本发明精神和范围之内的所述具体实施方式
的任何修改或变化。
权利要求
1.一种低压空气轴承滑动器,包括一滑动器本体,它由前缘、沿着滑动器本体纵向延伸的内部和外部边缘、和后缘所限定,所述滑动器本体包括一前部空气轴承表面;从滑动器前缘延伸的一前部部分,所述前部部分具有比所述前部空气轴承表面的高度低的第一高度;一低压区域,它在前部部分与第一和第二低剖面构件之间的中间延伸,所述低剖面构件的高度小于所述前部空气轴承表面的高度。
2.根据权利要求1所述的低压空气轴承滑动器,其中所述第一和第二低剖面构件的高度等于所述第一高度。
3.根据权利要求2所述的低压空气轴承滑动器,其中所述滑动器使用在磁盘驱动的超低浮动高度环境中。
4.根据权利要求1所述的低压空气轴承滑动器,进一步包括后部空气轴承表面,包括面对所述滑动器的前缘的第一矩形部分和面对所述滑动器的后缘的第二矩形部分。
5.根据权利要求4所述的低压空气轴承滑动器,其中所述第二矩形部分具有小于大约30毫英寸的宽度。
6.根据权利要求5所述的低压空气轴承滑动器,其中所述第二矩形部分具有大约5毫英寸的宽度。
7.根据权利要求4所述的低压空气轴承滑动器,其中所述第二矩形部分的宽度被限制在制造所述滑动器的照相平版印刷工艺中的掩模对准容许误差。
8.根据权利要求4所述的低压空气轴承滑动器,进一步包括读/写元件,其中所述第二矩形部分被放置在所述读/写元件之上。
9.一种低压空气轴承滑动器,包括一滑动器本体,它由前缘、沿着滑动器本体纵向延伸的内部和外部边缘、和后缘所限定,所述滑动器本体包括一前部空气轴承表面;从滑动器前缘延伸的一前部部分,所述前部部分具有比所述前部空气轴承表面的高度低的第一高度;一低压区域,它在前部部分与第一和第二低剖面构件之间的中间延伸,所述低剖面构件具有小于所述前部空气轴承表面的高度的高度;至少一侧空气轴承表面,其中所述侧空气轴承表面的定位和所述侧空气轴承表面在滑动器纵向的宽度被选择,以便实现对于在滑动器中的凸起的预定浮动高度灵敏度。
10.根据权利要求9所述的低压空气轴承滑动器,其中所述侧空气轴承表面在滑动器纬度方向上的宽度被选择,以便实现对于在滑动器中的曲面的预定浮动高度灵敏度。
11.根据权利要求10所述的低压空气轴承滑动器,其中所述低剖面构件不是空气轴承表面。
12.一种设计低压空气轴承滑动器的方法,其中此滑动器包括一滑动器本体,它由前缘、沿着滑动器本体纵向延伸的内部和外部边缘和后缘所限定,所述滑动器本体包括一前部空气轴承表面和从滑动器前缘延伸的一前部部分,所述前部部分具有比所述前部空气轴承表面的高度低的第一高度,此方法包括选择侧空气轴承表面在滑动器本体纵向上的宽度和所述侧空气轴承滑动器的定位,以便实现对于在滑动器中的凸度的预定浮动高度灵敏度。
13.根据权利要求12所述的方法,其中所述选择操作进一步包括选择后部空气轴承表面在滑动器本体纵向上的宽度,以便实现对于在滑动器中的凸度的预定浮动高度灵敏度。
14.根据权利要求13所述的方法,进一步包括选择所述侧空气轴承表面在滑动器本体侧向上的宽度,以便实现对于在滑动器中的曲面的预定浮动高度灵敏度。
15.根据权利要求14所述的方法,其中凸度和曲面的所述浮动高度灵敏度对于滑动器是彼此抵消。
16.根据权利要求14所述的方法,进一步包括在所述前部空气轴承表面和所述前部部分的后面定位两个低剖面部件,以便定义低压区域。
17.根据权利要求16所述的方法,其中所述后部空气轴承表面包括前部矩形部分和后部矩形部分,此方法进一步包括在滑动器本体侧向上选择后部空气轴承表面的所述后部矩形部分的宽度,以便实现对于所述滑动器的预定浮动高度。
全文摘要
本发明公开了一种用于磁盘驱动器等的低压空气轴承滑动器,其中滑动器的特征是模块,因为滑动器的某参数可以彼此独立地修改。在一实例中,侧和后部空气轴承表面的侧向尺寸和定位可以被用于控制对于滑动器中的凸起的浮动高度灵敏度。侧空气轴承表面的轴向尺寸可以被用于控制对于滑动器本体中曲面的浮动高度灵敏度。低剖面构件(例如没有形成空气轴承表面的构件)可以被用于控制低压区域的尺寸,以便控制整体浮动高度。
文档编号G11B21/21GK1577594SQ20041006400
公开日2005年2月9日 申请日期2004年7月8日 优先权日2003年7月8日
发明者E·T·查 申请人:新科实业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1