各向异性导电薄膜的制作方法

文档序号:6914617阅读:169来源:国知局
专利名称:各向异性导电薄膜的制作方法
技术领域
本发明涉及一种各向异性导电薄膜,更具体而言,本发明涉及一种包括聚碳二亚胺共聚物作为薄膜基础材料的各向异性导电薄膜。
通常已知的各向异性导电薄膜,是通过将导电性微粒分散在绝缘树脂制成的薄膜基材中形成的。但是,这类各向异性导电薄膜引起结构性问题,包括难以与连接目标进行精密连接,并且要求连接目标,例如半导体元件的电极具有凸起的(不平的)末端。因此,WO98/07216建议了一种各向异性导电薄膜,作为能够解决上述这些问题并允许精密连接和无起伏结构的各向异性导电薄膜,所述薄膜具有彼此隔离的,并且在由绝缘树脂制成的薄膜基材的厚度方向穿透所述薄膜基材的多个导电路径。
各向异性导电薄膜通常用于两种目的。一种是用作所谓的装配连接器,其中将各向异性导电薄膜置于电子元件和电路板之间,并热压粘合到二者上,由此电和机械连接了电子元件和电路板。另一种是用作所谓的测试连接器,其能够进行电子元件的功能测试,其中将各向异性导电薄膜插入到电子元件和电路板之间,并加压与二者连接,以确保电子元件和电路板间的电连通。
各向异性导电薄膜用作测试连接器,可以避免低产率和增加的电路板成本,当将电子元件装配到电路板上之后进行电子元件的功能测试时,会使电路板的成本增加,因为一个有缺陷的电子元件与一个好的电路板的组合由于无法使用将是废品。
当使用各向异性导电薄膜将电子元件(半导体元件或类似物)装配到电路板上时,在电子元件和电路板间不能实现好的电连通,除非各向异性导电薄膜的基材被足够地软化或熔化以牢固地粘附到电子元件和电路板上。在最近几年,越来越多的由聚碳二亚胺树脂制成的薄膜基材被用作作为装配连接器的各向异性导电薄膜。其原因是聚碳二亚胺树脂的低吸水性,采用聚碳二亚胺树脂作为薄膜基材的各向异性导电薄膜的高度可靠的耐湿性,和其在正常温度下的可储存性。但是,所述各向异性导电薄膜的薄膜基材(聚碳二亚胺树脂),只有通过在250℃或更高温度下的热压粘合才能被足够地软化或熔化。另一方面,已经发现,在这样温度下通过热压粘合得到的半导体装置(半导体元件装配到电路板上的最终产品)的电路板的基材(树脂基材)性能恶化并且褪色,并引起所述半导体装置和母板间的连接失败。
对于电子元件的性能检查,当它们在实际运转过程中产生热量时,可以在150℃或更高的高温下进行功能测试(老化试验),以评估电子元件的功能。但是,几乎所有的常规各向异性导电薄膜不具有耐150℃或更高温度的耐热性。结果,薄膜基材可能软化或熔化,部分地粘附到电路板(测试工具)上,并阻止了进一步的测试。换句话说,电路板可能不能作为测试工具重复使用。
具有优异耐热性的各向异性导电薄膜的一个实例是具有一种由硅橡胶形成的薄膜基材的各向异性导电薄膜。但是,在使用这样一种各向异性导电薄膜在150℃或更高温度下进行测定时,可能从薄膜基材上产生气态硅并污染电子元件和/或电路板,从而在测试过程中阻碍电连通,或者该硅组分可能粘附到电子元件(半导体元件)和/或电路板上,从而引起错误。
为实现上述目的,本发明人进行了广泛地研究并且发现,其中将一种聚碳酸亚烷基酯单元引入到聚碳二亚胺分子中的聚碳二亚胺共聚物,能够在相当低的温度下软化或熔化,而不会影响聚碳二亚胺树脂的优异的低吸水性,还发现包括由这种共聚物组成的薄膜基材的各向异性导电薄膜,能够在相当低的温度下通过热压粘附到电子元件和电路板上,还发现所述共聚物的热固性产品具有耐150℃或更高温度的耐热性,并且是相当柔软的,还发现包括由该热固性产品组成的薄膜基材的各向异性导电薄膜,能够简单地通过用相当低的压力(低负荷)将薄膜加压粘附到电子元件和电路板上,而确保电子元件和电路板间的电连通,由此能够测试二者。
因此,本发明提供了下列内容(1)一种各向异性导电薄膜,含有由绝缘树脂制成的薄膜基材和多个彼此绝缘并且在厚度方向穿透薄膜基材的导电通道,其中所述的薄膜基材主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物构成 其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R1代表亚烷基;R2代表芳香二异氰酸酯残基;而R3代表芳香单异氰酸酯残基。(2)上述(1)的各向异性导电薄膜,其中聚碳二亚胺共聚物的玻璃化转变温度为50-150℃。(3)上述(1)的各向异性导电薄膜,其中在式(I)中,R1代表的亚烷基是六亚甲基,R2代表的芳香二异氰酸酯残基是甲苯二异氰酸酯残基,R3代表的芳香单异氰酸酯残基是异氰酸对异丙基苯酯残基。(4)上述(1)-(3)中任何一个的各向异性导电薄膜,其用于装配电子元件,并且其置于电子元件和电路板之间,并通过热压粘附到二者之上,使所述的电子元件和电路板是机械和电连接的。(5)一种各向异性导电薄膜,含有薄膜基材和多个彼此绝缘并且在厚度方向穿透薄膜基材的导电通道,其中所述的薄膜基材主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物的固化产品构成 其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R1代表亚烷基;R2代表芳香二异氰酸酯残基;而R3代表芳香单异氰酸酯残基。(6)上述(5)的各向异性导电薄膜,其中聚碳二亚胺共聚物固化产品的玻璃化转变温度为150-250℃。(7)上述(5)的各向异性导电薄膜,其中在式(I)中,R1代表的亚烷基是六亚甲基,R2代表的芳香二异氰酸酯残基是甲苯二异氰酸酯残基,R3代表的芳香单异氰酸酯残基是异氰酸对异丙基苯酯残基。(8)上述(5)的各向异性导电薄膜,其中薄膜整体在150℃-250℃的弹性模量为1-1000MPa。(9)上述(5)-(8)中任何一个的各向异性导电薄膜,其用于电子元件的功能测试,并且其置于电子元件和电路板之间,并通过加压粘附到二者之上,使所述的电子元件和电路板彼此是测试连通的。
图2(a)-2(c)显示在生产本发明的各向异性导电薄膜时,绕着芯元件(层压制品)交替缠绕缠绕层和绝缘树脂薄膜的步骤,所述缠绕层包含绝缘导线。
图3显示的是层压制品,其中交替层叠含有绝缘导线的缠绕层和绝缘树脂薄膜,该层压制品是在生产本发明的各向异性导电薄膜时,在图2的步骤之后得到的。图3(a)是斜视图,图3(b)是沿图3(a)的线IIIb-IIIb的截面图。
图4显示的是根据本发明第二个实施方案的各向异性导电薄膜的实例。图4(a)是平面图,图4(b)是沿图4(a)的线IVb-IVb的截面图。
在图中,1A是薄膜基材,1a是薄膜基材的顶面,1b是薄膜基材的背面,2是导电通道,2a和2b是导电通道的末端,而10A是各向异性导电薄膜。
发明详述下面将更详细地描述本发明。


图1所示是本发明第一个实施方案的各向异性导电薄膜的实例,即用作装配连接器的各向异性导电薄膜。图1(a)是平面图,图1(b)是沿图1(a)的线Ib-Ib的截面图。如用向异性导电薄膜10A所代表的本发明第一个实施方案的各向异性导电薄膜,具有在含有绝缘树脂的薄膜基材1A上彼此绝缘并在薄膜基材的厚度方向穿透薄膜基材1A的多个导电通道2,每个导电通道2的两端2a和2b分别暴露于薄膜基材1A的顶面1a和背面1b,其中薄膜基材1A主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物构成(此后也称为式(I)的聚碳二亚胺共聚物) 其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R1代表亚烷基;R2代表芳香二异氰酸酯残基;而R3代表芳香单异氰酸酯残基。
通过将聚碳酸亚烷基酯单元引入到由芳香二异氰酸酯合成的聚碳二亚胺树脂的主链,可以制备式(I)的聚碳二亚胺共聚物。
对于式(I),在聚碳酸亚烷基酯单元中的R1代表的亚烷基优选具有2-12个碳原子,并且可以是线性的或支化的。在这样的亚烷基中,亚乙基,四亚甲基,六亚甲基和十二亚甲基是优选的,最优选六亚甲基。
R2代表的芳香二异氰酸酯残基是从芳香二异氰酸酯中消去两个异氰酸酯得到的残基,其实例有4,4′-二苯甲烷二异氰酸酯,4,4′-二苯基醚二异氰酸酯,对-苯二异氰酸酯,间-苯二异氰酸酯,邻-联甲苯胺二异氰酸酯,亚萘基二异氰酸酯,2,4-甲苯二异氰酸酯,和2,6-甲苯二异氰酸酯;这些残基可以单独使用或者两种或多种结合使用。这些残基中,2,4-甲苯二异氰酸酯和/或2,6-甲苯二异氰酸酯是优选的。
在该式中,R3代表的芳香单异氰酸酯残基是从芳香单异氰酸酯中消去异氰酸酯得到的残基,其实例有异氰酸苯酯,异氰酸甲苯磺酸酯,异氰酸二甲基苯酯,异氰酸氯苯酯,异氰酸对异丙基苯酯,异氰酸二异丙基苯酯,异氰酸萘酯和异氰酸苄酯;这些残基可以单独使用或者两种或多种结合使用。这些残基中,异氰酸对异丙基苯酯是特别优选的。由于芳香单异氰酸酯位于式(I)共聚物重复结构的一个末端,其作用是共聚物分子量的控制器。
当碳二亚胺单元的重复数n大于30时,在共聚物聚合过程中将发生凝胶化作用,其将妨碍所需固体产品的获得。换言之,如下所述,所述聚碳二亚胺共聚物的共聚合反应通常是在溶剂中进行的,该溶剂在反应后从溶液中挥发掉,并以薄膜形式收集共聚物;该操作变得不太可能。当聚碳酸亚烷基酯的聚合度m大于50时,聚合物在溶剂中的溶解性将降低,由于较差的可操作性,共聚合反应变得很困难。当表示引入的聚碳酸亚烷基酯数量的重复数x大于10时,共聚物的分子量将变得很大,以至于在聚合反应过程中形成共聚物凝胶,因此会引起上述相同问题。
如上所述,当采用使用聚碳二亚胺树脂作为薄膜基材1A的常规各向异性导电薄膜作为装配连接器时,连接目标(电子元件和电路板)不能被满意地连接(牢固连接,以提供电连通),除非将各向异性导电薄膜加热至250℃或更高的温度进行热压粘合。另一方面,当使用本发明第一个实施方案的各向异性导电薄膜时,当在约150-200℃的低温下加热时,薄膜基材1A被充分地软化或熔化,以至于可在所述薄膜和连接目标之间实现很好的连接。另外,由于衍生自聚碳二亚胺树脂的薄膜基材1A具有优异的低吸水性,通过装配得到的最终产品(例如半导体元件装配到电路板上的半导体设备)在耐湿气方面将是高度可靠的。
式(I)的聚碳二亚胺共聚物的制备,例如可以通过聚碳酸亚烷基酯二醇和过量的芳香二异氰酸酯反应(即,进行羟基和异氰酸酯间的尿烷化反应),接着加入单异氰酸酯结合到重复结构的末端,并在反应体系中使用碳二亚胺化催化剂使芳香二异氰酸酯组分碳二亚胺化。
上述反应通常是在合适的溶剂中进行的。可用的溶剂包括脂环烃溶剂,例如环己烷;芳香烃溶剂,例如苯,甲苯,乙苯,二甲苯和异丙基苯;脂环醚,例如四氢呋喃和二噁烷;和酮溶剂,例如丙酮,甲基乙基酮,甲基异丁基酮,和环己酮。这些溶剂可单独使用或两种或多种结合使用。
聚碳酸亚烷基酯二醇和芳香二异氰酸酯间的反应,通常是在每摩尔聚碳酸亚烷基酯二醇存在约2-50摩尔芳香二异氰酸酯下进行的,该反应在约0-150℃进行约10分钟-3小时。
尽管可以使用各种碳二亚胺化催化剂,但优选使用例如1-苯基-2-亚膦(亚膦)-1-氧化物,3-甲基-1-苯基-2-亚膦-1-氧化物,1-苯基-2-亚膦-1-硫化物,1-乙基-3-甲基-2-亚膦-1-氧化物,3-甲基-1-苯基-1-磷杂-3-环戊烯-1-氧化物,2,5-二氢-3-甲基-1-苯基膦(phenylphosphor)-1-氧化物,相应的异构体,3-亚膦等。另外,用于该目的的催化剂的量优选为所有异氰酸酯组分用量的约0.01-5%(重量)。该碳二亚胺化反应优选在约40-150℃的温度下进行约10分钟-5小时。
式(I)的聚碳二亚胺共聚物优选具有1000-10000的数均分子量,更优选2000-8000。该数均分子量是用GPC在下列操作条件下测定的仪器HLC8120(TOSOH公司),柱GMHR-H+GMHHR-H+G2000HHR(所有都是由TOSOH公司生产的,这三个部件是顺序连接的),展开溶剂四氢呋喃,并在聚苯乙烯基础上进行表达。
此外,式(I)的聚碳二亚胺共聚物的玻璃化转变温度优选为50-150℃。该玻璃化转变温度是在拉伸模式下用TMA(热力学分析)测定的。该测定是在1g的拉伸负荷下,5℃/分钟的加热速率下测定的。取这样得到的TMA曲线上的拐点作为玻璃化转变温度。
关于本发明第一个实施方案的各向异性导电薄膜所使用的短语“其中薄膜基材1A主要是由式(I)的聚碳二亚胺共聚物构成的”,是指式(I)的聚碳二亚胺共聚物可单独构成薄膜基材1A,或者式(I)的聚碳二亚胺共聚物与根据需要配置的不同的绝缘树脂联合构成薄膜基材1A。
尽管该实施方案的各向异性导电薄膜优选含有单独由式(I)的聚碳二亚胺共聚物构成的薄膜基材1A,但可含有薄膜基材1A总量的15%(重量)或更低的不同绝缘树脂。这些不同的绝缘树脂可以是本领域通常用作薄膜基材原料的绝缘树脂,其实例有聚酰亚胺树脂,聚醚酰亚胺树脂,聚酰胺树脂,苯氧基树脂,聚碳二亚胺树脂,氟树脂,聚酯树脂,聚氨酯树脂,聚酰胺酰亚胺树脂,和环氧树脂。这些树脂可单独使用或两种或多种结合使用。
该实施方案的各向异性导电薄膜特别适合用作装配连接器。基于该使用目的,薄膜基材1A的厚度优选为约10-200微米,更优选为约20-100微米。
导电通道2可以由各种金属制成。优选铜,金,铝,镍等,从导电角度出发,更优选铜和金。在各种金属导线中,那些允许电传导的,例如JIS C 3103中规定的铜导线是更优选的,并可在电性能、机械性能和生产成本方面提供最好的导电通道。
根据连接目标(电子元件,电路板)的形成接头的表面条件(接头形状,间距等),正确地设定导电通道2的截面形状(与薄膜基材1A的平面延伸方向平行的截面的形状),尺寸,和间距(安置距离)。通常,优选导电通道2的截面形状为圆形或等边多边形。另外,对于具有圆形截面的导电通道,优选其大小为截面直径为约5-100微米,并且对于具有等边多边形截面的导电通道,截面面积相当于上述直径的圆形的面积是合适的。一般地,导电通道的间距(安置距离)优选为导电通道的中心线间的距离为25-100微米,更优选40-80微米。
导电通道2的两端(末端表面)2a和2b,其暴露于薄膜基材1A的顶面和背面,可以在与薄膜基材1A的表面相同的平面存在,可以从薄膜基材1A的表面凹进去,并可以从薄膜基材1A的表面凸出来,这些情况可并存。另外,可组合出各种其它实施方案,包括其中导电通道的一个末端(末端表面)从薄膜基材1A的一个表面(顶面和背面中之一)突出来,而导电通道的一个末端从薄膜基材1A的另一个表面(顶面和背面中之一)凹进去的实施方案。可根据连接目标接头(电子元件电极,电路板布线图)的形状等,选择导电通道2的末端凸出和凹进去的方式。
当导电通道2的一个末端从薄膜基材1A的一个表面凸起时,从连接可靠性的角度出发,优选凸出约0.5-30微米,更优选约1-15微米。当导电通道2的一个末端从薄膜基材1A的一个表面凹进去时,优选凹进去约0.5-15微米,更优选约1-10微米。
导电通道2的末端表面可以进一步用高导电性金属材料或具有优异耐腐蚀性的材料例如金或镍涂敷。另外,用作导电通道2的材料,特别是用于涂敷电子元件末端的材料,可根据电子元件电极表面的材料进行优选。可以被提到的是,例如铝(电子元件电极)和金(导电通道2)的组合,以及屏障金属(电子元件电极)和焊锡(导电通道2)的组合。屏障金属是指用来形成一个层的金属,该层用来防止用作电子元件配线金属的铝与外层金属间的扩散反应。屏障金属的实例包括铬,金,镍等的单质,合金等。
导电通道2的布置图案(图1(a)中导电通道2的布置图案),可以是如图1所示的具有最大密度的图案,及正方形矩阵图案和其它随机密排图案,但不局限于此。
所述第一个实施方案的各向异性导电薄膜的制备方法,优选的例子有如下(A)和(B)两种方法,但不局限于此。(A)公开于国际专利出版物WO 98/07216的各向异性导电薄膜制备方法。
该方法包括下列步骤1)在一个绕着芯元件的卷轴上缠绕一种绝缘导线,以形成卷状物,所述绝缘导线带有形成在金属导线表面上的需要厚度的涂层,该涂层包括一种绝缘树脂;2)对所述卷状物加热和/或加压,以产生一种卷状物块,其中相邻的绝缘导线的涂层通过熔合和/或加压粘合而成为一体,和3)将所述的卷状物块沿着与各绝缘导线成一定角度的平面切成薄片,所述薄片具有所需的薄膜厚度。
在该生产方法中,通过选择使用绝缘导线(其中涂层是用式(I)的聚碳二亚胺共聚物形成的),得到本发明的各向异性导电薄膜,其中薄膜基材1A是用式(I)的聚碳二亚胺共聚物形成的。
为了制备既含有式(I)的聚碳二亚胺共聚物又含有不同绝缘树脂的薄膜基材1A,使用一种绝缘导线,其中形成既含有式(I)的聚碳二亚胺共聚物又含有不同的绝缘树脂的涂层。这样的绝缘导线可以是其中的涂层是用式(I)的聚碳二亚胺共聚物和不同的绝缘树脂的混合物形成的绝缘导线,或是其中的涂层是用式(I)的聚碳二亚胺共聚物层和不同的绝缘树脂层层压形成的绝缘导线。另外,通过允许在卷状物块中同时存在其中形成了式(I)的聚碳二亚胺共聚物涂层的绝缘导线,和其中形成了不同绝缘树脂涂层的绝缘导线,可将不同的绝缘树脂引入薄膜基材1A。(B)本申请者在日本专利申请2000-117039和美国专利申请09/837,411中提出的生产方法。
该生产方法是包括下列步骤的一种生产方法1)在一个绕着芯元件20的卷轴上缠绕一种图2(a)所示的绝缘导线13,以形成一个单层缠绕层14,所述绝缘导线13中,含有绝缘树脂的涂层12形成在金属导线11的表面上,所述单层缠绕层14包括一种如图2(b)所示的绝缘导线13;2)如图2(c)所示,绕着该缠绕层14重复缠绕绝缘树脂薄膜15,得到一个层压制品16,其中含有绝缘导线的单层缠绕层14和绝缘树脂薄膜15如图3(a)和(b)所示交替重叠;3)熔化绝缘导线13的涂层12和该层压制品16中的绝缘树脂薄膜15中至少一种,以得到层压制品16的块状物;和4)将所述的层压制品16的块状物沿着与绝缘导线13(金属导线11)成一定角度的平面切成薄片,所述薄片具有所需的薄膜厚度。
在该方法中,通过使用具有由式(I)的聚碳二亚胺共聚物形成的涂层的绝缘导线13,和使用含有式(I)的聚碳二亚胺共聚物的绝缘树脂薄膜15,得到本发明的各向异性导电薄膜,其中薄膜基材1A是单独由式(I)的聚碳二亚胺共聚物形成的。
为了制备既含有式(I)的聚碳二亚胺共聚物又含有不同绝缘树脂的薄膜基材1A,绝缘导线13和绝缘树脂薄膜15中的至少一种应该含有不同的绝缘树脂。例如,当各绝缘导线13是使用式(I)的聚碳二亚胺共聚物的涂层12形成时,各绝缘树脂薄膜15或绝缘树脂薄膜15中的一部分应该是由不同的绝缘树脂制得的薄膜,或是由式(I)的聚碳二亚胺共聚物和所述的不同绝缘树脂共同制得的薄膜。当各绝缘树脂薄膜15是由式(I)的聚碳二亚胺共聚物制得的薄膜时,各绝缘导线13或绝缘导线13中的一部分应该具有由不同的绝缘树脂制得的涂层12,或由式(I)的聚碳二亚胺共聚物和不同的绝缘树脂共同制得的涂层12。此处,含有式(I)的聚碳二亚胺共聚物和不同绝缘树脂的薄膜,可以是由式(I)的聚碳二亚胺共聚物和不同绝缘树脂的混合物制成的薄膜,或是具有由式(I)的聚碳二亚胺共聚物层和不同绝缘树脂层构成的层压结构的薄膜。具有既含有式(I)的聚碳二亚胺共聚物又含有不同绝缘树脂的涂层12的绝缘导线13,如上述方法(A),可以含有由式(I)的聚碳二亚胺共聚物和不同绝缘树脂的混合物制成的涂层12,或者含有具有层状结构的涂层12,所述层状结构是由式(I)的聚碳二亚胺共聚物层和不同绝缘树脂层构成的。
在上述各向异性导电薄膜的生产方法(B)中,可以通过绝缘导线13的涂层12的厚度和绝缘树脂薄膜15的厚度来调节导电通道在薄膜中的布置间隔(间距),因为由层压物16(多层结构)得到一种块状物,其中绝缘导线13的缠绕层14和绝缘树脂薄膜15交替重复地放置在芯块20上,并且所述薄膜是由所述块状物切成的。因此,由于方法(B)中导电通道在薄膜中的布置间隔(间距)很容易扩展,方法(B)比上述方法(A)好,在方法(A)中,薄膜是由绝缘导线的卷状物形成的块状物切成的(在该方法中,导电通道在薄膜中的布置间隔(间距),仅依赖于绝缘导线的涂层的厚度)。
为得到具有其中导电通道的一端从薄膜基材的一面凸出的结构的各向异性导电薄膜,可以处理由上述方法(A)或(B)制备的各向异性导电薄膜,以蚀刻薄膜基材(绝缘树脂部分),或通过电镀等方法在金属导线的一个端面上沉积金属。
下面将描述本发明的第二个实施方案的各向异性导电薄膜。
图4显示了本发明的第二个实施方案的各向异性导电薄膜的一个实例,即特别适合用作测试连接器的一种各向异性导电薄膜。图4(a)是平面图,图4(b)是沿图4(a)的线IVb-IVb的截面图。如图4中各向异性导电薄膜10B所代表的本发明的第二个实施方案的各向异性导电薄膜,具有在包括一种绝缘树脂的薄膜基材1B中的彼此隔离的多个导电通道2,并且导电通道2在薄膜基材1B的厚度方向穿透薄膜基材1B,各导电通道2的两端2a和2b分别暴露于薄膜基材1B的顶面和背面1a和1b,其中薄膜基材1B主要由上述式(I)的聚碳二亚胺共聚物的固化产物构成。此处使用的短语“主要由式(I)的聚碳二亚胺共聚物的固化产物构成”,是指式(I)的聚碳二亚胺共聚物的固化产物可单独构成薄膜基材,或者(I)的聚碳二亚胺共聚物的固化产物根据需要结合不同的绝缘树脂构成。
此实施方案的各向异性导电薄膜的薄膜基材1B主要由式(I)的聚碳二亚胺共聚物的固化产物构成,其它组分与第一实施方案的各向异性导电薄膜基本相同。
关于此实施方案的各向异性导电薄膜,因为薄膜基材1B主要由式(I)的聚碳二亚胺共聚物的固化产物构成,其高度耐热并相当容易变形。由于这一原因,当将该各向异性导电薄膜置于电子元件和电路板间,并加压粘附在电子元件和电路板上时,如果存在弯曲和/或起伏,其可以通过薄膜基材1B的变形而被接受。所以,当电子元件,例如半导体元件的功能测试是在150℃或更高温度(通常为150-200℃)下进行时,薄膜基材1B不会软化或熔化,而且,薄膜基材1B中的导电通道的两端,在采用相当低的压力(负荷)施压情况下,就可以确保与电子元件电极和电路板电路(配线)图形的接触。
在电子元件,例如半导体元件的功能测试中,可以使用电路板作为实际装配电子元件的产品;但是在许多情况下,使用电路板作为测试工具,模拟这样的一种电路板产品。当使用本发明的各向异性导电薄膜作为测试连接器进行电子元件的功能测试时,做同样的应用。
已知当聚碳二亚胺树脂保持在高温时,得到具有高硬度的固化产品。式(I)的聚碳二亚胺共聚物在150-200℃的高温下保持约0.5-5小时,即发生热固化。
在此实施方案的各向异性导电薄膜中,构成薄膜基材1B的式(I)的聚碳二亚胺共聚物固化产品,是指将式(I)的聚碳二亚胺共聚物保持在150-200℃的高温下得到的固化产品。固化程度优选为使肖氏硬度为约75-90,更优选约80-90,该硬度按照JIS K 7215描述的方法测定。另外,固化后玻璃化转变温度优选为150-250℃。
当式(I)的聚碳二亚胺共聚物的固化产品的肖氏硬度低于75时,薄膜基材1B的耐热性不够。当肖氏硬度超过90时,薄膜基材1B变得不容易变形,并且各向异性导电薄膜的弹性模量将太大,以至于难以将各向异性导电薄膜加压粘附到电子元件和电路板上而实现在低压(负荷)下的适当的电连通。
尽管此实施方案的各向异性导电薄膜优选包括仅由式(I)的聚碳二亚胺共聚物的固化产品构成的薄膜基材1B,但也可以结合不同的绝缘树脂,以赋予其柔韧性和达到其它目的,只要其相对于薄膜基材1B的总量的含量不超过15%(重量)。不同的绝缘树脂的实例,与上述第一实施方案的各向异性导电薄膜的薄膜基材1B中可以结合的那些不同的绝缘树脂相同。
所述第二实施方案的各向异性导电薄膜特别适合用作测试连接器。从这一观点出发,薄膜基材1B的厚度优选为约50-600微米,更优选为约60-500微米。
导电通道2的材料,截面形状,大小等,基本上与上述第一实施方案的各向异性导电薄膜的导电通道2相同。截面形状优选为圆形或等边多边形。大小优选为当导电通道2具有圆形截面时,截面直径为约5-30微米;当导电通道2具有等边多边形截面时,其截面面积相当于上述直径的圆形面积将是合适的。导电通道2的间距(布置间隔)优选为导电通道2的中心线间的距离为约5-250微米,更优选为约100-200微米。
暴露于薄膜基材1B的顶面和背面的导电通道2的两端(端面),可以与薄膜基材1B的表面在同一平面,可以从薄膜基材1B的表面凹进去,也可以从薄膜基材1B的表面凸出,这些情况也可以同时存在。另外,可以组合出其它各种实施方案,包括这样一个实施方案,其中导电通道2的一端(端面)从薄膜基材1B的一面(顶面和背面之一)凸出,而导电通道2的一端从薄膜基材1B的另一面(顶面和背面之一)凹进。导电通道2的末端的凹进和突出方式,可以根据电子元件和电路板的形成接头的端面情况进行选择。
当导电通道2的一端从薄膜基材1B的一面凸起时,从好的电连通的角度考虑,优选凸起约2-100微米,更优选约10-60微米。当导电通道2的一端从薄膜基材1B的一面凹进时,优选凹进约0.5-15微米,更优选约1-10微米。
另外,对于上述第二实施方案的各向异性导电薄膜,整个各向异性导电薄膜在150-250℃的弹性模量优选为1-1000MPa,更优选5-900MPa。当弹性模量低于1MPa时,所述各向异性导电薄膜将会粘附到电子元件和/或电路板上,并且在测试结束后难以从这些组件上除去。当弹性模量超过1000MPa时,所述各向异性导电薄膜将不能充分地接受电子元件和/或电路板的弯曲和起伏。
整个各向异性导电薄膜的弹性模量,不仅受到结构材料和薄膜基材1B的厚度影响,还受到导电通道2的材料,导电通道2在薄膜基材中的密度和布置方式,导电通道2从薄膜基材1B的表面凸起的高度等影响。所以,优选设定这些参数,使整个各向异性导电薄膜的弹性模量落入上述各优选范围内。
整个各向异性导电薄膜的弹性模量,可以采用例如动态粘弹性分析仪(DMS210,Seiko Instruments Inc.制造)来测定。该测试在150℃和250℃两个温度下进行,采用恒定频率(10Hz),加热速率为5℃/分钟,沿所述各向异性导电薄膜的一个薄膜面延伸方向进行拉伸。在测试时的样品厚度应与导电通道2的长度相同(等于整个各向异性导电薄膜的厚度)。
对第二实施方案的各向异性导电薄膜的生产方法没有限制。例如,在作为生产上述第一实施方案的各向异性导电薄膜的方法的实例时提到的上述方法(A)中,在150-200℃温度下加热以熔化和固化绝缘导线的涂层,从而得到包括绝缘导线的卷状物之块状物。或者,在方法(B)中,在150-200℃温度下进行加热以熔化和固化绝缘导线的涂层和绝缘树脂薄膜,从而得到其中绝缘导线的缠绕层和绝缘树脂薄膜交替重复放置的层压物的块状物, 来生产第二实施方案的各向异性导电薄膜。
采用第二实施方案的各向异性导电薄膜,可以进行电子元件的功能测试,在150℃或更高温度下,所述各向异性导电薄膜在低压(低负荷)下加压粘附到电子元件和电路板上,所述低压是指电子元件上每个电极的接触负荷为约9.8-294mN。电子元件上每个电极的接触负荷,是为实现电连通而施加到电子元件的所有电极上的压力(负荷)除以电子元件的电极数而得到的数值。
用上述合成的聚碳二亚胺共聚物涂覆直径为18微米的铜线,制备一种绝缘导线。由上述方法(A),使用该绝缘导线制备一种各向异性导电薄膜(薄膜厚度70微米,导电通道中心线间的距离(间距)平均50微米),其中导电通道以最高密度布置,各导电通道的两端(端面)与薄膜基材的顶面和背面处于同一平面,如图1所示。在制备阶段,为了熔化绝缘导线的涂层以得到卷状物的块状物,在140℃加热1小时。
作为半导体元件,提供了一种集成电路片,片的大小为外径8毫米×8毫米,厚度为300微米,垫大小为外径100微米×100微米,厚度为1微米,垫间距为200微米,垫数量为219。使用的垫为铝垫。
在电路板的形成电路图形的表面上,其中铜/镍/金电路图形(电路宽度100微米,相邻电路间的空隙为100微米)形成在一个厚度为1毫米的FR-4基材(玻璃-环氧基材)上,装配上述制备的各向异性导电薄膜。在该各向异性导电薄膜上装配上述半导体元件,并在150℃温度下,在1.96MPa的负荷(压力)下加压40秒,用叩焊晶片粘结剂进行粘结,将半导体元件装配到了电路板上。结果,半导体元件的所有电极(垫)实现了电连通。另外,对于装配后的最终产品,在电路板的基础基片,即FR-4基片(玻璃-环氧树脂基片)上没有观察到变色现象;由此得到高度可靠的半导体设备。比较例12,4-甲苯二异氰酸酯(100g),3-甲基-1-苯基-2-亚膦-1-氧化物(0.883g)和异氰酸对异丙基苯酯(6.47993g)在二甲苯和环己烷的混合溶剂(100g)中,在100℃聚合3小时,得到一种聚碳二亚胺溶液。该溶液在90℃干燥30分钟,在200℃干燥30分钟,收集聚碳二亚胺树脂固体。该固体的玻璃化转变温度经测定为230℃。该固体的数均分子量经测定为4800。
用上述合成的聚碳二亚胺共聚物涂覆直径为18微米的铜线,制备一种绝缘导线。由上述方法(A),使用该绝缘导线制备一种各向异性导电薄膜(薄膜厚度70微米,导电通道中心线间的距离(间距)平均50微米),其中导电通道以最高密度布置,各导电通道的两端(端面)与薄膜基材的顶面和背面处于同一平面,如图1所示。在制备阶段,为了熔化绝缘导线的涂层以得到卷状物的块状物,在175℃加热1小时。
在与实施例1中使用的相同电路板的形成电路图形的表面上,装配在比较例1中制备的各向异性导电薄膜。在该各向异性导电薄膜上装配与在实施例1中使用的相同半导体元件,在与实施例1相同的条件(温度150℃,负荷(压力)1.96Mpa,加压时间40秒)下用叩焊晶片粘结剂进行粘结,将半导体元件装配到电路板上。结果,半导体元件电极(垫)的电连通率为20%。在300℃的粘结温度下进行粘结,其中负荷与加压时间与上述相同。结果,在各电极上实现了电连通,但电路板基础基材,即FR-4基片(玻璃-环氧树脂基片)变色。
在实施例1中合成的聚碳二亚胺共聚物的固体含量样品进行上述相同的热处理之后,经测定其玻璃化转变温度为170℃。其肖氏硬度经测定为85。
作为要测试的半导体元件,提供了一种处于承载片状态的集成电路片,片的大小为外直径10毫米×10毫米,厚度为500微米,隆起块直径为70微米,隆起块高度为70微米,隆起块间距为200微米,隆起块数量为156。使用的隆起块为金钉隆起块。
在电路板的形成电路图形的表面上,其中铜/镍/金电路图形(电路厚度18微米,电路宽度100微米,相邻电路间的空隙为100微米)形成在一个厚度为1毫米的FR-4基材(玻璃-环氧基材)上,装配上述制备的各向异性导电薄膜。在该各向异性导电薄膜上装配上述半导体元件,从上面施加9.8N的负荷(压力)。结果,半导体元件的所有隆起块都实现了电连通。在150℃的温度下保持该加压状态,对半导体元件进行功能测试(测试时间24小时)。结果,在功能性测试的全过程中,半导体元件的所有隆起块都维持了电连通性,并且完成该功能性测试没有任何问题。在完成该测试之后,半导体元件,各向异性导电薄膜,和电路板不再相互粘附,并且很容易彼此分离。比较例2用硅橡胶涂覆在实施例2中使用的铜线,制备一种绝缘导线。由上述方法(A),使用该绝缘导线制备一种各向异性导电薄膜(薄膜厚度70微米,导电通道中心线间的距离(间距)平均50微米),其中导电通道以最高密度布置,各导电通道的两端(端面)与薄膜基材的顶面和背面处于同一平面。
在与实施例2中使用的相同电路板的形成电路图形的表面上,装配上述制备的各向异性导电薄膜。在该各向异性导电薄膜上,装配与实施例2中使用的相同的半导体元件,并从上面施加9.8N的负荷(压力)。结果,半导体元件的所有隆起块都实现了电连通。而且,在150℃的温度下保持该加压状态,对半导体元件进行了与实施例2中相同的功能测试。结果,在测试初始阶段,半导体元件的所有隆起块都实现了电连通(100%电连通),各向异性导电薄膜的薄膜基材中的Si组分粘附到半导体元件和电路板上,产生误差。
从上述的描述中可明显看出,根据本发明第一个实施方案的各向异性导电薄膜,在比常规的各向异性导电薄膜低的温度(约150-200℃)下,通过热压粘结,可在电子元件,例如半导体元件和电路板之间实现良好的电连通,其中常规的各向异性导电薄膜具有由聚碳二亚胺树脂形成的薄膜基材。结果,电子元件可装配到电路板上,并且不会破坏电路板的基础基材。
根据第二个实施方案的各向异性导电薄膜,在电子元件在150℃或更高温度下的功能测试中,其薄膜基材不会粘附到电路板或电子元件上,该薄膜不会产生气体释放,并且该薄膜在相当低的压力(低负荷)下可确保电子元件和电路板间的电连通性,由此能够进行测试。
本申请基于在日本提交的专利申请2001-78456,其内容结合在此处作为参考。
权利要求
1.一种各向异性导电薄膜,含有由绝缘树脂制成的薄膜基材和多个彼此绝缘并且在厚度方向穿透薄膜基材的导电通道,其中所述的薄膜基材主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物构成 其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R1代表亚烷基;R2代表芳香二异氰酸酯残基;而R3代表芳香单异氰酸酯残基。
2.权利要求1的各向异性导电薄膜,其中聚碳二亚胺共聚物的玻璃化转变温度为50-150℃。
3.权利要求1的各向异性导电薄膜,其中在式(I)中,R1代表的亚烷基是六亚甲基,R2代表的芳香二异氰酸酯残基是甲苯二异氰酸酯残基,R3代表的芳香单异氰酸酯残基是异氰酸对异丙基苯酯残基。
4.权利要求1-3中任何一个的各向异性导电薄膜,其用于装配电子元件,并且其置于电子元件和电路板之间,并通过热压粘附到二者之上,使所述的电子元件和电路板是机械和电连接的。
5.一种各向异性导电薄膜,含有薄膜基材和多个彼此绝缘并且在厚度方向穿透薄膜基材的导电通道,其中所述的薄膜基材主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物的固化产品构成 其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R1代表亚烷基;R2代表芳香二异氰酸酯残基;而R3代表芳香单异氰酸酯残基。
6.权利要求5的各向异性导电薄膜,其中聚碳二亚胺共聚物固化产品的玻璃化转变温度为150-250℃。
7.权利要求5的各向异性导电薄膜,其中在式(I)中,R1代表的亚烷基是六亚甲基,R2代表的芳香二异氰酸酯残基是甲苯二异氰酸酯残基,R3代表的芳香单异氰酸酯残基是异氰酸对异丙基苯酯残基。
8.权利要求5的各向异性导电薄膜,其中薄膜整体在150℃-250℃的弹性模量为1-1000MPa。
9.权利要求5-8中任何一个的各向异性导电薄膜,其用于电子元件的功能测试,并且其置于电子元件和电路板之间,并通过加压粘附到二者之上,使所述的电子元件和电路板彼此是测试连通的。
全文摘要
本发明提供一种各向异性导电薄膜,在不破坏电路板的低温下,通过热压粘附能够牢固地粘附到电子元件和电路板上,并实现良好的电连通,其具有多个彼此绝缘并在薄膜基材的厚度方向穿透薄膜基材1A的导电通道2,各导电通道的两端2a和2b暴露于薄膜基材的顶面和背面,其中薄膜基材1A主要由具有下面式(I)所表示的结构的聚碳二亚胺共聚物构成:其中m代表2-50的整数;n代表1-30的整数;x代表1-10的整数;A代表尿烷键;R
文档编号H01B5/16GK1375512SQ02107460
公开日2002年10月23日 申请日期2002年3月19日 优先权日2001年3月19日
发明者山田美穗, 三隅贞仁, 堀田祐治 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1