生产硼酸酯化合物的方法、用于电化学装置的电解质及蓄电池的制作方法

文档序号:6797172阅读:508来源:国知局
专利名称:生产硼酸酯化合物的方法、用于电化学装置的电解质及蓄电池的制作方法
技术领域
本发明涉及生产具有氧化烯基的硼酸酯化合物的方法,涉及用这种硼酸酯化合物或其聚合物作为电化学装置中的电解质,还涉及蓄电池。
背景技术
近年来,对于高性能和紧凑的电子装置有强烈的需求。这样,蓄电池材料诸如作为这类电子装置能源的锂离子蓄电池,就也被要求具有紧凑性、重量轻并具有高电容量和高能量密度。结果,对蓄电池已经进行了各种研究和开发。一般,锂离子蓄电池具有的构造为一个包含金属氧化物的正极,一个含有碳质材料的负极,一个分离膜片和夹在两个电极之间的电解质液体。这样一种具有高能量密度的蓄电池已被实际使用,但现在想对它作进一步的改进。
为适应这一要求,曾试图使用一种固体电解质,后者是一种打算用来替代普通电解质溶液的新离子导体,来用于电化学装置诸如全部是固体的原电池、蓄电池和电容器中。于是,现已研究使用以聚合物化合物作为电解质的各种聚合物电解质。聚合物电解质具有的特色为它们具有柔韧性并能跟随电极的机械振动和体积变化,后者是由于电极和电解质之间的离子-电子交换反应的结果而产生的。作为这样一种聚合物是解质,美国专利No.4,303,748提出了一种含有聚环氧烷的固体电解质,其中溶解有碱金属盐或碱土金属盐。这种电解质具有的问题是工作效率差,因为需要很长时间来溶解上述盐类。进一步,这种电解质还具有离子导电性不够高而和电极的接触电阻较高这类问题。这样不高的离子导电性和高的接触电阻将在充电和放电过程中导致不充分的电流密度从而使这种电解质只能具有有限的用途而不能被用于需要较大电流的场合中。
为克服上述固体电解质的缺点,已经提出了大批的固体电解质,它们都包含溶解在高聚物中的碱金属或碱土金属盐,高聚物具有聚(甲基)丙烯酸酯主链,并在其中引入聚亚烷基二醇链作为侧链和/或交联的链。作为这种聚合物电极的一个实例,可举出JP-B-Hei3-73081公开的固体电解质,它含有溶解在丙烯酰基修饰的聚环氧烷中的碱金属盐或碱土金属盐。这一电极仍具有离子导电性不够高的问题,并且进一步,影响充电放电的阳离子部份的迁移率过低。这种不够高的离子导电性和低的阳离子部分的迁移率导致这种电极用途的限制,已如上所述。进一步,还引发了一个另外的问题,即电极在充电和放电循环过程中由于通过抗衡阴离子的运动发生不希望有的副反应而引起变质。
为控制在聚合物电解质(它作为主要组份包含氧化烯衍生物的开环聚合产物)中影响充电和放电的离子运动这一目的,JP-A-Hei11-54151和JP-A-2001-55441提出了使用三官能基的硼化合物诸如环硼氧烷环状化合物的电解质,后者能够捕获金属盐的抗衡阴离子。用来获得这些化合物的含硼化合物是使用原硼酸或者氧化硼。然而,在这种情况下,在反应过程中会产生水。进一步,这样获得的上述化合物容易用水水解。这样,就很难除去通过反应产生的水。因为这样,在这样获得的化合物中残留水份是不可避免的,当把它用作电解质底物时可能引起麻烦。JP-A-2001-72876和JP-A-2001-72877提出一种含硼化合物的电解质,并指明硼烷是为获得这种化合物的基本材料。然而,硼烷具有很强的活性并且在空气中呈现出自动的可燃性,从而很难操作硼烷来生产含硼化合物。另外,当硼烷被用于和含有可聚合基团的化合物进行反应时,可聚合的基团有被它损害的可能性。
另一方面,已经提议用聚合的硼酸酯作为电解质。已知这种硼酸酯化合物可通过醇类与硼酸或无水硼酸的反应来获得。就是说,在用醇与硼酸的情况下,反应可用下面的式[1]来显示,而在用醇与无水硼酸的情况下,反应可用下面的式[2]来显示[1][2]因为硼酸酯类化合物具有极高的可水解性,它将按照式[1]的逆反应在与水接触时产生硼酸和醇。事实上,式[1]所示的反应是一个平衡反应。然而,平衡是极为偏向左边的,即趋向于导致硼酸酯的水解并形成硼酸和醇的方向。这样,应用正常操作时,硼酸酯的产率极低。在这种情况下,一般做法是,在醇和硼酸的反应中使用一种恒沸脱水剂诸如苯,由反应液体中逐渐除去反应现场产生的水份,从而把上式中的平衡迁移到右边,并回收终产物。即使是用这种方法,但因为式[1]的平衡极为偏向左边,使脱水效率当反应性增加时变得很差,这样,在降低水含量方面是有限度的。此外,还有一个问题,即必须降低硼酸和醇的含量,以获得具有高纯度的硼酸酯。
这就是说,虽然从增加反应速率和脱水效率的观点来看,使用过量的醇是有益处的,但是当所用的醇具有高分子量时,或者当醇含有可聚合的基团,后者在加热时对遭到聚合反应是敏感时,就难于蒸发掉这些醇类。这样,这类醇就容易保留在体系中不被除去。当这样的含有羟基的化合物保留在体系中时,电化学装置的性能就会显著地变坏,虽然还要依赖于它的用途。
当使用过量硼酸时,获得的是硼酸酯和硼酸的混合物。当这种混合物被加热时,硼酸酯会被分解因而使产率降低。为解决这一问题,JP-A-Hei3-74390公开了一种方法。其中把氧化硼与一种脂肪醇进行反应,以获得含有硼酸酯和硼酸的反应液体,然后通过过滤把硼酸由反应液体中分离,再把滤液蒸馏。这一公开内容中指出,如果不经过滤分离出硼酸就进行蒸馏,硼酸酯和硼酸的分解就会如上所述被加速,从而降低了终产物的收率,但是,这一方法只能用来生产这样的脂肪族醇类的硼酸酯化合物,因为只有这类化合物才可通过过滤将硼酸分离出来,并且允许用蒸馏来进行纯化产物。
对比之下,用式(2)中显示的使用无水硼酸的方法,有50%提供的硼可被转化为硼酸酯而无需使用恒沸脱水剂。然而,其余的硼酸仍要通过类似于式(1)的反应来酯化。这样,仍然保留着上述为获得高纯度硼酸酯时的限制。
这样,当把这种包含大量杂质的硼酸酯用作电解质的原料时,导致电解质性质变坏的问题就有很高可能性发生,诸如固体电解质界面(SEI)电阻的增加、充电-放电循环性能的降低、以及电势稳定性的降低等。具体地,就涉及到作为锂离子蓄电池的电解质而言,存在着很大的这样的趋势,即包含于硼酸酯化合物中的杂质会和锂反应而产生气体,从而引起蓄电池安全性降低的问题。
在这种情况下,存在着对于高纯度硼酸酯化合物的需求,该化合物中应包含降低数量的诸如水这样的杂质,并且可用作电化学装置等当中的电解质。

发明内容
本发明的一个目的是提供一种生产硼酸酯化合物的方法,这种硼酸酯具有高的离子导电性,可以被用作电化学装置诸如蓄电池或电容器中的材料,它具有优良的安全性、水和杂质的含量很低;并提供一种包含这种硼酸酯化合物的聚合物电解质以及使用这种聚合物电解质的蓄电池。
这样,本发明提供以下内容(A)一种生产硼酸酯化合物的方法,它包括用下式(2)的含硼化合物来酯化下式(1)所代表的化合物X-[O(AO)n-H]a(1)其中X代表一个选自含有1至6个羟基的化合物的残基、丙烯酰基和甲基丙烯酰基,AO代表含有2至4个碳原子的氧化烯基,n值为0至600,a值为1至6,并且n×a值为0至600,(RO)3-B(2)其中R代表一个含有1至4个碳原子的烷基;(B)如(A)中叙述的生产硼酸酯化合物的方法,其中式(1)所代表的化合物具有的平均分子量为110或更大;(C)在(A)和(B)中叙述的生产硼酸酯化合物的方法,它包括用式(2)代表的含硼化合物与式(1)代表的化合物进行反应,同时蒸馏式(2)代表的含硼化合物和由所说的反应产生的式(3)代表的醇ROH (3)其中R代表一个含有1至4个碳原子的烷基;(D)(A)至(C)中任何一项所叙述的生产硼酸酯化合物的方法,其中对每摩尔式(1)代表的化合物中的羟基要用1/3摩尔或更多的式(2)代表的含硼化合物;(E)(A)至(D)中任何一项所叙述的生产硼酸酯化合物的方法,其中硼酸酯化合物具有的含水量当用卡尔·费歇尔滴定法测量时为1000ppm或更低。
(F)一种电化学装置中的电介质,它含有由(A)至(E)中任何一项所叙述的方法获得的硼酸酯化合物或它们的聚合物;(G)把(F)中叙述的电化学装置用的电解质用于蓄电池;(H)电化学装置用的电解质,它的水含量当用卡尔·费歇尔滴定法测量时为1000ppm或更低,并且它含有式(4)代表的硼酸酯化合物或它的聚合物B-[O(AO)p-Y]3(4)其中Y代表一个选自丙烯酰基、甲基丙烯酰基和含有1至4个碳原子的烷基的基团,前提条件是Y基团中至少有一个是丙烯酰基或甲基丙烯酰基,AO是含有2至4个碳原子的氧化烯基,并且p值为1至600。
实施本发明的最佳模式下面本发明将被进一步详尽地描述。
在用于本发明生产方法的式(1)所代表的化合物中,X代表一个选自含有1至6个羟基化合物的残基、一个丙烯酰基和一个甲基丙烯酰基的基团。像这里所使用的,含有羟基化合物的残基是想用来指从这样一种化合物中除去一个羟基所获得的基团。
作为在式(1)中被AO代表的含有2至4个碳原子的氧化烯基,可以提到的有,例如,氧化乙烯基、氧化丙烯基、氧化丁烯基和氧四亚甲基。优选氧化乙烯基和氧化丙烯基。这些基团可以单独使用,或者把两种或多种结合起来使用。当存在两种或多种基团时,聚合模式可以是嵌段共聚型的或无规聚合类型的。
符号“n”代表加入的含有2至4个碳原子的氧化烯基的平均摩尔数,其值为0至600,优选1至200,更优选1至100,理由是为了获得合适的离子导电性。当n值超过600时,引入的硼的量是这样少,以致当把这种化合物用作电解质时已很难提供适当的对阴离子的俘获性质。
符号“a”值为1至6,优选1至4,特别优选1。在这种情况下,n×a值为0至600,优选1至400,更优选1至200。当n×a值大于600时,引入的硼酸酯键的量是如此之少,以致于很难提供合适的对阴离子的俘获性质,因此也难于获得高的离子导电性。
作为本发明硼酸酯化合物底物的由式(1)代表的化合物,可通过普通的开环聚合反应获得。例如,式(1)化合物可以用预定的摩尔比,在一种开环聚合催化剂诸如碱金属化合物(例如氢氧化钠、氢氧化钾、氢氧化锂或甲氧化钠)或一种路易斯酸(例如三氯化硼醚合物、四氯化锡或三氯化铝)存在下,通过聚合一种含有2至4个碳原子的氧化烯,诸如环氧乙烷、环氧丙烷、环氧丁烷或四氢呋喃和一种含有1至6个羟基的化合物来合成。
作为在式(1)中被X代表并含有1至6个羟基的化合物,可以提及一元醇类诸如甲醇、乙醇、丙醇、异丙醇、正丁醇、2-丁醇、叔丁醇、正己醇、正辛醇、异辛醇、癸醇、十二碳醇、十三碳醇、十四碳醇、十六碳醇、十八碳醇、十八碳烯醇、廿碳醇、廿四碳醇、烯丙醇、甲基烯丙醇、羟乙基乙烯基醚、丙烯酸2-羟乙基酯、甲基丙烯酸2-羟乙基酯、丙烯酸2-羟丙基酯、甲基丙烯酸2-羟丙基酯、丙烯酸2-羟丁基酯、甲基丙烯酸2-羟丁基酯、丙烯酸4-羟丁基酯、甲基丙烯酸4-羟丁基酯、甘油1,3-二甲基丙烯酸酯、甘油1,3-二丙烯酸酯、甘油1-丙烯酸酯-3-甲基丙烯酸酯、三羟甲基丙烷二甲基丙烯酸酯、苯酚、4-乙基苯酚、对羟基苯甲酸甲酯、对叔辛基苯酚、十二碳烷基酚、α-萘酚、β-萘酚、壬基苯酚、苯基苯酚、4-苯氧基苯酚、对位叔丁基苯酚、对(甲氧基乙基)酚、4-甲氧基苯酚、愈创木酚、guetol、对(α-枯基)苯酚、甲苯酚、4-氰基-4’-羟基联苯、二甲苯酚、羟苯甲酸正庚酯;二元醇类诸如乙二醇、丙二醇、丁二醇、戊二醇、己二醇、辛二醇、甘油单甲基丙烯酸酯、三羟甲基丙烷单甲基丙烯酸酯、儿茶酚、氢醌、1,4-二羟基萘、双酚A、氢化的双酚A、间苯二酚、4-叔丁基儿茶酚和2-叔丁基氢醌;三元醇类诸如甘油、三羟甲基丙烷、季戊四醇单甲基丙烯酸酯、季戊四醇单丙烯酸酯、双甘油单甲基丙烯酸酯、双甘油单丙烯酸酯以及氟代缩水甘油;四元醇类诸如季戊四醇和双甘油;五元醇类诸如三甘油;以及六元醇类诸如四甘油和二缩季戊四醇。
X优选是甲醇、乙二醇、丙二醇、丁二醇、丙烯酸2-羟乙基酯、甲基丙烯酸2-羟乙基酯、丙烯酸2-羟丙基酯、甲基丙烯酸2-羟丙基酯、甘油单甲基丙烯酸酯或甘油单丙烯酸酯的残基,丙烯酰基或甲基丙烯酰基。
在本发明的生产方法中,蒸馏、含硼化合物的反应以及反应产物是同时完成的,最好是式(1)代表的化合物含有一个丙烯酰基或甲基丙烯酰基,因为这样生产可以在降低热负荷的条件下完成,从而使可聚合的基团不致被损害。
式(1)代表的化合物的数均分子量最好在110以上,更优选110至30,000。当数均分子量为110以上时,式(1)代表的化合物可以充分地保留在反应液体中从而反应活性能够增加。当进行上述蒸馏操作时,这样的数均分子量也是优选的,因为蒸馏液可以容易回收和利用。
式(1)代表的化合物可以单独使用或者结合两种或多种一起使用。当使用两种或多种化合物时,优选混合物的羟基值不大于430。
优选式(1)代表的化合物经过预先处理,从而降低它的含水量。含水量优选在按重量计0.5%或更低。当这种化合物包含大量水时,通过硼酸酯水解产生的硼酸将保留在体系中,这样,当它被用作电化学装置中的电解质时,装置的性能可能被损害。
作为用于本发明中的式(2)代表的含硼化合物中的R,可以提及甲基、乙基、正丙基、异丙基、正丁基、2-丁基、异丁基和叔丁基。为使得形成硼酸酯时产生的醇容易除去,优选用甲基、乙基、异丙基或叔丁基,特别是甲基。
式(2)代表的含硼化合物可以单独使用或者结合两种或多种一起使用。为了容易控制蒸馏操作以及回收和提纯原材料,更优选使用单一的化合物。
在生产本发明的硼酸酯化合物过程中,式(2)代表的含硼化合物被加到式(1)代表的化合物中,并把混合物置于在30至200℃的温度下。在惰性气流中置于硼酸酯交换反应中。此后,通过酯交换反应产生的式(3)代表的醇在大气压力下或在惰性气体压缩到0.013kpa条件下被除去,从而迫使酯交换反应进一步进行。
当式(1)代表的化合物不含(甲基)丙烯酰基[(甲基)丙烯酰基此后打算用来指丙烯酰基或甲基丙烯酰基]时,反应温度优选50至200℃,更优选60至150℃。在这种情况下,最好把适量氮气吹入反应容器中。当反应温度低时,硼酸酯的酯交换反应不能很快进行,因为消除的低分子量醇不能充分地被除去。当反应温度高于200℃时,式(1)代表的化合物即倾向于热变质。
当式(1)代表的化合物含有(甲基)丙烯酰基时,反应温度优选30至120℃,更优选60至90℃。在这种情况下,优选往反应容器中引入适量干燥的空气。当反应温度低时,硼酸酯的酯交换反应不能很快进行,因为消除的低分子量醇的除去不够充分。当反应温度高于200℃时,有可能在保持(甲基)丙烯酰基方面引起困难。
反应压力可考虑温度式(2)代表的含硼化合物的种类等条件适当地决定,但最好是在惰性气体压缩范围内调节到0.013kpa。当压力低于0.013kpa时,很难在反应液体中保留式(2)代表的含硼化合物。当压力高于惰性气体压缩条件或高于大气压时,在除去式(3)代表的醇的过程中所需温度是这样高,以致可能引起化合物的热变质。为了改进本发明硼酸酯化合物的纯度,优选最终在减压到0.013至6.67kpa的压力条件下来实施除去挥发性组份的操作。当反应进行时反应条件可以在上述范围内变化。
反应时间为0.5至100小时,优选2至50小时,反应条件和装置可这样来选择,即要在上述时间范围内完成反应。短于0.5小时的反应时间可能导致的低分子量的醇难于除去。但当反应时间超过100小时,则式(1)代表的化合物和产生的硼酸酯会对变质敏感。当式(1)代表的化合物中含有(甲基)丙烯酰基时,反应时间更优选2至30小时,为的是防止(甲基)丙烯酰基的聚合。
上述反应最好是在干燥空气或惰性气体的氛围中,通过把式(1)代表的化合物与式(2)代表的化合物,按预定的比例混合0.5至5小时来实施。此后,可在6.67kpa或更低压力下降压蒸馏,在60至120℃的温度下除去挥发性化合物。
进一步优选减压是通过降低压力的同时维持反应温度在恒定水平的条件下逐步建立起来的。
送入反应体系中的干燥空气没有特别限制。不过这种干燥空气最好是那种用冷凝型空气干燥器等干燥过的那些,因为式(2)代表的含硼化合物和所需的硼酸酯化合物容易水解,所以必须使气流中的含水量很低。例如,使露点为-10℃或更低。
当用于本发明中的式(2)代表的含硼化合物被置于和式(1)代表的含羟基的化合物的酯交换反应中时,即会产生式(3)代表的低分子量的醇。例如,当式(2)代表的含硼化合物是硼酸三甲酯时,式(3)代表的低分子量的醇就是甲醇。当使用两种或多种式(2)代表的化合物时,就会产生两种或多种式(3)代表的低分子量的醇。
按照本发明的生产硼酸酯化合物的方法,是包括把式(1)代表的化合物与式(2)代表的化合物进行混合,并使混合物发生反应。与反应进行以后或与反应进行同时,通过反应产生的式(3)代表的低分子量的醇以及式(2)代表的含硼化合物最好被蒸馏掉以获得硼酸酯化合物。蒸馏一般被分类为简单蒸馏和精馏。像本发明中所用的术语“蒸馏”一词既包括精馏,也包括简单蒸馏。
本发明的生产方法是通过用上面式[3]代表的平衡反应来生产高纯度的硼酸酯化合物。硼酸酯化合物是用这样的摩尔比率来生产的,即相应于式(1)代表的化合物中的每1摩尔羟基,有1/3摩尔的硼原子。硼酸酯生产反应的程度可按照反应温度、反应时间、羟基对硼原子的摩尔比率等随意控制。优选硼酸酯化合物生产的反应性为50至100%,更优选65至100%。
通过有效地除去式(3)代表的醇,反应可以继续进行以增加硼酸酯生产的程度。因为式(3)代表的醇和式(2)代表的含硼化合物具有的沸点彼此接近,因而趋向于形成低恒沸点混合物,优选蒸馏操作这样来选择,即使它可有效地除去式(3)所代表的醇类。
蒸馏优选在30至200℃的温度和惰性气体压缩调节到0.013kpa、更优选0.10至110kpa的压力范围内实施。当压力在上述范围以外时,有可能需要特殊的反应器,或者会使蒸馏操作变得困难。
式(2)代表的化合物相对于式(1)代表的化合物的量优选这样选择,即对于式(1)所代表的化合物中的每1摩尔羟基,至少用1/3摩尔的式(2)代表的含硼化合物。为了得到高纯度产物这一目的,式(2)代表的化合物的用量最好相对于式(1)代表的化合物中的每1摩尔羟基至少用0.5摩尔,更优选用0.67摩尔。
式(2)代表的含硼化合物的用量需要考虑式(1)代表的化合物的结构、分子量等因素来决定。例如,当式(1)化合物具有高的分子量并且当式(2)代表的化合物用量小时,会有这样的情况,其中它们形成的混合物变为固体,从而使反应性不能足够高。这样,式(2)代表的含硼化合物的量基于反应液体的总重量计算最多一般为按重量计80%,虽然这一上限并未特别地限定。式(2)代表的化合物用量超过按重量计80%时,将需要长的蒸馏时间,但并不能提供任何额外的好处。
蒸馏操作可以在进一步加入式(2)代表的含硼化合物的条件下实施。加入式(2)代表的含硼化合物的方法没有特别的限制。这样,这种化合物可以一次加入,也可连续地加入或按一定时间间隔断续地加入。
上述反应可以在没有使用催化剂的条件下实施,当使用的醇具有低反应性时,诸如是叔丁醇,可用钠或钾作为催化剂,目的在于保证反应具有足够的速率。然而,优选不使用催化剂以便使纯化操作变得容易。
这一反应可以用合适的溶剂来实施,后者不会参与形成硼酸酯的反应中。作为溶剂,最好是一种非质子溶剂,它能和式(3)代表的低分子量醇形成低恒沸物,但不能和式(2)代表的含硼化合物形成低恒沸物。这种溶剂的具体实例包括己烷、庚烷、苯、甲苯和二甲苯。当使用这样的溶剂时,可以获得一种效果,即式(2)代表的含硼化合物的蒸馏程度可被降低,因而式(2)代表的含硼化合物的用量可以减少。
当化合物中含有可聚合的基团,诸如含有(甲基)丙烯酰基或链烯基,被用作式(1)代表的化合物时,应该使用20至1000ppm数量的聚合抑制剂诸如二-叔丁基羟基甲苯(此后被称为BHT)来保护可聚合的基团。在化合物不含可聚合基团的情况下,也可用1至1000ppm数量的抗氧剂诸如BHT来起到抗氧化的作用。
用本发明方法生产的硼酸酯化合物不需要特别的提纯处理。然而,这种硼酸酯化合物可被置于各种提纯操作诸如过滤、吸附处理、萃取、蒸馏、重结晶和干燥等,只要这类提纯操作不会负面地影响本发明的效果就好。因为硼酸酯化合物对水解高度敏感,上述提纯处理被要求在不会引起湿气的吸附或水解的条件下来进行。例如,当化合物用吸附剂处理时,最好是在把吸附剂加热和干燥以后再使用。
用本发明方法生产的这种硼酸酯化合物具有1.000ppm或更低的含水量,优选为900ppm或更低,更优选350ppm或更低,特别优选100ppm或更低,含水量是用卡尔·费歇尔滴定法测量的。
用卡尔·费歇尔滴定法测量水含量时使用甲醇作为测量中的溶剂。在这一测量过程中,不仅是包含在硼酸酯化合物中的水份,还有杂质诸如原硼酸和硼酸酐中包含的痕量水份也同时被测量。当含有大量水份和杂质的硼酸酯化合物被用作电解质的原材料时,就会使性质变质的可能性增加,诸如固体电解质界面(SEI)电阻的增加和电势稳定性的降低。当把这样的硼酸酯化合物用于锂离子蓄电池的电解质时,很有可能包含在这种硼酸酯化合物中的水和杂质会和锂或支持电解质发生反应,或者在充电和放电过程中引致电解,或者产生气体。这样一来,就会造成蓄电池安全性受到损害这样的问题。
在本发明中,通过卡尔·费歇尔滴定法测量含水量的操作可按以下方法来实施。除下列条件以外,测量是按照日本工业标准IISK1557,6.5.的规范来实施的。
水含量是通过体积滴定方法测量的,用100毫升无水甲醇作为卡尔·费歇尔测量中的溶剂。作为滴定液体,使用滴定度为3毫克H2O/克的试剂。对于含水量低的试样,要用比JIS K1557,6.5中为测定水含量所指定的试样量(20克)更多的试样量(例如40克)。试样用注射器加入测量容器中。计算每种试样作两次测量的得数值的平均值,用两位有效数字(第三位数字按四舍五入处理)。
用本发明生产方法获得的硼酸酯化合物,偶尔也会包含痕量式(2)代表的含硼化合物,这依赖于化合物的结构、提纯的方法等。当把用本发明方法获得的硼酸酯化合物用作电化学装置中的电解质时,优选式(2)的代表的含硼化合物的量要降低到按重量计5%或更低,因为式(2)代表的这种含硼化合物在本性上是挥发性的,有可能引起膨胀或电化学装置中液体漏泄。
在本发明的生产方法中,作为馏出液可获得式(2)代表的含硼化合物和式(3)代表的低分子量的醇。这种馏出液可以全部重新使用。例如,这种馏出液可被用作生产硼酸酯的原料,后者是由烷基醇和硼酸反应而获得的,进一步,这种馏出液中的主要成份是式(2)代表的含硼化合物,它也可作为本发明方法中的原料重新使用。
用于本发明生产方法中的反应装置,可以适当地从这一领域中已知的装置中选择。装置所用材料可适当地选自已知的材料,诸如玻璃和不锈钢。在传热面积、加热介质等可结合反应条件的考虑来适当选择。当实施精馏时,必须使用一台精馏柱。分离类型、理论塔板数、精馏柱直径等可适当地选择以满足反应条件的需要。因为硼酸酯化合物对于水解是敏感的,所以装置内部应预先干燥。
本发明也致力于一种供电化学装置用的电解质,它的含水量当用卡尔·费歇尔滴定法测量时在1000ppm或更低,并且它含有下式(4)代表的硼酸酯化合物或它的聚合物B-[O(AO)p-Y]3(4)其中Y代表一个选自丙烯酰基、甲基丙烯酰基和含有1至4个碳原子的基团,前提条件是Y基团中至少有一个是丙烯酰基或甲基丙烯酰基,AO是一个含有2至4个碳原子的氧化烯基,p值为1至600。
用于电化学装置中的电解质具有的含水量应为1000ppm或更低,优选900ppm或更低,更优选350ppm或更低,特别优选100ppm或更低,含水量用卡尔·费歇尔滴定法测量。式(4)代表的硼酸酯化合物或它的聚合物可用作电化学装置中的电解质。使用这样的电解质可以提供对阴离子的俘获性质以及高的离子导电性。获得的这种电解质具有优良的安全性和电学性能。在式(4)中,由AO代表的含有2至4个碳原子的氧化烯基可以是和式(1)中所定义的那些相同。作为Y代表的并含有1至4个碳原子的烷基,可以提及具有1至4个碳原子的烷基并且它是式(1)中被X代表并含有1至6个羟基的化合物的残基。符号“p”代表加入的含有2至4个碳原子的氧化烯基团的平均摩尔数,其值为1至600,优选1至200,更优选1至100,以便获得合适的离子导电性。当p值超过600时,引入的硼的量太小,以致于当这种化合物被用作电解质时它很难提供合适的阴离子俘获性质。
上述用作电化学装置的电解质可以被用作蓄电池的电解质、电双层电容器的电解质等。并且可用作蓄电池电解质,特别是锂离子蓄电池的电解质。进一步,它可以用于蓄电池,后者使用供蓄电池用的电解质。
作为上述硼酸酯化合物,可以适当地使用按照本发明生产硼酸酯化合物的方法所获得的硼酸酯化合物,即通过用式(1)代表的化合物和式(2)代表的含硼化合物所获得的硼酸酯化合物。
在按照本发明方法的硼酸酯化合物中,那些含有可聚合基团的化合物是以这样的形式来使用,即其中的可聚合集团已被聚合。聚合反应可以用能量诸如热量、紫外光射线、可见光、或电子束等来完成。如果需要也可用已知的聚合引发剂。聚合物的数均分子量优选在50,000至10,000,000之间。当数均分子量低于50,000时,有可能在从聚合物获得具有自支撑性和柔韧性的薄膜方面引起困难。
本发明的硼酸酯化合物可以单独使用,也可以使用两种或多种所形成的混合物。当被用作蓄电池的电解质时,依赖于配方,使用两种或多种化合物组成的混合物可以改进机械性质和改进离子导电性质。
例如,当本发明的硼酸酯化合物是通过用含有可聚合基团的式(1)代表的化合物与不含可聚合基团的式(1)代表的化合物一起来制备时,引入的可聚合基团的数量和引入的硼酸酯基团的数量就可以随意控制。从材料设计的观点来看,这样的硼酸酯化合物是很有用的。
本发明硼酸酯化合物优选的用量为基于有机聚合物化合物按重量计的5至100%,更优选按重量计的10至100%,这是为了获得控制离子转移的效果,后者对充电和放电有影响。
使用本发明的硼酸酯化合物的电解质,由于通过硼改进了阳离子的迁移效率、结果达到了改进离子导电性的效果,并且导致了作为电化学装置的电解质的性能方面的改进。进一步,因为这种硼酸酯化合物具有极低的含水量,当这种硼酸酯化合物被用作电解质时,由于金属部份或金属组件的腐蚀以及由于水的电解结果的产生气体使内压增加等问题就不会发生。这样,这种硼酸酯化合物是很有用的。
在本发明的这类硼酸酯化合物当中,含有可聚合基团的化合物能提供优良的薄膜稳定性并同时具有高的离子导电性,因为硼酸酯基团是被固定在同类分子中,就像那些在聚合物基质上的基团那样。进一步,在硼酸酯化合物中含有可聚合基团的情况下,因为所有硼酸酯基团是存在于同一类分子中,就像那些聚合物基质上的基团那样,所以有可能只用硼酸酯化合物而无需除离子化合物以外再加入第三种组份。这样,就可能简化生产电解质薄膜的步骤。于是,这种含有可聚合基团的硼酸酯化合物是很有用的。
本发明的用于电化学装置中的电解质可以通过各种方法来制备,并没有特别的限制。例如,这种硼酸酯化合物可以和另外的可聚合的有机化合物混合在一起,在后者中溶解有离子化合物。铸塑之后再经加热完成聚合反应以给出具有动态强度的聚合物电解质薄膜。还有,在硼酸酯化合物含有可聚合基团的情况下,例如,可溶解一种离子化合物来制备溶液。然后把溶液通过加热进行热聚合来铸塑,从而获得具有动态强度的聚合物电解质薄膜。如果需要,也可以用能量射线诸如紫外射线、可见光或电子束的照射,使可聚合的化合物发生聚合反应来获得薄膜。进一步,用于电化学装置的电解质薄膜可以通过,例如,把含有可聚合基团的硼酸酯化合物得到的聚合物与一种离子化合物彻底捏和,接着进行模塑而获得。
用于电化学装置的电解质含有一种包含离子化合物的有机聚合物化合物以及硼酸酯化合物。这种有机聚合物化合物可含有其它的有机聚合物化合物或除硼酸酯以外的可聚合的化合物,只要本发明的效果不致受到损害。
这种其它的有机聚合物化合物的实例,包括聚丙烯腈、丙烯腈-甲基丙烯酸共聚物、丙烯腈-甲基丙烯酸甲酯共聚物、甲基丙烯酸-苯乙烯共聚物、丙烯腈-苯乙烯共聚物、丙烯腈-苯乙烯-甲基丙烯酸共聚物、丙烯腈-苯乙烯-甲基丙烯酸甲酯共聚物、苯乙烯-马来酸共聚物、以及聚亚烷基二醇-(甲基)丙烯酸酯共聚物。
用于本发明中的硼酸酯化合物,可以预先和任何其它可聚合的化合物混合,然后在其中溶解一种离子化合物。然后再将混合物聚合。
这类其它的可聚合化合物的实例,包括丙烯酸烷基酯诸如丙烯酸甲酯和丙烯酸丁酯,甲基丙烯酸烷基酯诸如甲基丙烯酸甲酯和甲基丙烯酸丁酯,下面式(5)代表的聚亚烷基二醇(甲基)丙烯酸酯,丙烯腈,苯乙烯,和二乙烯基苯。优选使用下式(5)代表的聚亚烷基二醇(甲基)丙烯酸酯Z-[O(A2O)m-R′]b(5)其中Z代表含有1至4个羟基的化合物的残基、氢原子、丙烯酰基或甲基丙烯酰基,A2O代表一个含有2至4个碳原子的氧化烯基,或者由两种或多种含有2至4个碳原子的氧化烯基组成的混合物,m值为0至150,b值为1至4,前提条件是m×b值为0至300;R’代表一个氢原子、一个含有1至8个碳原子的烃基、氰乙基、丙烯酰基或者甲基丙烯酰基,前提条件是在分子中至少含有一个丙烯酰基或甲基丙烯酰基。
式(5)中用Z代表的含有1至4个羟基的化合物的实例,包括一元醇类诸如甲醇、乙醇、丙醇、异丙醇、丁醇、2-丁醇、叔丁醇、正己醇、正辛醇、异辛醇、癸醇、十二碳醇、十三碳醇、十四碳醇、十六碳醇、十八碳醇、十八碳烯醇、廿碳醇、廿四碳醇、烯丙醇、甲基烯丙醇、以及羟乙基乙烯基醚;二元醇类诸如乙二醇、丙二醇、丁二醇、戊二醇、己二醇以及辛二醇;三元醇类诸如甘油和三羟甲基丙烷;以及四元醇诸如季戊四醇和二甘油。
Z优选是甲醇、乙二醇、丙二醇、甘油、三羟甲基丙烷、季戊四醇或二甘油的一个残基,一个氢原子,一个丙烯酰基或甲基丙烯酰基;更优选是甲醇、乙二醇或丙二醇的一个残基,一个氢原子,一个丙烯酰基或一个甲基的烯酰基。
作为式(5)中由A2O代表的含有2至4个碳原子的氧化乙烯基,可以提及,例如,氧乙烯基、氧丙烯基、氧丁烯基和氧四亚甲基。优选氧乙烯基和氧丙烯基。这些基团可以单独使用或者把两种或多种结合起来使用。当有两种或多种基团时,聚合模式可以是嵌段聚合型式或元规聚合型式。
式(5)代表的化合物应在分子中含有至少一个丙烯酰基或至少一个甲基丙烯酰基。
用于本发明中电化学装置用的电解质中的离子化合物可以任何混合比例与有机聚合物化合物混合,但优选以这样的量相混合,即使得包含在硼酸酯化合物中的氧化烯单位的数量在总共每1摩尔包含在离子化合物中的碱金属中有2至30摩尔,特别是2至20摩尔,理由是为了改进归因于有机聚合物化合物的玻璃化转变温度降低导致的离子导电性,并改进归因于载体数目增加导致的离子导电性。为了加速离子化合物的离解,优选的混合比例应该是每1摩尔碱金属共有4至20摩尔氧化乙烯单位。
当除硼酸酯化合物以外的含有氧化烯单位的化合物被掺合时,它的氧化烯单位也应被计算,以决定被掺合的离子化合物的数量。
用于形成本发明电化学装置中用的电解质的离子化合物的种类并没有特别的限制。在用于电容器时,离子化合物可以是,例如,一种季铵盐诸如(CH3)4NBF4或(CH3CH2)4NBF4,过渡金属盐诸如AgClO4,季鏻盐诸如(CH3)4PBF4,碱金属盐诸如LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、Li(CF3SO2)2N、Li(C2F5SO2)2N、Li(CF3SO2)3C、LiI、LiSCN、NaBr、NaI、NaSCN、KI或KSCN;一种有机酸诸如对甲苯磺酸或它的盐类。为获得高的输出电压和大的离解常数,优选季铵盐、季鏻盐和碱金属盐。
作为用于本发明蓄电池用的电解质中的离子化合物,可以提及碱金属盐诸如LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、Li(CF3SO2)2N、Li(C2F5SO2)2N、Li(CF3SO2)3C、LiI、LiSCN、NaBr、NaI、NaSCN、KI或KSCN。优选锂盐诸如LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、Li(CF3SO2)2N、Li(C2F5SO2)2N、Li(CF3SO2)3C、LiI和LiSCN。
用于本发明蓄电池中的电解质可包含一种离子导电盐或铁电性盐、玻璃粉等。作为盐和玻璃粉,可以提及SnO2、BaTiO3和LaTiO3。
只要本发明的效果不会受到损害。也可以用液体电解质原料的混合物,诸如碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、碳酸甲基乙基酯、四氢呋喃、γ-丁内酯、二甲氧基乙烷、2-甲基四氢呋喃、1,3-二氧戊环、甲酰胺、二甲基甲酰胺、硝基甲烷、甲酸甲酯或乙酸甲酯。
通过把本发明的聚合物电解质与前面已知的正极和负极材料相结合,即可以获得具有优良离子导电性、充电放电循环性能和安全性能的蓄电池。
因为本发明生产硼酸酯化合物的方法使用的是上面式(2)所代表的含硼化合物,所以在制备硼酸酯的反应过程中基本上没有水产生,不像通常使用的含硼化合物诸如氧化硼或原硼酸的那种情况。进一步,因为式(1)代表的化合物和式(2)代表的化合物之间的酯交换反应而产生的低分子量的醇可容易地除去,所以能够减少反应所需要的时间。这样,生产效率也是优良的。
还有,通过把式(3)代表的低分子量的醇[它是由式(1)代表的化合物和式(2)代表的化合物之间的酯交换反应所产生的]和式(2)所代表的化合物一起蒸馏出来,使得形成硼酸酯的反应会以很高的反应性进行。还有,因为在反应过程中保留未消耗掉的式(2)代表的化合物可容易地被除去,就可能获得高纯度的硼酸酯化合物。
还有,因为在硼酸酯形成反应中没有水产生,使本发明的硼酸酯化合物的含水量很低,当把这种硼酸酯化合物用作电化学装置中的电解质时,就不会引发包含在电解质中的离子化合物的分解。进一步,这种硼酸酯化合物也不会引起用于电化学装置中的金属的腐蚀,从而使之在电学性能上也是优秀的。
因为通常用于生产硼酸酯类化合物中的氧化硼、原硼酸、偏硼酸和焦硼酸等是可溶解于聚亚烷基二醇衍生物中的,因此有可能在反应之后保留溶解于其中。当把这样的硼酸酯化合物用于电化学装置中的电解质时,很可能会发生与所含离子化合物的离子交换反应、金属腐蚀以及不适宜的离子捕集。相反,在用本发明的生产方法时,即使式(2)代表的含硼化合物保留在硼酸酯化合物中未被除去,它也不会和支持电解质盐或金属发生反应或相互作用。这样,即可获得优良的电学性质。
通过使用本发明的供电化学装置用的电解质,可以获得在广泛温度范围内均有高离子导电性以及优良的循环性质、安全和高稳定性的电化学装置。
因为用本发明的生产方法获得的硼酸酯化合物具有很低的含水量和很高的纯度,式(1)代表的化合物和式(3)代表的化合物在产物中的残余量很小。当把这种具有低含水量和低羟基含量的硼酸酯化合物用于锂离子蓄电池中的电解质时,就可能获得只有很小内阻增量的高性能电解质以及使用这种电解质的优良蓄电池。
还有,本发明的这种生产硼酸酯化合物的方法能够生产出具有任何所需结构的硼酸酯化合物并可允许容易地进行分子设计。这样,应用这样的化合物来制作表现出各种性能的电化学装置就能容易地达成。
下面借助实施例对本发明进一步作详尽描述。
在下面的说明中,干燥空气是指通过冷凝型空气干燥器脱水后的空气,LiTFSI是指双(三氟甲基磺酰基)亚胺基锂,LiPF6是指六氟磷酸锂。在每个实施例中加入的作为离子化合物用于电解质组合物中的LiTFSI或LiPF6的量应该这样,即要使得对应于包含在电解质组合物中的氧化烯中每16摩尔的醚氧原子要有1摩尔的Li离子浓度。
实施例1往550克(1.0摩尔)分子量为550的甲氧基聚乙二醇原料中加入34.6克(0.333摩尔)硼酸三甲酯,混合物在搅拌和氮气氛保护下加热到60℃。把混合物60℃保持1小时以后,把温度在1小时内逐渐升高到120℃。当到达120℃时,将体系逐渐抽真空并维持在2.67kpa或更低的压力下(20毫米汞柱以下)3小时,同时在反应进行过程中除去产生的挥发性物质。然后进行过滤即给出520克硼酸酯化合物。
实施例2往654克(1.5摩尔)作为原料的聚乙二醇(350)单甲基丙烯酸酯(由NOF Corporation制造的BLEMMER PE-350)加入51.9克(0.5摩尔)硼酸三甲酯,混合物在搅拌和干燥空气保护下加热到60℃。在把混合物于60℃保持1小时以后,把温度升高到75℃。当温度达到75℃时,将体系逐渐抽真空并将压力维持在2.67kpa或以下共6小时,同时除去反应进行过程中所产生的挥发性物质。然后进行过滤即给出625克可以聚合的硼酸酯化合物。
实施例3往708克(1.5摩尔)作为原料的聚乙二醇(400)单丙烯酸酯(由NOF Corporation制造的BLEMMER PE-350)加入51.9克(0.5摩尔)硼酸三甲酯,并在搅拌和干燥空气保护下把混合物加热到60℃。混合物在60℃维持1小时以后,把温度升高到70℃。当温度达到70℃时,将体系逐渐抽真空并维持体系压力在2.67kpa或更低条件下6小时,同时除去反应进行时产生的挥发性物质。然后进行过滤即给出670克可聚合的硼酸酯化合物。
实施例4往作为原料的944(2.0摩尔)聚乙二醇(400)单丙烯酸酯(由NOF Corporation制造的BLEMMER AE-400)和550(1.0摩尔)分子量为550的甲氧基聚乙二醇中加入103.8克(1.0摩尔)硼酸三甲酯,并把混合物在搅拌和干燥空气保护下加热到60℃。混合物在60℃维持1小时以后,把温度升高到70℃。当温度达到70℃时,把体系逐渐抽真空,使体系在2.67kpa或更低的压力下维持6小时,同时除去反应进行时产生的挥发性物质。然后进行过滤即给出1430克可聚合的硼酸酯化合物。
对比例1往550克(1.0摩尔)作为原料的分子量为550的甲氧基聚乙二醇中加入11.6克(0.167摩尔)氧化硼,把混合物在搅拌和氮气氛保护下加热到110℃。当温度到达110℃时,逐渐把体系抽真空并使其维持在2.67kpa或更低的压力条件下3小时,同时除去反应进行时产生的水份。然后进行过滤即给出520克硼酸酯化合物。
对比例2往472克(1.0摩尔)作为原料的聚乙二醇(400)单丙烯酸酯(由NOF Corporation制造的BLEMMER AE-400)加入20.6克(0.333摩尔)的原硼酸,并把混合物在干燥空气氛和搅拌的条件下加热到70℃。当温度达到70℃时把体系逐渐抽真空并在干燥空气流中维持体系的压力在2.67kpa或以下6小时,同时除去反应进行时产生的水。然后进行过滤即给出450克可聚合的硼酸酯化合物。
对比例3往654克(1.5摩尔)作为原料的聚乙二醇(350)单甲基丙烯酸酯(由NOF Corporation制造的BLEMMER PE-350)加入17.4克(0.25摩尔)氧化硼,并在搅拌和干燥空气氛的条件下把混合物加热到75℃。当温度到达75℃时,逐渐把体系抽真空并在干燥空气流中使其压力维持在2.67kpa或更低共6小时,同时除去反应进行时所产生的水。然后进行过滤即给出620克可聚合的硼酸酯化合物。
对实施例1至4和对比例1至3中每一实施例所获得的硼酸酯化合物,通过卡尔·费歇尔滴定法,按照下面所示的日本工业标准JISK1557,6.5,分别测量和计算其含水量。
含水量是用空量滴定方法测量的,使用100毫升脱水的甲醇作为卡尔·费歇尔测量中的溶剂。用滴定度为3毫克H2O/克的试剂作为滴定液。对于含水量低的试样,应该使用比JIS K1557,6.5中测定水含量指定的试样用量(20克)更多的试样(40克)。试样用注射器装进测量容器中。对于每个试样平均用两个测量值进行计算,有效数字的位数是2(第三位数字这样处理,即计数在5或以上时进一个单位,其余舍弃,即所谓四舍五入)。
实施例5把实施例1的硼酸酯化合物(5.00克),2.50克聚乙二醇(600)二甲基丙烯酸酯(由NOF Corporation制造的BLEMMER PDE-600)和2.50克甲氧基聚乙二醇(4000)单甲基丙烯酸酯(由NOF Corporation制造的BLEMMER PME-4000)混合在一起,往其中加入3.65克作为支持电解质的LiTFSI并使之均匀地溶解。然后加入30毫克偶氮双异丁腈作为热聚合引发剂并使之溶解。得到的液体通过旋转涂敷器施敷到硅片上。将此硅片静止地放进80℃的烘箱中2小时以便进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
实施例6往10克实施例3的可聚合的硼酸酯化合物中加入3.37克作为支持电解质的LiTFSI并使其均匀地溶解。然后加入30毫克偶氮双异丁腈作为热聚合引发剂并使之溶解。得到的液体通过旋转涂敷器施敷在硅片上。将此硅片放进80℃的烘箱中2小时以进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
实施例7往10克实施例4的可聚合的硼酸酯化合物中加入3.55克作为支持电解质的LiTFSI并使之均匀地溶解。然后加入30毫克偶氮双异丁腈作为热聚合引发剂并使之溶解。得到的液体用旋转涂敷器施敷在硅片上。将此硅片静置于80℃的烘箱内2小时以使其热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
实施例8往10.0克实施例2的可聚合的硼酸酯化合物中加入1.71克作为支持电解质的LiPF6,并使其均匀地溶解。然后加入30毫克偶氮双异丁腈作为热聚合引发剂并令其溶解。得到的液体用旋转涂布器涂敷在硅片上。将此硅片静置于80℃的烘箱内2小时以使其热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
实施例9把实施例2的可聚合的硼酸酯化合物(5.00克)和5.00克甲氧基乙二醇(4000)单甲基丙烯酸酯(NOF Corporation制造的BLEMMERPME-4000)相互混合好,往其中加入1.91克作为支持电解质的LiPF6并令其均匀地溶解。然后加入30毫克偶氮双异丁腈作为热聚合引发剂,并令其溶解。得到的液体用旋转涂敷器施敷到硅片上。将此硅片静置于80℃的烘箱中2小时以使之进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
对比例4往10.0克对比例2的可聚合的硼酸酯化合物中加入3.37克作为支持电解质的LiTFSI并令其均匀地溶解。然后,加入30毫克偶氮双异丁腈作为热聚合引发器并令其溶解。得到的液体用旋转涂敷器施涂在硅片上。将此硅片静置于80℃的烘箱内2小时,让它进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
对比例5把对比例1的硼酸酯化合物(5.00克),2.50克聚乙二醇(400)二丙烯酸酯(NOF Corporation制造的BLEMMER ADE-400)和2.50克甲氧基聚乙二醇(4000)单甲基丙烯酸酯(由NOF Corporation制造的BLEMMER PME-4000)混合在一起,往其中加入1.93克作为支持电解质的LiPF6并令其均匀地溶解。然后加入30毫克作为热聚合引发剂的偶氮双异丁腈并令其溶解。得到的液体用旋转涂敷器施敷到硅片上。将此硅片静置于80℃的烘箱中2小时,让它进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
对比例6往10.0克对比例2的可聚合的硼酸酯化合物中加入1.78克作为支持电解质的LiPF6并令其均匀地溶解。然后加入30毫克作为热聚合引发剂的偶氮双异丁腈并令其溶解。得到的液体用旋转涂敷器施涂到硅片上。将此硅片静置于80℃的烘箱内2小时,让它进行热聚合从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
对比例7把对比例3的硼酸酯化合物(7.50克)和2.50克甲氧基聚乙二醇(2000)单甲基丙烯酸酯(由NOF Corporation制造的BLEMMERPME-2000)互相混合在一起,往其中加入1.80克作为支持电解质的LiPF6并令其均匀地溶解。然后加入30毫克作为热聚合引发剂的偶氮双异丁腈并令其溶解。得到的液体用旋转涂敷器施敷到硅片上。将此硅片静置于80℃的烘箱中2小时,让它进行热聚合,从而获得厚度为100微米的离子导电性聚合物组合物(聚合物电解质)。
在上述实施例5至9以及对比例4至7中所获得的聚合物电解质被评估其薄膜易成型性和稳定性。
所有的聚合物电解质的薄膜易成型性被发现都在用作电化学装置的电解质方面是令人满意的。
用以下的方法评估了这些聚合物电解质的稳定性。
把每种聚合物电解质薄膜夹在两片厚度为50微米的金属锂箔之间。把这装置放进处于氩气中的50℃的恒温浴中。在放进一天和七天之后,观察每种电解质薄膜的外观以及与电解质薄膜接触的锂箔表面的条件。
○电解质薄膜的外观或金属锂箔的接触表面完全没有改变;△在电解质薄膜的外观上出现颜色并且金属锂箔的接触表面有部份腐蚀;×在电解质薄膜的外观上出现颜色并且金属锂箔有明显的腐蚀;对在实施例5、7和9以及对比例5和6中获得的聚合物电解质进行了离子导电性的评估。离子导电性的测量用以下的方法来实施。
把上述将每种膜夹在两片金属锂箔之间获得的装置夹在不锈钢电极之间来形成非阻塞电极。在氩气氛中、在不同温度测量其交流复合阻抗,同时改变温度。离子导电性可由这样得到的在复平面上的图线中(科尔-科尔图)的体电阻分量的半圆的直径来决定。
实施例10把按重量计75份具有尖晶石结构、并可用LiCo1/6Mn11/6O4组成或代表的钴(1/6)取代的锰酸锂粉末作为正极活性物料,按重量计5份的聚1,1-二氟乙烯粉末作为粘合剂聚合物,按重量计20份的乙炔黑粉末作为导电性物料,将它们捏和好以后把混合物通过热压施敷到铜箔上以获得厚度100微米、直径10毫米的正极材料。厚度约80微米、直径10毫米并用作碱金属离子包藏的金属锂箔被用作负极材料。实施例6的聚合物电解质被摸压成直径10毫米的圆盘,并被夹在上述正极和负极材料之间。形成的装置进一步被夹在不锈钢电极之间即得到蓄电池。
这样获得的蓄电池被置于300次循环的充电和放电处理中,每次循环包括在50℃或80℃用220毫安/米2的电流密度充电至4.15伏,并以220毫安/米2的电流密度放电至3.50伏。对每个蓄电池测量其第100次和第300次循环时每1公斤正极的放电电容量,并借助基于最初电容量(第1次循环)的百分数来进行评估◎放电电容量为最初电容量的70%或更高;○放电电容量低于最初电容量的70%,但不低于40%;△放电电容量低于最初电容量的40%;×由于发生内部短路、电极材料变质、或导电性不足而无法进行评估;实施例11用与实施例10相同的组合物构成蓄电池,但是用实施例8的聚合物电解质。在和实施例10相同的条件下进行充电和放电循环试验。
对比例8用与实施例10相同的组合物构成蓄电池,但是用对比例4的聚合物电解质。在和实施例10相同的条件下进行充电和放电循环试验。
对比例9用与实施例10相同的组合物构成蓄电池,但是用对比例7的聚合物电解质。在和实施例10相同的条件下进行充电和放电循环试验。
在下面的表1中列出了式(1)代表的化合物、含硼化合物、反应所需时间、减压维持的时间,以及用于生产实施例1至4和对比例1至3中的硼酸酯化合物的含水量。进一步,在表2中列出了电解质的组成、离子化合物的种类以及在实施例和对比例的电解质薄膜的稳定性评估结果。表3列出了在25℃和80℃时离子导电的评估结果。表4列出了在50℃和80℃时充电和放电试验的评估结果。
在表1和表2中,M代表甲基丙烯酰基,A代表丙烯酰基,EO代表氧乙烯基。
表1

表2

表3

表4

已经证实,虽然在对比例1至3中获得的硼酸酯化合物具有高的含水量,但在实施例1至4中获得的硼酸酯化合物却只有很低的含水量,尽管事实上它们反应温度和反应时间是相同的。
用在这些实施例中获得的硼酸酯化合物作为电化学装置中的电解质,没有显示出碱金属的腐蚀作用并且具有优良的稳定性和高的离子导电性。进一步,它们在作为蓄电池的电解质时被证实能显示出优良的循环特性。
实施例12装进1110克(3.0摩尔)平均分子量为370的聚乙二醇(6.8摩尔)单丙烯酸酯(NOF Corporation制造的BLEMMER AE-300)和934.2克(9.0摩尔)硼酸三甲酯作为原料,往其中加入0.33克BHT。混合物在搅拌和吹扫干燥空气的条件下,在大气压力下加热到70℃。把混合物在70℃保持1小时,把体系在70℃逐渐抽真空至2.67kpa计8小时,同时通过蒸馏除去反应中作为副产物产生的甲醇和硼酸三甲酯。然后把反应混合物维持在2.67kpa压力和70℃的条件下3小时以使产物干燥,从而获得1100克所需的硼酸酯化合物。
实施例13
装进870克(3.0摩尔)平均分子量为290的聚乙二醇(4.6摩尔)单甲基丙烯酸酯(NOF Corporation制造的BLEMMER PE-200)、330克(1.5摩尔)壬基苯酚和778.5克(7.5摩尔)硼酸三甲酯作为原料,往其中加入0.33克BHT。混合物在大气压力下加热到70℃,同时在搅拌下吹入干燥的空气。在混合物在70℃维持1小时以后,将体系在70℃逐渐抽真空至2.67kpa计8小时,同时通过蒸馏除去作为反应副产物产生的甲醇和硼酸三甲酯。然后把混合物在70℃和2.67kpa压力条件下维持3小时进行干燥,从而获得1000克所需的硼酸酯化合物。
实施例14装进1500克(1.5摩尔)平均分子量为1000的甲氧基聚乙二醇(16.5摩尔)-丙二醇(4.2摩尔)无规共聚物和470克(2.5摩尔)硼酸三异丙酯作为原料。在搅拌下,在氮气氛中把混合物加热到130℃。在混合物于130℃维持一小时以后,把体系在130℃逐渐抽真空至2.67kpa计8小时,同时通过蒸馏除去作为反应副产物产生的异丙醇以及硼酸三异丙酯。然后把混合物在2.67kpa压力和130℃条件下保持3小时以进行干燥,从而获得1400克所需的硼酸酯化合物。
实施例15装进185克(0.5摩尔)平均分子量为370的聚乙二醇(6.8摩尔)单丙烯酸酯(NOF Corporation制造的BLEMMER AE-300)、1000克(1.0摩尔)平均分子量为1000的甲氧基聚氧化乙烯(16.5摩尔)-聚氧化丙烯(4.2摩尔)无规共聚物、103.8克(1.0摩尔)硼酸三甲酯和0.59克BHT作为原料。在搅拌下把混合物加热到60℃同时吹入干燥的空气。在混合物于60℃维持一小时以后,把系统在60℃逐渐抽真空到2.67kpa压力下计4小时,同时通过蒸馏除去作为副产物由反应产生的甲醇和硼酸三甲酯。然后将压力恢复到大气压并往反应混合物中加入103.8克(1.0摩尔)硼酸三甲酯。将此混合物于60℃逐渐抽真空至2.67kpa计4小时,同时通过蒸馏除去作为反应副产物产生的甲醇和硼酸三甲酯。然后把反应混合物在2.67kpa压力和60℃条件下保持2小时来进行干燥,从而获得1100克所需的硼酸酯化合物。
实施例16在一只装备有精馏柱的3升四颈瓶中装入928克(3.2摩尔)平均分子量为290的聚乙二醇(4.6摩尔)单甲基丙烯酸酯(NOFCorporation生产制造的BLEMMER PE-200)、320克(0.8摩尔)平均分子量为400的聚乙二醇(8.7摩尔)、1246克硼酸三甲酯(12.0摩尔)和0.62克BHT。混合物在68kpa压力下加热到发生回流的温度(50至65℃),同时吹入干燥的空气。在混合物已充分回流30分钟之后,以10的回流比从柱顶除去馏出液5小时。在精馏进行过程中,瓶中内容物的温度和柱顶馏出物温度均逐渐增高。这样,当柱顶温度达到60℃时,以20的回流比再进行3小时的精馏。
此后,在瓶中的反应液体中获得的硼酸三甲酯被蒸馏到瓶内温度为60℃或更低、压力为2.67kpa的状况。然后反应液体在60℃和2.67kpa压力下维持2小时以进行干燥,从而获得1150克所需的硼酸酯化合物。
对比例10往作为原料的、平均分子量为370的2220(6.0摩尔)聚乙二醇(6.8摩尔)单丙烯酯酯(NOF Corporation生产制造的BLEMMERPE-300)中加入69.6克(1.0摩尔)氧化硼和0.67克BHT。混合物加热到80℃同时在搅拌下吹入干燥的空气。当温度达到80℃时,把体系逐渐抽真空并维持在2.67kpa或更低压力下计3小时,同时除去反应进行时产生的水。把反应混合物过滤即获得2100克所需的硼酸酯化合物。
对比例11往作为原料的1480克(4.0摩尔)平均分子量为370的聚乙二醇(6.8摩尔)单丙烯酸酯(NOF Corporation制造的BLEMMER AE-300)和2000克(2.0摩尔)平均分子量为1000的甲氧基聚氧乙烯(16.5摩尔)-聚氧丙烯(4.2摩尔)无规共聚物中加入55.7克(0.8摩尔)氧化硼。在搅拌下把混合物加热到80℃同时吹入干燥空气。当温度达到80℃以后,把体系逐渐抽真空并维持在2.67kpa或更低压力下计3小时,同时除去反应进行时产生的水。把反应混合物过滤即给出3400克所需的硼酸酯化合物。
对比例12往作为原料的580克(2.0摩尔)平均分子量为290的聚乙二醇(4.6摩尔)单甲基丙烯酸酯(NOF Corporation制造的BLEMMERPE-200)和200克(0.5摩尔)平均分子量为400的聚乙二醇(8.7摩尔)中加入61.8克(1.0摩尔)硼酸和0.23BHT。在搅拌下把混合物加热到80℃同时吹入空气。当温度达到80℃时,把体系逐渐抽真空并在2.67kpa或更低压力下维持3小时,同时除去反应进行过程中所产生的水。把反应混合物过滤即给出520克所需的硼酸酯化合物。
测量含水量的方法评估是用和以前叙述过的同样方法来实施的。
按照以下方法对实施例12至16和对比例10至12中获得的硼酸酯化合物的每一种进行硼浓度的测量。
在这种情况下,理论硼浓度被定义为假定只有式(1)代表的化合物被完全酯化而不含其它化合物时的硼浓度。每种化合物的纯度用(硼浓度/理论硼浓度)来显示。
测量硼浓度的方法称量一定量(1至50克)相应于推断的硼浓度的获得的硼酸酯化合物。把它加入到100毫升甘油/离子交换水(按体积计50/50)混合溶液中。混合物在室温搅拌5分钟,往其中加入2至3滴1%的酚酞溶液。然后用1/10N氢氧化钠水溶液进行滴定直到观测到酚酞变色(从无色至紫色)。棚浓度按以方程式(7)来计算硼浓度(摩尔/公斤)=(a-b)×f/w(7)其中a用于滴定中的1/10N氢氧化钠水溶液的量(毫升)b用于空白滴定中的1/10N氢氧化钠水溶液的量(毫升)w试样的量(克)f1/10N氢氧化钠水溶液的系数表5

在表5中,EO代表氧化乙烯基,PO代表氧化丙烯基,M代表甲基丙烯酰基,A代表丙烯酰基,ph代表亚苯基,[/]指示是无规共聚物。
往实施例12和16以及对比例10和12中获得的每种硼酸酯化合物中加入按重量计20%的LiFTSI并彻底混合以得到均匀的混合物。然后往混合物中加入按重量计0.1%的AIBN(偶氮异丁腈)。将此混合物在80℃置于热聚合反应中。然后把聚合物模制成厚度为1.0毫米、直径为14毫米的圆盘、从而获得聚合物电解质。
在研钵中把LiNi0.9Co0.1O2所代表的正极活性材料研成碎末以获得正极活性材料的粉末。这种粉末与作为导电剂的乙炔黑以及作为粘合剂的聚1,1-二氟乙烯按43∶3∶2的混合比率进行混合以获得正极配制物。将它置于压模中压成直径14毫米的圆盘,接着进行热处理而获得正极。
把具有预定厚度的金属锂模压成直径14毫米的圆盘以获得负极。
锂离子蓄电池的制备和它们的评估上述聚合物电解质、正极和负极被组装成实施例17和18以及对比例13和14的锂离子蓄电池。这样获得的每种蓄电池均在氩气氛中密封并在60℃测量最初的内阻。然后把每种蓄电池在60℃贮存100小时并再次测量其内阻。
评估结果被列于表6中。
表6

供比较的实施例10至12仅给出具有低的含水量或低纯度的硼酸酯化合物。另一方面,用实施例12至16,就可能获得具有低含水量和高反应活性或具有高纯度棚酸酯化合物。
当把按本发明生产方法获得的硼酸酯化合物用作锂离子蓄电池的电解质时,有可能获得在贮存过程中内阻增加值小的蓄电池。这样,就能获得高性能的电解质和蓄电池。
工业可应用性因为按本发明生产方法获得的硼酸酯化合物具有很低的含水量和很高的纯度,因此式(1)和式(3)代表的化合物的剩余量就很小。当把这样的具有低含水量和低羟基含量的硼酸酯化合物用作锂离子蓄电池的电解质时,就可能获得具有很小内阻的高性能电解质以及使用这种电解质的优良蓄电池。
还有,按照本发明生产硼酸酯化合物的这种方法可产生出具有任何所需结构的硼酸酯化合物,并允许进行容易的分子设计。这样,应用这样的化合物就可容易获得呈现出各种特性的电化学装置。
权利要求
1.一种生产硼酸酯化合物的方法,它包括用式(2)代表的含硼化合物(RO)3-B (2)其中R代表含有1至4个碳原子的烷基,来酯化式(1)代表的化合物X-[O(AO)n-H]a(1)其中x是选自含有1至6个羟基、一个丙烯酰基和一个甲基丙烯酰基的化合物的残基,AO代表含有2至4个碳原子的氧化烯基,n值为0至600、a值为1至6并且n×a值为0至600。
2.权利要求1中的生产硼酸酯化合物的方法,其中式(1)代表的化合物的平均分子量为110或更高。
3.权利要求1中的生产硼酸酯化合物的方法,它包括把式(1)所代表的化合物与式(2)所代表的含硼化合物进行反应,同时蒸馏式(2)代表的含硼化合物和由所说的反应产生的、可由式(3)代表的醇ROH (3)其中R代表含有1至4个碳原子的烷基。
4.权利要求1中的生产硼酸酯化合物的方法,其中式(2)所代表的含硼化合物的用量为,相应于每摩尔式(1)代表的化合物中的羟基用1/3摩尔或更多的含硼化合物。
5.权利要求1中的生产硼酸酯化合物的方法,其中硼酸酯化合物中的含水量用卡尔·费歇尔滴定法测量时为1000ppm或更低。
6.一种电化学装置中用的电解质,它包含由权利要求1至5中任何一项中所叙述的方法获得的硼酸酯化合物或它的聚合物。
7.使用权利要求6中的用于电化学装置中的电解质的蓄电池。
8.用于电化学装置中的电解质,它的含水量当用卡尔·费歇尔滴定法测量时为1000ppm或晚低,它含有式(4)代表的硼酸酯化合物或它的聚合物B-[O(AO)p-Y]3(4)其中Y代表选自丙烯酰基、甲基丙烯酰基和含有1至4个碳原子的烷基的基团,前提条件是Y基团中至少有一个是丙烯酰基或甲基丙烯酰基,AO是含有2至4个碳原子的氧化烯基,并且P值为1至600。
全文摘要
一种生产硼酸酯的方法,它包括把式(I)代表的化合物与式(II)代表的硼化合物进行反应以产生硼酸酯。这种硼酸酯化合物的含水和含杂质量均被降低,从而具有高的离子导电性,并可用作高度安全的电化学装置诸如蓄电池和电容器中的材料。也提供了含有这种硼酸酯化合物的聚合物电解质以及应用这种聚合物电解质的蓄电池。式(I)为X-[O(AO)
文档编号H01M10/36GK1596260SQ02823808
公开日2005年3月16日 申请日期2002年9月27日 优先权日2001年9月28日
发明者横山晶一, 矢部健 申请人:日本油脂株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1