标准封装应用中高可靠性的坚固Ⅲ族发光二极管的制作方法

文档序号:7154911阅读:268来源:国知局
专利名称:标准封装应用中高可靠性的坚固Ⅲ族发光二极管的制作方法
技术领域
本发明涉及发光二极管,特别地涉及用III族氮化物形成的适合于标准封装应用的发光二极管。
背景技术
发光二极管是p-n结器件,其将电能转换为光辐射。特别地,在适当的正向偏压条件下,LED发出外自发辐射,其位于电磁频谱的紫外、可见和红外区域。
熟悉电磁频谱可见、近可见区域及其性质的人可知,光的波长越短(例如蓝光和紫外光)表示频率越高,能量跃迁越高,而波长越长(例如红光和红外光)表示频率越低,能量跃迁越低。
因此,对于发光二极管,它们所发射频谱的特殊部分——也就是它们的颜色——取决于产生发射的能量跃迁。反过来,发射的能量在很大程度上由特殊材料的能带隙决定。因此,为了使发光二极管发射频谱的蓝光和紫外光部分,半导体材料的能带隙必须足够地大(足够宽),以便支持具有足够能量的发射从而产生蓝光或者紫外光。
因此,频谱中蓝和紫外区域发光二极管的候选材料被限制在某些宽能带隙材料,例如金刚石、碳化硅(SiC)和III族氮化物;例如由周期表III族元素形成的二元、三元和四元氮化物,如氮化镓(GaN)、氮化铟镓(InGaN)和氮化铝镓(AlGaN)。
由于它们的宽能带隙和它们作为直接而非间接发射材料的性质,蓝光LED领域的最新进展更紧密地集中于III族氮化物。本领域普通技术人员可以很好地理解,直接能带隙材料趋向于提供更高的效率,因为它们的能量转变主要呈光(光子)的形式,而不是部分作为光、部分作为振动能(声子)。
关于LED和其它光学器件的结构、量子机制和工作的更广泛的讨论在如下文献中提及,《Sze,半导体材料物理》第二版(1981,JohnWiley&Sons有限公司),以及其姊妹篇《Sze,现代半导体器件物理》(1998,John Wiley&Sons有限公司)。这些原理为本领域所熟知,所以除非是解释和支持本发明必需的,否则本文不予重复。
根据基本常识,发光二极管一般包括两层相反导电类型的材料,它们共同形成p-n结。这些材料典型地为衬底上的外延层形式。最期望的是,与衬底和上外延层形成欧姆接触从而形成“垂直”器件,具有最佳的封装效率。
在这一点上,LED通常以LED灯的形式加以封装用于最终的用途。典型的LED灯包括LED芯片(或者“单元片”,术语“芯片”经常用于描述集成电路而非LED)和塑料(或者有时为玻璃)透镜。对于一些LED,透镜具有颜色从而作为光学滤色器和提高衬度,但是对于蓝光LED,透镜优选地为无色,以避免干扰期望的蓝光发射。典型的灯构型对于本领域技术人员而言是熟知的,在如下文献中有所提及,例如《Sze,半导体材料物理》第679-700页。典型地,一旦LED芯片被封装成一个灯,它便能够用于各种用途,例如指示器和字母数字显示器。
但是对于应用于某些类型的器件,有一些特殊的考虑。例如,III族氮化物器件典型地在蓝宝石或者碳化硅衬底上形成。碳化硅衬底在许多环境下是优选的,因为SiC能够被导电掺杂。因此,SiC衬底能够为具有“上”和“下”欧姆接触的“垂直”器件形成偏压。对比地,蓝宝石的绝缘特性阻止了它用于垂直器件。
反过来,n型SiC衬底在p型衬底上趋向于是优选的,因为n型SiC一般更易导电并发射更多的光。
结果,SiC衬底上的III族氮化物器件典型地包括n型衬底、n型缓冲层(或者层的组合)、n型外延层和位于器件“顶部”的p型接触层(例如GaN)。
这种III族氮化物LED的发展、商业引入和使用相对较新。因此,人们断定,在商业使用中(术语“商业”一般指,但不仅限于,制造并出售的产品),它们经历特殊类型的物理和化学损坏,这最终恶化器件的电子性能。更明确地,已经显见,在正常的环境条件下,其中LED灯在室温或者室温以上工作,在正常的湿度条件和其它的环境因素下,外延层、欧姆接触和相关的钝化层趋向于彼此相互作用,导致光学和电性能恶化。在如下器件中,其中以p型GaN作为其顶层,与p型层欧姆接触,性能恶化问题显得特别突出。
LED灯中非常不希望的性能恶化的一个特殊形式是,前置电压(forward voltage)随着时间增加(VF恶化)。“前置电压”是指必须被施加跨越LED的各端从而使之发光的电压。VF恶化能够导致工作温度升高,器件整个寿命中的功率消耗增加。
因此,在一些用III族氮化物制造的商用类型蓝光LED中,封装自身非常特殊而坚固,因为被封装的LED芯片甚至在正常的环境条件下都相对脆弱。例如,在日本德岛Nichia化学公司生产的NSPG630S器件中,p型层、欧姆接触和钝化层被柔韧的透明聚合物材料涂覆,然后被包封在硬树脂中,例如环氧基聚合物。
例如,在欧洲公布的专利申请No.0 622 858中,(“基于III-V族化合物的氮化镓半导体器件及其制造方法”)(Gallium nitride basedIII-V group compound semiconductor device and method ofproducing the same),Nakamura等报道,“p电极(p型氮化镓)可以用任何合适的金属材料形成”(第6页第7行)。Nakamura接着列举了8中候选金属(Au、Ni、Pt、Al、Sn、In、Cr和Ti),并称镍和金组合是最佳选择(第6页第10-12和33-35行)。而且,在选择钝化层(“保护膜”)时,Nakamura仅提供了一些一般的标准(“形成保护膜的材料并不受特殊的限制,只要其透明且电绝缘即可。”第9页第31-32行)。Nakamura接着列举了4种候选材料二氧化硅(SiO2)、氧化钛(TiO)、氧化铝(Al2O3)和氮化硅(SiN)。
然而,GaN基LED更广泛的引入证实,材料的这种一般选择是不合适的,导致LED的损坏比经过适当选择的商用器件迅速得多。特别地,如下的LED,其(1)包括p型GaN上外延层;(2)使用由某些材料(或者其组合)例如钛和金(“Ti/Au”)形成的欧姆接触;和(3)使用二氧化硅(SiO2)作为钝化层,趋向于显示出比商业上可接受的更快的性能恶化。更明确地,可以显见,SiO2的透水性允许足够的湿气到达p电极从而恶化电极并最终相对快速地恶化整个器件。
如上面所指出的,复杂的封装为保护相对脆弱的单元片结果提供了一个选择。然而,为了获得其最完备的商业潜力,由III族氮化物形成的蓝光二极管必须以如下的方式加以制造,即它们能够被引入到更一般的灯封装中,该封装类似于比III族氮化物范围更广的材料的灯封装。
尽管409专利申请中说明的器件被证实具有改良的性能,但是仍然存在一些性能恶化问题。
因此,仍然需要有坚固的LED芯片,其能够以通常的方式加以封装,但能够在足以使器件用于广泛的商业用途的时间周期内成功地耐受正常的和提高的温度和湿度条件。

发明内容
本发明的实施例包括一种二极管,其包括具有p型III族氮化物(优选地为氮化镓)接触层的III族异质结二极管、与p型接触层的欧姆接触和欧姆接触上溅射沉积的氮化硅钝化层。
在另一个方案中,本发明包括由发光二极管和塑料透镜形成的LED灯。
在另一个方案中,本发明包括一种制造LED的方法,包括如下步骤在衬底上形成缓冲层,在缓冲层上形成有源区域,在有源区域上形成p型接触层,在接触层上形成金属接触,和在金属接触上溅射沉积氮化硅钝化层。
本发明的这些和其他的目的和优点通过参考联系附图的详细说明将变得更加显而易见,其中


图1是氮化镓基发光二极管的照片;图2是图1中氮化镓基发光二极管的第二张、多少放大的照片;图3是根据本发明的LED的透视图;图4是引入了本发明二极管的LED灯的概图;图5是溅射室的概图;图6是VF与LED单元片退火温度的图示,其中LED单元片经过了PECVD处理,一方面沉积了SiN,另一方面溅射了SiN。
具体实施例方式
本发明是一种物理坚固的发光二极管,其在标准封装中提供了高度的可靠性,并能够耐受高温和高湿度条件。
如在背景中指出的,必须保护欧姆接触免受物理、机械、环境和封装应力的破坏,从而防止III族氮化物LED恶化。
在这一点上,图1是整个LED(“单元片”)的照片。在图1的器件中,除了单元片外缘以外,二氧化硅(玻璃)钝化层被除去。仍然存在玻璃的部分一般用围绕普通方形单元片周界的点或者玷污部分表示。该斑驳的外形由玻璃下面的各种气孔形成,使单元片分层。在图1描述的单元片中,分层开始于3点(顺时针)的位置并到达大约11点钟的位置。单元片的中心没有钝化层,在仍然附着于结合衬垫的单元片的中心处能够看到丝线球结合(wire ball bond)。在该特殊的实例中,钝化层的中心部分被除去,同时在测试之后,单元片被去包封。
在测试期间,图1中画出的单元片钝化层在封装中分层,并允许湿气渗透到钝化层下面。最终的分层使该特殊器件的初始光输出减少大约20%。随后,趋向于渗透通过LED灯环氧树脂透镜并包围从灯封装底部产生的导线的湿气,使得薄半透明的欧姆接触恶化,最终完全失效。该失效依次导致光输出连续下降,最终增加器件的前置电压。在图1拍摄的器件中,接触失效显示为黑暗或者粗糙区域,其正好在单元片中心的右侧。
图2是图1单元片照片的放大图。图2显示,保留在外周的玻璃打破了器件的内平台(mesa),p接触失效。黑暗、粗糙的外形区域是欧姆接触(该实例中是钛和金)起球(balled up)的位置。作为最佳的理解,随着接触与p型层较不兼容,它趋向于起泡(bead up)而非润湿p型层。反过来,随着Ti/Au在结合衬垫周围起球,器件缓慢地失去连接。而且,在接触不连续的区域不再产生光。因为p型氮化镓不是良导体,且一般显示高阻抗,所以空白区域内的弱电流不能提供帮助产生光的电流路径。
图3图解了本发明二极管的第一实施例,其能够耐受高温和高湿度条件。该二极管一般地用10表示,并包括碳化硅衬底11,其产品和性质在其他指定给本发明代理人的美国专利中被清晰地提及,包括例如No.RE 34,861(先前的No.4,866,005)。在优选实施例中,碳化硅衬底是单晶体,从3C、4H、6H和15R等多型体的碳化硅中选择,且为n型。
在优选实施例中,本发明的LED进一步包括碳化硅衬底11上的缓冲结构12。该缓冲结构有助于提供从碳化硅衬底11到器件剩余III族氮化物部分的晶体和机械转变。适当的缓冲结构在例如美国专利Nos.5,393,993;5,523,589;5,592,501和5,739,554中提及,它们均与本发明共同代理,且本文引用每一篇的全部内容作为参考。二极管10进一步包括在缓冲结构12上形成的III族氮化物异质结二极管结构的有源区域13。有源区域13可以包括单异质结构、双异质结构、单量子阱或者多量子阱结构。这种结构的实例在共同审理和共同代理的美国专利系列No.09/154,363中被公开,其于1998年9月16日提出申请,标题为“垂直排列InGaN发光二极管”(Vertical Geometry InGaNLight Emitting Diode),本文引用其内容作为参考。
在有源区域13上形成p型III族氮化物接触层14。为衬底11制造金属接触15,为p型氮化镓外延层制造另一个金属接触16。优选地,金属接触15和16分别与衬底11和接触层14形成欧姆(也就是,非调节,non-rectifying)接触。欧姆接触16从如下的组中选择,即铂、钯、金、钛金组合、铂金组合、钛铂金组合或者铂与氧化铟锡组合,最优选地用铂或者钯形成。镍(Ni)是n型衬底优选的欧姆接触金属。器件以欧姆接触16上的钝化层17结束,欧姆接触16的合适候选材料在上面已经指出,但最优选的是用氮化硅形成。
氮化硅优选地位于二氧化硅上面,这特别是因为它为器件形成了更好的密封,防止污染物,例如水等,达到器件外延层导致上述的性能恶化。
在最优选的实施例中,氮化硅通过溅射沉积。溅射是众所周知的用于在真空或者近真空环境中沉积薄层的技术。美国专利申请系列No.09/771,800中公开了一种在微波晶体管结构中溅射SiN的技术,其标题为“具有更低捕获的III族氮化物基FET和HEMT及其制造方法”(Group III Nitride Based FETs and HEMTs with Reduced Trappingand Method for Producing the Same),于2001年1月29日提出申请,本文引用其内容作为参考。
图5显示了简化的溅射室100,其能够用于在衬底、器件或者器件前体上沉积材料。在操作中,半导体器件101被放置在阳极102上。然后抽空室103,通过阀门105通入惰性气体104,例如氩气,维持背景压力。阴极106用待沉积到器件衬底上的材料(或者材料的一个成分)制成。在电极107之间施加高压,惰性气体被离子化,阳离子110加速到达阴极106。当轰击阴极106时,它们与阴极原子112相撞,给它们足够的能量从而被射出。溅射阴极原子112通过空间,最终涂覆阳极102和其上面的半导体器件101。其它溅射单元可能更复杂和详细,但是工作的基本物理机制相同。使用更复杂的溅射系统,有可能溅射和沉积大范围的金属和电介质层。
在优选实施例中,阴极106是纯的硅靶。通过使氮气与惰性气体一起通过溅射室103而提供氮气用于形成氮化硅。因为溅射靶材料(在本实例中是硅)与反应气体(氮气)反应形成SiN,所以这种溅射形式被称作“反应溅射”。
在第一实施例中,溅射沉积可以在超过200℃的温度下执行,更优选地,在大约440℃下使包封最大化,从而在器件上产生更密闭的密封。室103的压力应当保持在小于20毫托(mTorr),优选地在氩气和氮气的混合气氛中处于大约10-20mTorr的范围。溅射速度应当保持在大约45/min,最佳的包封应当沉积大约1000的总膜厚度。在本实例中,氮化硅的溅射可以使用Sputtered Films有限公司制造的Endeavor溅射系统实现。尽管发明人不希望联系特殊的理论,但是在该压力下(20mTorr或者更低),目前相信,溅射处理对器件产生实质的离子轰击损伤。尽管如此,目前仍然相信,提高溅射温度可使器件退火,从而脱离离子轰击损伤。
在本实例中,优选的溅射处理包括一些特殊步骤将室103泵唧到小于20mTorr的低压,以大约40标准立方厘米每分钟(sccm)的速度通入氩气,和以大约25sccm的速度通入氮气。室103的温度提高到200℃以上,优选地大约440℃。向终端107施加大约100W的RF功率和大约700-800W的DC功率以产生离子化的等离子体。该条件维持大约40分钟以便溅射Si阴极106。溅射硅与氮气反应,最终在晶片上沉积氮化硅。
在可选择实施例中,溅射沉积可以在混合Ar/N2气氛中在室温下,但在更高的压力下,例如大约80-100mTorr下,执行。应当使用脉冲DC电源以减少“喷溅物”和溅射电极之间的电弧。使用脉冲DC电源能增加对溅射靶的离子轰击,但是已经发现,如果在更高压力下执行溅射,则不需要对器件退火来除去离子损伤。目前相信,在本实施例中,溅射离子的峰离子能被降低,同时离子流量增加,产生可以忽略的离子轰击损伤,同时保持可以接受的溅射速度。在本实施例中,溅射速度优选地保持在大约50/min,溅射可以用CVC 2800溅射系统执行。
在本实施例中,优选的溅射处理包括一些特殊步骤将室103泵唧到大约80-100mTorr的压力,以大约80sccm的速度通入氩气,和以大约10sccm的速度通入氮气。室103的温度被保持在室温。向终端107施加一脉冲DC电压以产生离子化的等离子体,其功率大约为1000W,脉冲周期为大约5μs,占空因数为大约40%。该条件维持大约75分钟,以溅射Si阴极106。溅射硅与氮气反应,最终在晶片上沉积氮化硅。
在任何一个前述实施例中,氮化硅优选以氮化硅成分加以沉积,该成分与氮化硅(Si3N4)的化学计量学相比,硅略少。也就是说,氮化硅优选地以非化学计量学成分的方式沉积。从而,膜中硅的比率被减小从而提高了光发射。膜中硅的比率可以通过增加或降低进入室的氮气加以调节。
换句话说,如本文所使用的,术语“氮化硅成分”是指同时包括硅和氮化物的成分,包括彼此化学键合的硅和氮,潜在包括一些Si3N4的化学计量学关系键合。该成分还可能包括非化学计量学成分,其中一些或全部成分的关系不是Si3N4。
在本发明中,溅射氮化硅成分优选地是传统等离子体增强化学气相沉积(PECVD)方法,因为该溅射技术避免向SiN膜引入不期望程度的氢气。如本领域技术人员已知的,氢气能够钝化GaN基半导体中的Mg受体。尽管精确机制尚不完全了解,但是本发明人不希望联系任何特殊的工作理论,目前理解,当氮化硅通过PECVD方法在超过200℃的沉积温度下沉积时,膜中的氢气能够扩散通过薄欧姆接触并进入p型III族氮化物接触层14,使得层14在接近其表面的区域内被钝化。也就是,在接近表面的区域内,通过在膜中引入氢气中性地提供了大量的受体离子。因此,欧姆接触与氮化物材料之间的界面被恶化,从而接触金属不显示理想的欧姆特性。这会导致器件的前置电压增加(VF恶化)。本质上,器件的行为好象在金属16与接触层14之间界面形成了肖特基接触,而非欧姆接触。
对比地,因为在真空或者近真空下沉积,认为溅射氮化硅成分基本上没有氢杂质。因此,还优选地保证溅射系统的所有部分均清洁干燥,以避免任何氢气污染。这可能在溅射之前需要烘烤步骤。
此外,一旦LED芯片被制造和切片,就需要在灯封装上安装芯片,这在下面有更详细的说明。封装芯片的处理通常产生长期暴露于高温的芯片。在随后的操作中,该芯片还能够暴露于高温。在使用PECVD方法在上面沉积了氮化硅的芯片中,该暴露能够导致整个时间的前置电压增加(VF恶化)。目前理解,该电压增加来自于氢气从氮化硅钝化层17扩散到Mg掺杂的接触层14。通过使用溅射技术沉积氮化硅成分层(导致溅射沉积氮化硅成分),最终的恶化基本上被减少或者消除。
如果PECVD沉积不可避免,则通过在更高的掺杂水平下掺杂Mg掺杂接触层14以弥补由于氢气扩散导致的钝化,有可能补偿一些VF恶化。但是,增加接触层14中Mg的掺杂水平会对器件产生有害影响,即损害Mg掺杂层14的晶体质量和表面形貌。
图6是VF对LED单元片退火温度的图示,该LED单元片经过了PECVD处理,在一方面沉积了氮化硅,另一方面溅射了氮化硅成分。LED单元片通过在碳化硅衬底上沉积外延层加以制造。然后衬底被切成两半。在每半个晶片上沉积氮化硅钝化层。使用PECVD沉积在一半晶片上沉积氮化硅钝化层,使用上述的高温溅射处理在另一半晶片上沉积氮化硅成分钝化层。其余的LED制造处理是传统的,并从每半个晶片制造LED单元片。将5个具有溅射氮化硅成分的单元片和三个具有PECVD沉积氮化硅钝化层的单元片在快速热退火室中在250℃的退火温度下退火5分钟。在退火之前和之后测量每个单元片的前置电压。然后,单元片在290℃的退火温度下进行5分钟的后续退火。在退火之前和之后测量每个单元片的前置电压。这些测量的平均结果绘制在图6中。从图6可以看出,用PECVD沉积了氮化硅的LED在250℃退火5分钟后其平均VF增加了大约0.1V,而溅射沉积了氮化硅成分的LED的VF略微下降(也就是,改善了)。用PECVD沉积了氮化硅的LED在290℃退火5分钟后其平均VF增加超过0.7V,而溅射沉积了氮化硅成分的LED在290℃退火5分钟后其VF下降了大约0.1V。
因此,在一个方案中,本发明包括一种制造发光二极管的方法,其包括如下步骤在衬底上形成缓冲层,在缓冲层上形成有源区域,在有源区域上形成p型接触,在接触层上形成金属接触,和在金属接触上溅射沉积氮化硅成分钝化层。优选地,衬底为导电的单晶碳化硅衬底,接触层由Mg掺杂的GaN构成,而金属接触由铂构成。
在最优选的实施例中,异质结构二极管是单异质结构、双异质结构、单量子阱或者多量子阱结构,其说明见例如先前引用的美国专利系列No.09/154,363,其于1998年9月16日提出申请,标题为“垂直外形InGaN发光二极管”(Vertical Geometry InGaN Light EmittingDiode)。
表1总结了这些欧姆接触材料对根据本发明的器件的适用性。在表1的分级中,“A”表示优良特性,而“C”表示一般的脆弱特征。
表1 如图3所示,在优选实施例中,欧姆接触16基本上覆盖p型氮化镓层的全部,促使电流扩布整个p型氮化镓层。因为它覆盖器件的发光部分,所以欧姆接触16优选地足够薄以至半透明。
图3所示的二极管能够用于多种用途。一个有用的应用是作为显示器,典型地指“数字”或者“字母数字”显示器,尽管并不仅限于此,但其具有多个根据本发明的发光二极管。在某些实施例中,根据本发明的发蓝光二极管结合红和绿LED形成红-绿-蓝(“RGB”)像素。因为这些像素分别产生三种主要的颜色,所以它们具有产生几乎全部人眼可见的颜色的能力。
在其他的应用中,图3所示的二极管,例如二极管10,被引入到LED灯中。图4相应地图解了这种典型灯的一种形式。当然可以理解,图4是能够用于合并到根据本发明的二极管的典型灯结构的简单实例,其对本发明二极管能够应用的灯类型没有任何限制。
图4中,灯20包括根据本发明的包封在塑料(也就是,聚合物)透镜21内的二极管10。透镜的塑料材料能够从广泛的各种聚合物材料中选择,这些材料对于本领域普通技术人员而言是熟知的,但未做特别的实验。在许多环境下,透镜21用环氧树脂形成。灯20进一步包括金属引线框22,用于使灯与其他的电子电路元件电连接。如图4所示,金属引线框22具有阳极23和阴极24。
如在本发明的二极管实施例中,能够具有多个灯20形成合适的显示器。特别地,因为这种氮化镓器件发射可见光谱的蓝光部分,所以根据本发明的这些灯能够有利地与红和绿LED灯组合形成全颜色显示器。这种显示器的例子在如下的专利中提及,例如共同审理和共同指定的专利申请系列No.09/057,838,其是08/580,771的一部分,于1995年11月29日提出申请,标题为“真彩色平板显示模块”(TrueColor Flat Panel Display Module),和美国专利No.5,812,105,其于98年9月22日发布,标题为“LED点阵驱动方法和装置”(LED DotMatrix Drive Method and Apparatus)。
在附图和说明书中,公开了本发明的典型实施例,尽管采用了具体的术语,但是它们只是被一般和描述性地使用,并不对本发明权利要求书提出的范围具有限制。
权利要求
1.一种发光二极管,其能够以普通的方式加以封装并能够在足以使该器件用于广泛商业应用的时间周期内成功地耐受正常的和提高的温度和湿度条件,所述二极管包括III族氮化物有源区域;位于所述有源区域上的p型III族氮化物接触层;位于所述p型接触层上的金属接触;和位于所述金属接触上的溅射沉积的氮化硅成分钝化层。
2.根据权利要求1的发光二极管,其中所述氮化硅成分是非化学计量学的。
3.根据权利要求2的发光二极管,其中所述氮化硅成分中硅较少。
4.根据权利要求1的发光二极管,其中所述接触层包括氮化镓,且所述金属接触足够薄以至半透明。
5.根据权利要求3的发光二极管,其中所述钝化层的厚度为大约1000。
6.根据权利要求1的发光二极管,进一步包括碳化硅衬底;与所述衬底的欧姆接触;和所述衬底上的缓冲结构,用于支持所述有源区域。
7.根据权利要求6的发光二极管,其中所述衬底是n型,且与所述衬底的所述欧姆接触是镍。
8.根据权利要求1的发光二极管,其中所述金属接触和所述钝化层彼此之间基本上不反应,且彼此结合良好。
9.根据权利要求1的发光二极管,其中所述金属接触从如下组中选择铂、钯、金、钛金组合、铂金组合、钛铂金组合和铂与氧化铟锡的组合。
10.根据权利要求1的发光二极管,其中所述金属接触包含铂。
11.一种显示器,其具有多个根据权利要求1的发光二极管。
12.一种像素,包括根据权利要求1的发光二极管,其发射可见光谱的蓝光部分;红色发光二极管;和绿色发光二极管。
13.一种LED灯包括塑料透镜;和根据权利要求1的发光二极管,其中所述有源区域由具有p型III族氮化物接触层的III族氮化物异质结二极管构成。
14.根据权利要求13的LED灯,其中所述III族氮化物接触层包含氮化镓构成。
15.根据权利要求6的发光二极管,包括所述缓冲结构上的n型氮化镓外延层;n型III族氮化物有源区域;所述有源区域上的p型氮化镓接触层;和所述p型氮化镓接触层上的铂接触。
16.根据权利要求15的发光二极管,其中所述碳化硅衬底是单晶体,具有从如下组中选择的多型体3C、4H、6H和15R碳化硅多型。
17.根据权利要求15的发光二极管,其中所述衬底是n型。
18.根据权利要求15的发光二极管,其中所述有源区域从如下组中选择单异质结构、双单异质结构、单量子阱和多量子阱。
19.根据权利要求17的发光二极管,其中所述衬底上的所述欧姆接触是镍。
20.根据权利要求15的发光二极管,其中溅射沉积氮化硅成分从如下组中选择Si3N4、由硅和氮构成的非化学计量学成分、及它们的组合。
21.一种制造发光二极管的方法,包括在衬底上形成缓冲层;在缓冲层上形成有源区域;在有源区域上形成p型接触层;在接触层上形成金属接触;和在金属接触上溅射沉积氮化硅成分层。
22.根据权利要求21的方法,包括用Mg掺杂GaN形成接触层。
23.根据权利要求22的方法,包括在大于200℃的温度下沉积氮化硅成分层。
24.根据权利要求21的方法,包括以大约45/min的溅射速度沉积氮化硅成分。
25.根据权利要求21的方法,包括沉积厚度为大约1000的氮化硅成分层。
26.根据权利要求21的方法,包括在小于大约20mTorr的环境压力下溅射沉积氮化硅成分层。
27.根据权利要求21的方法,包括在大约10-20mTorr的环境压力下溅射沉积氮化硅成分层。
28.根据权利要求21的方法,包括在大约80-100mTorr的环境压力下溅射沉积氮化硅成分层。
29.根据权利要求21的方法,包括在室温下和在大约80-100mTorr的环境压力下溅射沉积氮化硅成分层。
全文摘要
本发明公开了一种物理上坚固的发光二极管,其在标准封装中提供高可靠性,并能够耐受高温和高湿度条件。该二极管包括III族氮化物异质结二极管,其具有p型III族氮化物接触层、与该p型接触层的欧姆接触和该欧姆接触上的溅射沉积氮化硅成分钝化层。本发明还公开了一种制造发光二极管和具有该二极管的LED灯的方法。
文档编号H01L33/40GK1653625SQ03810738
公开日2005年8月10日 申请日期2003年5月14日 优先权日2002年5月14日
发明者约翰·亚当·埃德蒙德, 布莱恩·西布特, 小戴维·伯德斯利·斯拉特尔, 杰拉德·H·尼格利, 范·艾伦·米耶兹科夫斯基 申请人:克里公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1