用于机械加工的原材料及其制造方法

文档序号:6865445阅读:1780来源:国知局
专利名称:用于机械加工的原材料及其制造方法
技术领域
本发明涉及用于机械加工的原材料(stock shape),其是由热塑性树脂材料的挤出产物构成的,并用于通过例如切削、钻孔和/或剪切之类的机械加工二次成形为具有所需形状的成形制品。特别地,本发明涉及用于机械加工的原材料,其可以严格控制至处于半导体范围内的所需表面电阻系数,具有优异的机械性能、耐热性、耐化学性和尺寸稳定性,并具有优异的机械加工性能,例如切削能力和钻孔能力,还涉及该原材料的制造方法。
本发明的用于机械加工的原材料可以通过例如切削、钻孔和/或剪切之类的机械加工二次成形为各种成形制品。本发明的用于机械加工的原材料具有高的机械加工精度,并适合制成各种树脂部件,例如由树脂材料构成的电气和电子设备部件以及显示设备部件。
在本发明中,机械加工是指,通过机械加工(例如已知作为聚合材料的二次加工的切削、钻孔和剪切)将初次成形制品(例如板材或圆条)制成具有所需形状的二次成形制品。由于切削是典型的机械加工,本发明的用于机械加工的原材料有时可以被称作用于切削的原材料。原材料是指具有形状的任何材料,包括板材、圆条、管材和特殊型材。
背景技术
对于半导体制造过程中使用的部件(例如IC和LSI)及其装配部件、磁头和硬盘驱动器制造过程中使用的部件及其装配部件、液晶显示器制造过程中使用的部件及其装配部件,用于形成或模制这些部件的树脂材料需要具有优异的机械性能、耐热性、耐化学性和尺寸稳定性。
因此,在该技术领域中使用具有优异耐热性的热塑性树脂,例如聚(醚醚酮)、聚(醚酰亚胺)、聚砜、聚(醚砜)和聚(苯硫)作为树脂材料。
但随着电子器件中高密度沥青(pitch)的发展,当树脂部件是由表面电阻系数超过1013Ω/□的树脂材料制成时,电子器件容易由于其中所用的树脂部件摩擦起电的影响而带电。电子器件(其中已经通过充电而蓄积了静电)可能由于静电释放或静电吸附悬浮在空气中的尘埃而损坏。另一方面,在由表面电阻系数低于105Ω/□的树脂材料制成的树脂部件中,树脂部件中的电荷移动速率过高,这样在静电释放时产生的强电流或高电压使电子器件产生故障。
为了保护电子器件避免静电引起的故障,并在不吸附尘埃的情况下保持高清洁度,需要将这些技术领域中使用的树脂部件的表面电阻系数控制在105至1013Ω/□的范围内,也就是半导体范围。因此,迄今已经提出使用其中包含抗静电剂或导电填料的树脂材料,以获得表面电阻系数在半导体范围内的成形制品或模制品。
但根据在树脂材料中加入抗静电剂的方法,所得模制品或成形制品表面上存在的抗静电剂容易因洗涤或摩擦而被除去,从而损失其抗静电作用。当提高抗静电剂的添加量以使抗静电剂容易从模制品或成形制品内部渗出到其表面上时,可以在一定程度上保持抗静电作用。然而,由于渗出的抗静电剂,尘埃粘附在模制品或成形制品表面上,且电子器件和环境由于抗静电剂的渗出和挥发而受到污染。此外,当大量使用抗静电剂时,所得模制品或成形制品的耐热性受损。
根据在树脂材料中加入导电填料(例如导电炭黑)的方法,导电填料添加量的微小不同或模制或成形条件的微小变化都会使所得模制品或成形制品的电阻率产生很大的改变,因为树脂材料的电导率与导电填料的电导率差别很大。因此,通过简单加入导电填料的方法极难将表面电阻系数控制至在105至1013Ω/□范围内的所需值。此外,根据简单加入导电填料的方法,模制品或成形制品的表面电阻系数容易因位置不同产生宽分散性。
为了解决上述问题,本申请人提出了在热塑性树脂中结合加入碳前体和导电填料而得的树脂组合物,以及用该树脂组合物模制成的模制品,例如IC插座(日本专利申请公开2002-531660号(通过PCT途径),和国际公开WO02/082592号)。当用包含特定比例的这些组分的树脂组合物进行模制时,可以获得表面电阻系数或体积电阻系数被严格控制在限定的所需半导体范围内的模制品。这些文献公开了实施例,其中将树脂组合物注射成型以制造IC插座之类的模制品。
上述树脂部件通常是通过注射成型法模制的。按照注射成型法,可以大规模制造具有所需形状的模制品,例如树脂部件。然而,电或电子领域或类似领域中使用的树脂部件需要具有高尺寸精度,因此,自然要求用于注射成型的模具具有高尺寸精度。
此外,由于在注射成型之后模制品通常会由于收缩和/或残余应力而变形,因此必须根据模制品的形状和树脂材料的性质精确控制用于注射成型的模具形状。因此,制造用于注射成型的模具通常需要长时间,由此使其制造成本昂贵。由于实际注射成型时次品率也很高,通常会提高产品成本。此外,难以通过注射成型模制高厚度的模制品。
另一方面,已知的是,挤出树脂材料以制造用于机械加工的原材料(例如板材、圆条、管材或特殊型材),并对该原材料进行切削、钻孔或剪切之类的机械加工以形成具有预定形状的部件。机械加工原材料的方法具有下述优点——即与注射成型相比可以经济地制造少量生产的部件,该方法可以应对部件规格的频繁变动,获得具有高尺寸精度的部件,并且可以制造具有不适合注射成型的形状或具有大厚度的部件。
然而,对于用于机械加工的原材料,并非任何树脂材料或挤出产物都适合。用于机械加工的原材料需要具有各种性能,例如(I)具有厚壁和优异的机械加工性能,(II)具有低的残余应力,(III)没有因机械加工时产生的摩擦热而过度受热,从而既不会变形也不会变色,和(IV)能够以高精度被机械加工,从而在例如钻孔时几乎不产生毛边。
用于金属材料的多数加工方法照原样用于聚合原材料的机械加工。甚至在挤出产物中,具有薄壁和大挠曲性的那些制品不适用于切削之类的机械加工。在挤出时残余应力过高的挤出产物容易在机械加工时或之后变形,因此难以获得具有高尺寸精度的二次成形制品。
为了特别地将聚合原材料机械加工成用于电气和电子设备部件、显示设备部件或类似部件领域的树脂部件,必须可以通过钻孔形成精确形状的孔,此外,还必须可以高精度地进行切削和剪切。
IC插座用于在例如半导体制造过程中通过老化(burn-in)试验进行检测。在IC插座体中插入许多接触探针。为了通过聚合原材料的机械加工形成这种IC插座体,必须通过钻孔形成许多插针孔。当在各插针孔的开口周围产生毛边时,需要进行修边,因此降低了操作效率。当使用带毛边的成形制品时,插针操作变得困难,并且由于毛边分离和所分离毛边的附着物对操作环境的污染,容易对电气和电子设备或类似物产生负面影响。
根据本发明人的调查结果,已经发现,由在热塑性树脂中加有导电炭黑的树脂组合物通过挤出获得的成形制品具有在钻孔时产生毛边以及表面电阻系数不稳定的特点。迄今为止,在使用在热塑性树脂中加有导电炭黑和类似物的树脂组合物制造树脂部件时,主要采用注射成型,其原因不仅在于注射成型适用于树脂部件的大规模制造,还在于由这种树脂组合物构成的挤出产物被认为不适合机械加工。
实际上,上述2个文献公开了在热塑性树脂中结合加入碳前体和导电填料而得的树脂组合物,和用该树脂组合物模制成的模制品,这2个文献仅仅公开了其中通过注射成型法模制模制品(例如IC插座)的实施例。这些文献还简略提到挤出。但是仅仅举例说明了不适于切削等的薄壁成型制品,例如膜、片和管。这些文献既没有论述也没有提到关于适合机械加工的、厚壁的、具有低残余应力和优异的机械加工适合性的挤出产物的任何情况。

发明内容
本发明的目的是提供一种用于机械加工的原材料,其可以严格控制至处于半导体范围内的所需表面电阻系数,具有优异的机械性能、耐热性、耐化学性和尺寸稳定性,并具有优异的机械加工性能,例如切削能力和钻孔能力,还提供该原材料的制造方法。
更具体地,本发明的该目的是提供一种用于机械加工的原材料,其具有在半导体范围内的表面电阻系数,可以通过切削、钻孔和/或剪切之类的机械加工以高的机械加工精度二次成形成各种成形制品,并且适合机械加工成电气和电子设备部件、显示设备部件或类似物,还提供该原材料的制造方法。
为了实现上述目的,本发明人已经进行了广泛的研究。因此,已经发现,当将以特定比例包含热塑性树脂、体积电阻系数为102至1010Ω·cm的碳前体和体积电阻系数低于102Ω·cm的导电填料的树脂组合物挤出并固化,由此获得厚度或直径超过3毫米的用于机械加工的原材料(例如板材或圆条)时,可以去除残余应力并适合进行切削和钻孔之类的机械加工。
按照本发明的用于机械加工的原材料,可以通过切削和钻孔之类的机械加工容易地制造具有优异尺寸稳定性的部件,并且也可以形成厚度为5毫米或更高的部件,其难以通过注射成型来使用。本发明的用于机械加工的原材料在钻孔时几乎不会产生毛边,并且可以精确加工。特别地,可以结合使用至少两种热塑性树脂,由此可以明显抑制钻孔时毛边的产生。
用于机械加工的原材料和由该原材料的机械加工获得的二次成形制品具有优异的机械性能、耐热性、耐化学性和尺寸稳定性,都表现出稳定的表面电阻系数,还具有所需的树脂部件在电气和电子设备等中的电绝缘性能。基于这些发现,完成了本发明。
按照本发明,由此提供了一种用于机械加工的原材料,其由树脂组合物的挤出产物构成,并具有超过3毫米的厚度或直径,所述树脂组合物包含30至94质量%的热塑性树脂(A)、5至40质量%的具有102至1010Ω·cm的体积电阻系数的碳前体(B)和1至30质量%的具有低于102Ω·cm的体积电阻系数的导电填料(C)。
按照本发明,还提供了制造用于机械加工的原材料的方法,其包括通过下列步骤1至3将包含30至94质量%的热塑性树脂(A)、5至40质量%的具有102至1010Ω·cm的体积电阻系数的碳前体(B)和1至30质量%的具有低于102Ω·cm的体积电阻系数的导电填料(C)的树脂组合物挤出并固化(1)将树脂组合物加入挤出成形机的步骤,在该挤出成形机上连接了由挤出模头(i)和成形模头(ii)构成的模头组件,成形模头(ii)在外部配有冷却装置,并在内部配有与挤出模头的通道相连的通道;(2)在将树脂组合物熔融的同时通过挤出成形机将树脂组合物从挤出模头(i)中挤出为所需形状的步骤;和(3)将从挤出模头(i)中挤出的熔融态的挤出产物在成形模头(ii)内部冷却以使挤出产物固化的步骤,由此获得厚度或直径超过3毫米的挤出产物。
附图的简要说明

图1是显示在老化(burn-in)试验中使用的示例性IC插座的使用例子的截面图。
图2是显示用于老化试验的示例性敞口型IC插座的顶视图。
图3是图2所示的IC插座侧面的截面图。
本发明的最佳实施方式1.热塑性树脂本发明中使用的热塑性树脂的例子包括聚酰胺、聚缩醛、热塑性聚酯树脂(例如聚对苯二甲酸丁二酯和聚对苯二甲酸乙二酯)、聚烯烃(例如聚乙烯、聚丙烯、聚丁烯和聚异丁烯)、聚异戊二烯、聚(对二甲苯)、聚氯乙烯、聚偏二氯乙烯、聚碳酸酯、改性聚(苯醚)、聚氨基甲酸酯、聚二甲基硅氧烷、聚乙酸乙烯酯、聚苯乙烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、ABS树脂、聚(亚芳基硫醚)(poly(arylene sulfides))[例如,聚(苯硫)]、聚(醚醚酮)、聚(醚酮)、聚(苯硫酮)、聚(苯硫砜)、聚(醚腈)、全芳族聚酯、氟碳树脂、多芳基化合物、聚砜、聚(醚砜)、聚(醚酰亚胺)、聚酰胺-酰亚胺、聚酰亚胺、聚氨基双马来酰亚胺、对苯二甲酸二烯丙酯树脂和它们的改性产品。
氟碳树脂的例子包括四氟乙烯/六氟丙烯共聚物、四氟乙烯/全氟烷基乙烯基醚共聚物、聚氯三氟乙烯、聚偏二氟乙烯、偏二氟乙烯/六氟丙烯/四氟乙烯三聚物、聚氟乙烯、乙烯/四氟乙烯共聚物、乙烯/氯三氟乙烯共聚物、丙烯/四氟乙烯共聚物、四氟乙烯/全氟烷基全氟乙烯基醚共聚物、偏二氟乙烯/六氟丙烯共聚物、偏二氟乙烯/氯三氟乙烯共聚物、四氟乙烯/乙烯/异丁烯三聚物、乙烯/六氟丙烯共聚物和四氟乙烯/乙基乙烯基醚共聚物。
这些热塑性树脂可以单独使用或任意结合使用。在这些热塑性树脂中,优选具有良好耐热性的热塑性树脂,其熔点为至少220℃,或它们的玻璃化转变温度为至少170℃。熔点和玻璃化转变温度是通过差示扫描量热计(DSC)测得的值。本发明中使用的热塑性树脂是耐热树脂,由此在对所得挤出产物进行切削或钻孔之类的机械加工时,难以因摩擦热产生变形或变色。
熔点为至少220℃的热塑性树脂的具体优选例子与它们的熔点(典型值)一起被提出,并且包括聚对苯二甲酸丁二酯(224至228℃)、聚对苯二甲酸乙二酯(248至260℃)、尼龙6(220至228℃)、尼龙66(260至265℃)、尼龙46(290℃)、聚(苯硫)(280至295℃)、聚(醚醚酮)(334℃)、全芳族聚酯(至少450℃)、聚甲基戊烯(235℃)、聚四氟乙烯(327℃)、四氟乙烯/六氟丙烯/全氟烷氧基乙烯基醚三聚物(290至300℃)、四氟乙烯/乙烯共聚物(260至270℃)、聚氟乙烯(227℃)、四氟乙烯/六氟丙烯共聚物(253至282℃)和四氟乙烯/全氟烷基乙烯基醚共聚物(302℃至310℃)。这些热塑性树脂中许多是结晶树脂。
玻璃化转变温度为至少170℃的热塑性树脂的具体优选例子与它们的玻璃化转变温度(典型值)一起被提出,并包括聚(苯醚)(220℃)、多芳基化合物(193℃)、聚砜(190℃)、聚(醚砜)(225至230℃)、聚(醚酰亚胺)(217℃)、和聚酰胺-酰亚胺(280至285℃)。这些热塑性树脂中的许多是无定形树脂。
热塑性聚酰亚胺(Tg=250℃)是结晶树脂。然而,其在普通成形条件下是无定形的并在成形后通过热处理结晶。另一方面,聚碳酸酯是透明的无定形树脂,但是是熔点为246℃的耐热树脂。
在这些热塑性树脂中,优选至少一种选自聚(醚醚酮)、聚(醚酰亚胺)、聚(苯硫)、聚砜、聚(醚砜)和聚碳酸酯的热塑性树脂。
为了抑制钻孔过程中毛边的生成,优选结合使用至少两种这些热塑性树脂。单独使用具有高韧性的树脂容易在钻孔时产生毛边。然而,结合使用两种或多种热塑性树脂可以明显抑制毛边生成。特别地,结合使用具有高韧性的树脂和具有相对较低韧性的树脂,由此可以在保持高韧性的同时防止毛边生成。
当结合使用两种或多种热塑性树脂时,所用树脂的比例是任选的。例如,当结合使用2种热塑性树脂时,它们优选在5∶95至95∶5、更优选10∶90至90∶10的质量比范围内使用。当结合使用3种热塑性树脂种,它们优选分别在5至85质量%的范围内使用。
作为两种或多种热塑性树脂的优选组合,可以提到聚(醚醚酮)(PEEK)/聚(醚酰亚胺)(PEI)、聚(醚酰胺)(PEI)/聚(苯硫)(PPS)、聚(醚醚酮)(PEEK)/聚(苯硫)(PPS)和聚(醚醚酮)(PEEK)/聚(醚酰亚胺)(PEI)/聚(苯硫)(PPS)的组合。
当使用PEI时,可以提供在钻孔时几乎不产生毛边的用于机械加工的原材料。在上述组合中,描述所用树脂的特别合意的比例。所用PEEK和PEI的比例优选为40∶60至95∶5、更优选50∶50至90∶10、特别优选60∶40至90∶10的质量比。类似地,所用PPS与PEI的比例优选为40∶60至95∶5,更优选50∶50至90∶10,特别优选60∶40至90∶10质量比。
所用PEEK与PPS的比例在优选5∶95至95∶5、更优选10∶90至90∶10的质量比的范围内。为了提供具有高韧性和优异机械加工性的原材料或二次成形制品,需要将所用PEEK和PPS的比例控制为优选40∶60至95∶5,更优选50∶50至90∶10,特别优选60∶40至90∶10的质量比。当结合使用PEEK、PPS和PEI时,所用PEEK和PPS的总量与PEI的比例优选为40∶60至95∶5,更优选50∶50至90∶10,特别优选60∶40至90∶10质量比。
2.碳前体本发明中使用的体积电阻系数为102至1010Ω·cm的碳前体可以通过在惰性气氛中于400至900℃的温度煅烧有机物质获得。这种碳前体可以例如按照下述方法制造(1)将焦油或沥青(例如石油焦油、石油沥青、煤焦油或煤沥青)加热至进行芳构化和缩聚,然后根据需要在氧化气氛中氧化并不可熔化(non-fusibilized),并将所得产品在惰性气氛中进一步加热并煅烧,(2)将例如聚丙烯腈或聚氯乙稀之类的热塑性树脂在氧化气氛中不可熔化,并在惰性气氛中进一步加热并煅烧,或(3)将例如酚树脂或呋喃树脂之类的热固性树脂通过加热而固化,然后在惰性气氛中加热并煅烧。碳前体是指碳含量为最多97重量%且没有完全碳化的物质。
当在惰性气氛中加热并煅烧有机物质时,所得煅烧产物中的碳含量随煅烧温度的提高而提高。通过适当地预设煅烧温度,可以容易地控制碳前体中的碳含量。本发明中使用的体积电阻系数为102至1010Ω·cm的碳前体可以作为碳含量为80至97质量%并且处于未完全碳化态的碳前体提供。
如果碳前体中的碳含量太低,那么这种碳前体的体积电阻系数变得太高,并且因此难以将用于机械加工的所得原材料的表面电阻系数控制至1013Ω/□或更低。本发明中使用的碳前体的体积电阻系数优选为102至1010Ω·cm,更优选103至109Ω·cm。
碳前体通常以颗粒或纤维的形式使用。本发明中使用的碳前体颗粒的平均粒径优选为1毫米或更小。如果碳前体的平均粒径太大,就难以在制成用于机械加工的原材料时提供具有良好外观的原材料。碳前体的平均粒径优选为0.1微米至1毫米,更优选0.5至500微米,再优选1至100微米。在许多情况下,使用平均粒径为大约5至50微米的碳前体可以产生良好的结果。本发明中使用的碳前体纤维的平均直径优选为0.1毫米或更低。如果碳前体纤维的平均直径超过0.1毫米,在机械加工所得用于机械加工的原材料时就难以提供具有良好外观的树脂部件。从可分散性的角度看,碳前体纤维优选为短纤维。
3.导电填料本发明中使用的体积电阻系数低于102Ω·cm的导电填料的例子包括碳纤维、石墨、导电炭黑、金属粉末和它们的混合物。其中,从体积电阻系数的易于控制和再现性的角度考虑,优选例如碳纤维、石墨、导电炭黑及其混合物之类的导电碳材料。这些导电碳材料是颗粒(粉末)、薄片或纤维形式。其中,从抑制钻孔时的毛边的角度考虑,碳纤维特别优选。
对本发明中使用的碳纤维没有特别的限制。例如,可以使用基于纤维素、聚丙烯腈(PAN)、木质素或沥青(煤沥青、石油沥青等)的碳纤维。这些碳纤维可以单独使用或任意结合使用。在这些碳纤维中,优选基于PAN的碳纤维、基于沥青的碳纤维和它们的混合物,其中基于PAN的碳纤维特别优选。
碳纤维的平均直径优选为0.1毫米或更小。如果平均直径超过0.1毫米,在机械加工所得用于机械加工的原材料时难以提供具有良好外观的成形制品。在与其它组分混合或挤出时,碳纤维的平均纤维长度因剪切力而缩短。尽管混合之前碳纤维平均纤维长度的上限通常为大约80毫米,但混合或挤出后所得树脂组合物中碳纤维平均纤维长度的上限为大约1000微米。本发明中使用的碳纤维优选为平均纤维长度至少20微米的短纤维。如果使用平均纤维长度小于20微米的碳纤维,容易降低改进蠕变特性、弹性模量和机械性能(例如强度)的作用。合意的是,在混合之前碳纤维的平均纤维长度优选为最多50毫米,更优选最多30毫米,特别优选最多10毫米。
对本发明中使用的导电炭黑没有特别的限制,只要其是导电的即可。作为其例子,可以提及乙炔黑、油炉黑、热裂法炭黑和槽法炭黑。这些可以单独或任意结合使用。
对本发明中使用的石墨没有特别的限制,并且可以使用通过在高温下对焦炭、焦油、沥青等进行石墨化处理获得的人造石墨,或诸如鳞片变晶状石墨、片状石墨或土状石墨之类的天然石墨。
本发明中使用的导电填料的体积电阻系数低于102Ω·cm,并且其下限通常为金属材料(例如金属粉末或金属纤维)的体积电阻系数。
4.其它添加剂为了改进机械强度和耐热性,可以在构成本发明用于机械加工的原材料的树脂组合物中加入各种填料。填料的例子包括纤维填料,例如无机纤维材料,例如玻璃纤维、碳纤维、石棉纤维、二氧化硅纤维、氧化铝纤维、氧化锆纤维、氮化硼纤维、氮化硅纤维、硼纤维和钛酸钾纤维;金属纤维材料,例如不锈钢、铝、钛、钢和黄铜;和高熔点有机纤维材料,例如聚酰胺、氟碳树脂、聚酯树脂和丙烯酸树脂。
作为填料的其它例子,可以提及粒状或粉末状填料,例如云母、二氧化硅、滑石、氧化铝、高岭土、硫酸钙、碳酸钙、氧化钛、铁素体、粘土、玻璃粉末、氧化锌、碳酸镍、氧化铁、石英粉末、碳酸镁和硫酸钡。
这些填料可以单独或任意结合使用。这些填料可以根据需要用原色制品或表面处理剂处理。原色制品或表面处理剂的例子包括功能性化合物,例如环氧化合物、异氰酸酯化合物、硅烷化合物和钛酸盐/酯化合物。可以使用这些化合物预先进行填料的表面处理或收集处理,或在制备树脂组合物时与填料同时加入。
在构成本发明用于机械加工的原材料的树脂组合物中,可以适当地加入上述添加剂以外的其它添加剂,例如冲击改性剂(例如含环氧基的α-烯烃共聚物)、树脂改性剂(例如甲基丙烯酸亚乙基缩水甘油酯)、模头缓蚀剂(例如碳酸锌和碳酸镍)、润滑剂(例如四硬脂酸季戊四醇酯)、热固性树脂、抗氧化剂、紫外线吸收剂、成核剂(例如氮化硼)、阻燃剂、和色料(例如染料和颜料)。
5.树脂组合物构成本发明用于机械加工的原材料的树脂组合物是包含30至94质量%的热塑性树脂(A)、5至40质量%的具有102至1010Ω·cm的体积电阻系数的碳前体(B)和1至30质量%的具有低于102Ω·cm的体积电阻系数的导电填料(C)的树脂组合物。可以根据需要以适当量合适地加入其它添加剂组分。
热塑性树脂(A)的添加比例为30至94质量%,优选50至90质量%,更优选60至85质量%。如果热塑性树脂的添加比例过高,所得用于机械加工的原材料的表面电阻系数变得太高,并因此难以提供具有在半导体范围内的所需表面电阻系数的用于机械加工的原材料和成形制品。如果热塑性树脂的添加比例太低,所得用于机械加工的原材料的体积电阻系数变得太低,因此难以提供具有在半导体范围内的所需表面电阻系数的用于机械加工的原材料和成形制品。从进行切削和钻孔之类机械加工的角度考虑,热塑性树脂(A)的添加比例优选在上述范围内相对较高。如上所述,当热塑性树脂具有高韧性时,在机械加工时容易产生毛边。然而,结合使用两种或多种韧性不同的热塑性树脂,由此可以在保持高韧性的同时极大地改进所得用于机械加工的原材料的机械加工性能。
碳前体(B)的添加比例为5至40质量%,优选8至30质量%,更优选12至25质量%。在热塑性树脂中结合加入碳前体和导电填料,由此与仅添加导电填料的情况相比,可以将所得用于机械加工的原材料的表面电阻系数严格控制为在半导体范围内的所需值,甚至可以减轻表面电阻系数随位置的分散性。
如果碳前体的添加比例太高,所得用于机械加工的原材料的机械性能受损,因此在机械加工时有时可能导致不方便。如果碳前体的添加比例太低,就难以充分降低所得用于机械加工的原材料和成形制品的表面电阻系数或难以将表面电阻系数严格控制在105至1013Ω/□的范围内。
导电填料(C)的添加比例在1至30质量%,优选2至20质量%,更优选3至15质量%的范围内。如果导电填料的添加比例太高,所得用于机械加工的原材料和成形制品的表面电阻系数就变得太低,或者难以将表面电阻系数精确控制为在半导体范围内的所需值。如果导电填料添加比例太低,就难以充分降低所得用于机械加工的原材料和成形制品的表面电阻系数,或难以将表面电阻系数控制为在半导体范围内的所需值。
本发明中使用的树脂组合物可以通过热塑性树脂组合物制备中常用的设备和方法制备。例如,可以将各种原料组分在亨舍尔混合机、转鼓或类似设备中预混,如果需要,可以在预混材料中加入玻璃纤维之类的填料以进一步混合它们的组分,然后可以将所得混合物捏和,并通过单螺杆或双螺杆挤出机挤出为用于成形的丸粒。
还可以使用下述方法——其中在制备丸粒或挤出成形时将一部分必需组分作为母料提供,然后将母料与剩余组分混合;或下述方法——其中将所用部分原材料研磨以使组分的粒度均匀,从而提高各组分的分散性,然后将这些组分混合。
6.用于机械加工的原材料可以通过挤出而形成本发明的用于机械加工的原材料。优选采用挤出和固化法作为挤出法。在挤出和固化中,使用挤出成形机,在其顶部连接挤出模头和成形模头。挤出模头是用于将熔融树脂(其被熔体捏和,并通过挤出成形机挤成所需形状)成形的模头,并且可以根据待形成的挤出产物的截面形状(例如板材、圆条、管材或特殊型材),使用具有各种开口形式或结构的模头,例如平板成形模头、圆条成形模头或管成形模头。
成形模头连接在挤出模头上。成形模头是具有下述结构的模头——分别在外部和内部配备冷却装置和与挤出模头的通道相连的通道。从挤出模头中挤出的熔融态的挤出产物被导入成形模头,并在其内部冷却并固化。由此,将成形模头中挤出的挤出产物以固化态挤出到外部。在例如日本专利申请公开61-185428号中公开了适合进行这种挤出和固化的挤出成形机的具体例子。
按照本发明人的调查结果,已经发现,通过将上述树脂组合物挤出和固化,获得了适合进行例如切削、钻孔和剪切之类的机械加工、厚壁的并具有低残余应力的挤出产物。更具体地,本发明用于机械加工的原材料的制造方法的特征在于,通过下述步骤1至3将上述树脂组合物挤出和固化,获得厚度或直径超过3毫米的挤出产物
(1)将树脂组合物加入挤出成形机的步骤,在该挤出成形机上连接了由挤出模头和成形模头构成的模头组件,成形模头在外部配有冷却装置并在内部配有与挤出模头的通道相连的通道;(2)在熔化树脂组合物的同时通过挤出成形机将树脂组合物从挤出模头中挤出为所需形状的步骤;和(3)将从挤出模头中挤出的熔融态的挤出产物在成形模头内部冷却以将挤出产物固化的步骤。
在挤出和固化之后,需要在150℃至能够保持固化态的温度之间对固化的挤出产物进行至少30分钟的热处理,以去除残余应力并且不致产生不便,例如原材料和机械加工之后的二次成形制品的变形。关于热处理的条件,合意的是,在使用耐热树脂时,热处理温度应该在优选170至310℃、更优选180至300℃的范围内,并且热处理时间应该优选为至少1小时,更优选至少2小时,特别优选至少3小时,但是它们根据所用热塑性树脂的热性能(例如熔点和玻璃化转变温度)的不同而不同。然而,热处理温度的上限最高为可以保持挤出产物固化态的温度,并且需要避免会使热塑性树脂(包括两种或多种树脂的混合物)熔化和变形的高温。热处理时间优选较长。然而,从生产率的角度考虑,该时间需要通常在24小时内,优选在15小时内。可以通过例如将挤出产物在加热炉中静置来进行热处理。
本发明的用于机械加工的原材料是通过将树脂组合物挤出而获得的厚度或直径超过3毫米的挤出产物。板材(平板)、圆条、管材或特殊型材是用于机械加工的原材料的典型形式。当用于机械加工的原材料是板材形式时,其厚度必须超过3毫米。当用于机械加工的原材料是圆条形式时,其直径超过3毫米。当用于机械加工的原材料是管材形式时,其壁厚超过3毫米。当用于机械加工的原材料是特殊型材时,最大厚度部分的壁厚超过3毫米。特殊型材是具有板材、圆条或管材以外的任何其它截面形式的挤出产物。当特殊型材是由厚壁部分和薄壁部分(例如凹入部分和凸起部分)构成时,从机械加工适合性的角度考虑,最薄壁部分的厚度需要超过3毫米。
由于通过与金属材料的机械加工基本相同的加工方法对本发明的用于机械加工的原材料进行切削和钻孔,如果其厚度或直径太小,就难以机械加工该原材料。例如,通过普通挤出法获得的挤出产物,例如膜、片材或管材,通常刚度小、厚度薄并具柔韧性,因此难以或基本不可能通过钻头或类似工具对这种挤出产物进行切削或钻孔。此外,难以通过挤出和固化法提供厚度太薄的挤出产物。厚度或直径的上限通常为大约100毫米。如果厚度或直径太大,即使对这种挤出产物进行热处理,也难以充分去除或降低残余应力。如果机械加工具有大残余应力的挤出产物,则所得二次成形制品容易产生变形。
本发明的用于机械加工的原材料优选为板材或圆条,当其用于上述树脂部件时,板材更优选。板材的厚度优选高于3毫米,但是小于100毫米,更优选为4毫米至70毫米,特别优选5毫米至50毫米。这同样适用于圆条直径。通过将本发明的树脂组合物挤出并固化获得的厚度超过3毫米的板材是刚度很高的板材,并容易进行例如切削、钻孔和剪切之类的机械加工。
7.机械加工切削、钻孔、剪切和它们的组合是典型的机械加工。有时,切削方法除了切削,还可以广泛地包括钻孔。切削方法包括利用单刀的车削、磨削、钉板条(lathing)和钻孔。利用多刀的切削法包括铣削、钻孔、螺纹切削、切齿、冲模和锉。在本发明中,利用钻头或类似装置进行的钻孔有时可以与切削相区分。剪切法包括通过切削工具(锯)剪切、通过磨粒剪切和通过加热和熔融剪切。此外,也可以使用精磨加工法、塑性加工法(例如利用刀类工具的冲孔和划线(marking-off)剪切)、特殊加工法(例如激光束机械加工)等。
当用于机械加工的原材料是具有大壁厚的板材或圆条时,原材料通常被剪切成适当的尺寸或厚度,将剪切后的原材料研磨以使其形状变成所需形状,并根据需要对由此机械加工成的原材料的必要部分进行钻孔。最后对原材料进行精整操作。然而,机械加工的顺序不限于此顺序。当由于机械加工时的摩擦热而难以通过用于机械加工的原材料的熔融形成光滑表面时,需要在将切割表面等冷却的同时进行机械加工。当摩擦热使得用于机械加工的原材料过度受热时,会导致变形和变色。因此优选使机械加工的原材料或表面的温度控制在200℃或更低。
对本发明的用于机械加工的原材料进行例如切削、钻孔和剪切之类的机械加工,由此可以获得多种二次成形制品,例如树脂部件。其具体用途包括硅片载体、硅片盒、旋转夹头、工具箱(tote bottles)、硅片板、IC芯片盘(chip trays)、IC芯片载体、IC输送管、IC测试插座、老化插座、插针格栅阵列插座(pin grid array sockets)、四列扁平封装、无铅芯片载体、双列直插式封装、小外形封装、卷绕封装(reel packings)、各种外壳、储存盘(storage trays)、输送装置的部件、磁卡阅读器、和电子和电气领域中的类似装置。
在OA仪器领域中,用途包括图像形成装置(例如电子照相复印机和静电记录装置)中的进料元件(例如进料辊)、传送辊和显影辊、记录装置的传送滚筒、印刷电路板盒、衬套、纸和纸币输送部件、进纸轨道、字库匣、墨带罐、导销、托盘、辊、齿轮、链轮、连接器外壳、调制解调器外壳、监控器外壳、CD-ROM外壳、印刷机外壳、连接器、电脑链轮(sprockets)等。
在通讯装置领域,用途包括手提电话部件、寻呼机、各种润滑材料等。在汽车领域,用途包括内饰、引擎室、电子和电气仪表外壳、油箱盖、燃油过滤器、油管连接器、油管夹、自动储油器或储油罐、玻璃框、门拉手、其它各种部件等。在上述领域以外的其它领域中,用途包括线材和线支承、电磁波吸收器、地板覆盖物、托盘(pallet)、鞋底、刷子、鼓风机、平板式加热器、多向开关(polyswitches)等。
本发明的用于机械加工的原材料的表面电阻系数可以精确控制为在105至1013Ω/□范围内的所需值。通过机械加工获得的二次成形制品的表面电阻系数也可以保持相同水平的值。因此,本发明的用于机械加工的原材料适用于制成电气和电子设备(例如半导体器件)和显示设备(例如液晶显示器)中使用的各种树脂部件。
作为这种树脂部件的一个例子,可以提及半导体器件老化试验中使用的IC插座。图1是用于测量的示例性IC插座的截面图。将配有裸芯片体11和凸块12的裸芯片1置于IC插座2的安装台上。IC插座2是由插座体21、接触探针22、盖体(lid body)23等构成的。作为探针22,使用例如弹性针(flexible pins)或插针(insert pins)。它们可以与凸块之类的端子接触以互相传导。关闭盖体23进行老化试验。在完成老化试验后被判断为无缺陷的裸芯片是安装在板上的多芯片。
图2是显示用于细间距球栅阵列(FBGA)封装的示例性老化插座的顶视图。图3是这种插座的截面图。插座3是由以固定排列间隔排列的触针31、盖体32、弹簧33、主体(底座)34等构成的。在图3中,显示了一侧与测试装置相连的触针31’。将FBGA封装35置于安装台上,使其接触触针31。触针31的形状、间隔、数量等设计为使它们能够与FBGA的许多球形末端接触。
IC插座需要具有优异的电绝缘性能、介电强度、机械性能、耐热性、耐化学性、尺寸稳定性等。IC插座是由在表面上经过绝缘处理的陶瓷或金属制成的。在许多情况下,其是由合成树脂制成的。由合成树脂制成的IC插座通常是通过注射成型制成的。然而,合意的是,使用合成树脂通过机械加工制造IC插座,以应对规格变化、多样化的少量生产、复杂结构和IC插座结构的改良。
本发明的用于机械加工的原材料适用于制造IC插座之类的树脂部件。为了通过机械加工制造用于机械加工的IC插座体,将用于机械加工的原材料剪切成合适的尺寸,通过切削形成整体形状,通过钻孔形成触针插孔。也可以通过类似方法制造其它树脂部件。
实施例下面通过下列实施例和对比例更详细地描述本发明。按照下列各个方法测量或测定实施例中的物理性能和特性或性质。
(1)表面电阻系数使用Hiresta UP(Mitsubishi Chemical Corporation制造)和用于微量称样的探针(保护电极的直径10毫米;UR-SS探针)在100V的施加电压下测量样品的表面电阻系数(Ω/□)。在每一原材料和二次成形制品(IC插座)样品的任意5个点进行表面电阻系数的测量,以测量其最大(MAX)和最小(MIN)值。对于用于测量的平板,显示平均值。
样品的表面电阻系数是指每单位表面积的电阻。表面电阻系数的单位是Ω。然而,表面电阻系数表示为Ω/□或Ω/sq.(ohm/平方)以使其区别于纯粹的电阻。
(2)体积电阻系数当体积电阻系数为至少108Ω·cm时,按照JIS K-6911在100V的施加电压下测量每一样品的体积电阻系数。当体积电阻系数低于108Ω·cm时,按照JIS K-7194测量(通过四点探针法测试导电塑料的电阻系数的方法)。
(3)毛边生成量在使用钻头直径为800微米的钻头、钻头转数为8,000转/分钟且钻头进给速度为200毫米/分钟的条件下,对厚度为10毫米的平板样品进行钻孔,并通过电子显微镜评测孔周围产生的毛边长度。至于评测标准,将板材样品分级成A——其中观察到的毛边长度短于5微米;B——其中长度不短于5微米但是不长于30微米;或C——其中长度长于30微米。
制备例1(碳前体的制备)在内部容积为300升并配有搅拌叶片的压力容器中加入68千克软化点为210℃、喹啉不溶物含量为1质量%且H/C原子比为0.63的石油沥青和32千克萘,并将该内含物加热至190℃以将它们熔化并混合。然后将所得熔体冷却至80至90℃,并挤出以获得直径为大约500微米的线状成形制品。
然后将线状成形制品研磨以产生大约1.5的直径/长度比,并将所得研磨产物倒入加热至93℃的聚乙烯醇(皂化度88%)的0.53质量%水溶液中,并在搅拌下分散在其中。然后将所得分散体冷却以获得球状成形沥青。再将球状成形沥青过滤以去除水,并用6倍于成形沥青的正己烷萃取出球状成形沥青中的萘。
在引入热空气的同时,将由此获得的球状成形沥青在260℃保持1小时,由此进行氧化处理以获得氧化沥青。将这种氧化沥青在580℃在氮气氛下热处理1小时,然后研磨以获得平均粒径为大约25微米的碳前体颗粒。由此获得的碳前体颗粒中碳含量为91.0质量%。
为了测量碳前体的体积电阻系数,按照下列方法制备用于测量的样品。研磨氧化沥青,然后通过开孔为大约100微米的筛子筛去100微米或更大直径的粒子。将13克由此获得的研磨过的氧化沥青装入横截面积为80平方厘米的圆柱形模具中以在196MPa下模制,由此获得模制品。在氮气氛下将该模制品在580℃(其是与碳前体颗粒制备方法中的热处理温度相同的温度)热处理1小时,由此获得用于测量碳前体体积电阻系数的样品。按照JIS K-7194测量该样品的体积电阻系数。由此,其为3×107Ω·cm。
实施例1将表1所示的相应组分在转鼓混合机中均匀地干混合,并将由此获得的干燥掺合物加入机筒直径为45毫米的双螺杆捏和挤出机(PCM-45,Ikegai Corp.制造)中,并熔融和挤出,由此制备丸粒。将由此获得的丸粒干燥,然后加入单螺杆挤出成形机中,在该杆挤出成形机上连接了由挤出模头和成形模头构成的模头组件,挤出模头用于形成平板,成形模头在外部配有冷却装置,并在内部配有与挤出模头的通道相连的通道,从而通过挤出和固化法形成宽520毫米且厚10毫米的平板。将通过挤出获得的平板在表1所示的其相应热处理温度下热处理8小时,由此去除残余应力。
利用由此获得的平板测量表面电阻系数。此外,对平板进行钻孔以评测其生成的毛边量。此外,对该平板进行剪切、切削和钻孔以制造长33毫米且宽33毫米的用于FBGA封装的老化插座体(图2和3),由此测量其表面电阻系数。结果显示在表1中。
实施例2至10和对比例1至4按照与实施例1相同的方式通过挤出和固化法形成各个平板,不同的是如表1所示改变各自的组分,并对平板进行钻孔和机械加工以制造插座体,评测它们的毛边生成量和表面电阻系数。结果显示在表1中。
表1

表1(续)

注(1)PEEK[聚(醚醚酮)]Victrex-MC,Inc.的产品,商品名“PEEK450P”,熔点=334℃。
(2)PEI[聚(醚酰亚胺)]GE Plastics Co.的产品,商品名“ULTEM1010”,玻璃化转变温度Tg=217℃。
(3)PPS[聚(苯硫)]Kureha Chemical Industry Co.,Ltd.的产品,商品名“FORTRON KPS W214”,熔点=288℃。
(4)PAN基碳纤维Toho Rayon Co.,Ltd.的产品,商品名“BesfightHTA 3000”,体积电阻系数=低于102Ω·cm。
(5)PAN基碳纤维Toray Industries Inc.的产品,商品名“TORAYCA MLD30”,体积电阻系数=低于102Ω·cm。
(6)炭黑导电炭黑,Lion Corporation的产品,商品名“Ketjen BalckEC600JD”,体积电阻系数=低于102Ω·cm。
(7)表面电阻系数α×10βΩ/□表示为“αE+β”。例如,当表面电阻系数为5×1011Ω/□时,其表示成5E+11。
考虑因素(1)实施例1(具有11次幂表面电阻系数的产品)将在PEEK中加入碳前体和PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+11Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。
(2)实施例2(具有11次幂表面电阻系数并将碳纤维换成MLD CF的产品)将在PEEK中加入碳前体和PAN基碳纤维(MLD碳纤维)获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+10至E+11Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。
(3)实施例3(具有9次幂表面电阻系数的产品)将在PEEK中加入碳前体和PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+8至E+9Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。
(4)实施例4和5(钻孔时毛边生成量的降低)当结合使用PEEK和PEI作为热塑性树脂时,可以明显降低钻孔时生成的毛边量。通过将该树脂组合物挤出和固化获得的平板和通过机械加工该平板获得的插座体都具有E+10至E+11Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。
(5)实施例6(具有10次幂表面电阻系数的产品)将在PEI中加入碳前体和PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+9至E+10Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。降低毛边生成量的效果也良好。
(6)实施例7(具有6至7次幂表面电阻系数的产品)将在PEI中加入碳前体和PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+6至E+7Ω/□的表面电阻系数,并表现出稳定的表面电阻系数。降低毛边生成量的效果也良好。
(7)实施例8(具有7至8次幂表面电阻系数的产品)将在PPS中加入碳前体和PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有E+7至E+8Ω/□级别的表面电阻系数,并表现出稳定的表面电阻系数。降低毛边生成量的效果也良好。
(8)实施例9(钻孔时毛边生成量的降低)当结合使用PEI和PPS作为热塑性树脂时,可以明显降低钻孔时生成的毛边量。将该树脂组合物挤出和固化获得的平板和通过机械加工该平板获得的插座体都表现出稳定的表面电阻系数。
(9)实施例10(钻孔时毛边生成量的降低)当结合使用PEEK和PPS作为热塑性树脂时,可以明显降低钻孔时生成的毛边量。将该树脂组合物挤出和固化获得的平板和通过机械加工该平板获得的插座体都表现出稳定的表面电阻系数。
(10)对比例1将在PEEK中加入PAN基碳纤维(MLD碳纤维)获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都表现出不稳定的表面电阻系数。
(11)对比例2将在PEEK中加入PAN基碳纤维(MLD碳纤维)获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体的表面电阻率都变得太高。
(12)对比例3将在PEI中加入PAN基碳纤维获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有宽的表面电阻系数分散性,并表现出不稳定的表面电阻系数。
(13)对比例4将在PPS中加入导电炭黑获得的树脂组合物挤出和固化,由此获得的平板和通过机械加工该平板获得的插座体都具有宽的表面电阻系数分散性,并表现出不稳定的表面电阻系数。
工业应用性按照本发明,可以提供用于机械加工的原材料,其可以制成厚度超过3毫米、特别是不小于5毫米的部件,严格控制为在半导体范围内的表面电阻系数,具有优异的机械性能、耐热性、耐化学性和尺寸稳定性,并具有优异的机械加工性能,并可以防止在钻孔时产生毛边。
本发明的用于机械加工的原材料具有高的机械加工精度,并适合制成各种树脂部件,例如电气和电子设备部件和显示设备部件。
权利要求
1.一种用于机械加工的原材料,其由树脂组合物的挤出产物构成,并具有超过3毫米的厚度或直径,所述树脂组合物包含30至94质量%的热塑性树脂(A)、5至40质量%的具有102至1010Ω·cm的体积电阻系数的碳前体(B)和1至30质量%的具有低于102Ω·cm的体积电阻系数的导电填料(C)。
2.按照权利要求1的用于机械加工的原材料,其中热塑性树脂(A)是熔点为至少220℃或玻璃化转变温度为至少170℃的耐热性热塑性树脂。
3.按照权利要求2的用于机械加工的原材料,其中熔点为至少220℃的热塑性树脂是至少一种选自聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、尼龙6、尼龙66、尼龙46、聚(苯硫)、聚(醚醚酮)、全芳族聚酯、聚甲基戊烯、聚碳酸酯、聚四氟乙烯、四氟乙烯/六氟丙烯/全氟烷氧基乙烯基醚三聚物、四氟乙烯/乙烯共聚物、聚氟乙烯、四氟乙烯/六氟丙烯共聚物和四氟乙烯/全氟烷基乙烯基醚共聚物的热塑性树脂。
4.按照权利要求2的用于机械加工的原材料,其中玻璃化转变温度为至少170℃的热塑性树脂是至少一种选自聚(苯醚)、多芳基化合物、聚砜、聚(醚砜)、聚(醚酰亚胺)、聚酰胺-酰亚胺和热塑性聚酰亚胺的热塑性树脂。
5.按照权利要求1的用于机械加工的原材料,其中热塑性树脂(A)是至少一种选自聚(醚醚酮)、聚(醚酰亚胺)、聚(苯硫)、聚砜、聚(醚砜)和聚碳酸酯的热塑性树脂。
6.按照权利要求1的用于机械加工的原材料,其中热塑性树脂(A)是至少两种热塑性树脂的混合物。
7.按照权利要求6的用于机械加工的原材料,其中所述至少两种热塑性树脂的混合物是由聚(醚醚酮)/聚(醚酰亚胺)、聚(醚酰亚胺)/聚(苯硫)、聚(醚醚酮)/聚(苯硫)或聚(醚醚酮)/聚(醚酰亚胺)/聚(苯硫)的组合构成的混合物。
8.按照权利要求7的用于机械加工的原材料,其中所述至少两种热塑性树脂的混合物是以40∶60至95∶5的质量比包含聚(醚醚酮)和聚(醚酰亚胺)的混合物。
9.按照权利要求7的用于机械加工的原材料,其中所述至少两种热塑性树脂的混合物是以40∶60至95∶5的质量比包含聚(苯硫)和聚(醚酰亚胺)的混合物。
10.按照权利要求7的用于机械加工的原材料,其中所述至少两种热塑性树脂的混合物是以40∶60至95∶5的质量比包含聚(醚醚酮)和聚(苯硫)的混合物。
11.按照权利要求7的用于机械加工的原材料,其中所述至少两种热塑性树脂的混合物是包含聚(醚醚酮)、聚(苯硫)和聚(醚酰亚胺)的混合物,聚(醚醚酮)和聚(苯硫)的总质量与聚(醚酰亚胺)的质量比为50∶50至90∶10。
12.按照权利要求1的用于机械加工的原材料,其中碳前体(B)是碳含量为80至97质量%的碳前体。
13.按照权利要求1的用于机械加工的原材料,其中导电填料(C)是碳纤维。
14.按照权利要求1的用于机械加工的原材料,其中所述碳纤维是基于聚丙烯腈的碳纤维、基于沥青的碳纤维或它们的混合物。
15.按照权利要求1的用于机械加工的原材料,其包含60至85质量%的热塑性树脂(A)、12至25质量%的碳前体(B)和3至15质量%的导电填料(C)。
16.按照权利要求1的用于机械加工的原材料,其中表面电阻系数为105至1013Ω/□。
17.按照权利要求1的用于机械加工的原材料,其是厚度超过3毫米的板材或直径超过3毫米的圆条。
18.按照权利要求1的用于机械加工的原材料,其是厚度为4至70毫米的板材或直径为4至70毫米的圆条。
19.制造用于机械加工的原材料的方法,其包括通过下列步骤1至3将包含30至94质量%的热塑性树脂(A)、5至40质量%的具有102至1010Ω·cm的体积电阻系数的碳前体(B)和1至30质量%的具有低于102Ω·cm的体积电阻系数的导电填料(C)的树脂组合物挤出并固化(1)将树脂组合物加入挤出成形机的步骤,在该挤出成形机上连接了由挤出模头(i)和成形模头(ii)构成的模头组件,成形模头(ii)在外部配有冷却装置,并在内部配有与挤出模头的通道相连的通道;(2)在将树脂组合物熔融的同时通过挤出成形机将树脂组合物从挤出模头(i)中挤出为所需形状的步骤;和(3)将从挤出模头(i)中挤出的熔融态的挤出产物在成形模头(ii)内部冷却以使挤出产物固化的步骤,由此获得厚度或直径超过3毫米的挤出产物。
20.按照权利要求19的制造方法,其包括在挤出和固化之后,在150℃至能够保持固化态的温度之间对固化的挤出产物进行至少30分钟的热处理。
全文摘要
本发明涉及一种用于机械加工的原材料,其由树脂组合物的挤出产物构成并具有超过3毫米的厚度或直径,所述树脂组合物包含30至94质量%的热塑性树脂(A)、5至40质量%的具有10
文档编号H01R33/76GK1918220SQ200580004660
公开日2007年2月21日 申请日期2005年2月9日 优先权日2004年2月16日
发明者西畑直光, 川崎达也 申请人:株式会社吴羽
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1