元件接合用基板及其制造方法

文档序号:6865838阅读:238来源:国知局
专利名称:元件接合用基板及其制造方法
技术领域
本发明涉及用于接合·固定元件的基板及其制造方法。
背景技术
伴随移动电话或光通信等的普及,作为在高频区域工作的高输出·高耗电的GaAs系FET、Si-Fe系HBT、Si系MOSFET或GaN系激光二极管等半导体元件安装用基板的陶瓷基板因为高频的介质损耗低,所以得到利用。该陶瓷基板中,氮化铝烧结体基板的热传导率高,热膨胀系数与半导体元件接近,所以特别受到关注。
通常,在氮化铝烧结体等陶瓷基板上接合元件时,一般都是通过金属化形成了牢固地接合于陶瓷基板的第一及第二基底金属层后,在该基底金属层上由Au、Ag、Pd、Pt等贵金属形成电极层,再在该贵金属电极层上焊接元件。Au由于导通电阻极低,且引线接合性良好,所以适用于电极层。作为上述元件的焊接法,从效率方面考虑,大多数情况下采用回流法,因此,必须预先在基板的电极层上形成用于接合元件的焊料层图形。伴随半导体装置的高集成化,在该回流法用基板上,还必须采用薄膜技术在微小区域内以高精度形成需形成于基板的焊料层,焊料层一般由各种金属薄膜层层叠形成,熔融时具有所希望的焊料组成。以下,将该焊料称为薄膜层叠结构焊料,将在电极层上形成有该薄膜层叠结构焊料图形的陶瓷基板简称为带焊料层的陶瓷基板。
已知的有作为该带焊料层的陶瓷基板中的焊料层使用了Au-Sn系薄膜层叠结构焊料的基板(参照专利文献1及2),使用了熔点为183℃的Sn-37重量%Pb共晶焊料或其中还添加了微量的异种金属的焊料(以下,总称为Sn-Pb共晶焊料)的薄膜层叠结构焊料的基板等(参照专利文献3)。上述Sn-Pb共晶焊料作为最普及的电子工业用焊料被广泛使用,利用薄膜层叠结构焊料(例如,交替层叠了Pb薄膜和Sn薄膜的焊料)能够以强接合力接合元件。
另一方面,近年来认识到了铅的毒性问题,开发出了不含铅成分的所谓的无铅焊料。从用无铅焊料替代Sn-Pb共晶焊料的角度考虑,希望无铅焊料具备与Sn-Pb共晶焊料同等的熔点,作为该无铅焊料,已知的有在前述专利文献1中所揭示的富锡Au-Sn焊料等。
专利文献1日本专利特开2002-373960号公报专利文献2日本专利特开平11-192581号公报专利文献3日本专利特开平5-186884号公报发明的揭示但是,在前述专利文献1所揭示的带焊料层的陶瓷基板上焊接元件时,虽然初期的接合强度良好,但存在可靠性试验(具体来讲,将这些接合体在-55℃和125℃进行反复暴露的热循环试验)后接合强度下降的问题,上述陶瓷基板具体是指在Au电极层上配置了选自Ag、Cu及Ni的至少1种金属的金属(以下称为阻挡金属层),还具备作为主成分含有Sn或In的焊料层,特别是作为主成分含有Sn或In、且Au含量不足20重量%的金属构成的焊料层的陶瓷基板。
因此,本发明的目的是提供接合强度的可靠性高的带焊料层的陶瓷基板,所述焊料层具有无铅薄膜层叠结构焊料。
本发明者认为,前述专利文献1所揭示的带焊料层的陶瓷基板在可靠性试验后接合强度下降的原因可能是可靠性试验后Au电极层和阻挡金属层的密合强度下降,为了改善这两层的密合性,尝试配置已知作为粘接性金属的Ti层。但是,这种情况下,带焊料层的陶瓷基板和半导体元件接合时Ti层会开裂,在开裂部位Au电极层和阻挡金属层直接接触,这样就无法获得预期的效果。
因此,本发明者为了解决上述课题进行了进一步的研究,其结果是,在Au电极层上配置铂族元素、然后在其上配置作为粘接性金属的Ti等过渡金属层、再于其上配置阻挡金属层及无铅焊料层时,低温条件下就能够进行元件的焊接,且此时的接合强度高,密合层也不会开裂,可靠性试验后接合强度未下降。基于上述结果进行更进一步的探讨后发现,该效果不仅限于使用了富锡Au-Sn系焊料的情况,对于In系焊料也奏效,特别是使用了Au含量不足20重量%的Sn或In系焊料时效果更明显,籍此完成了本发明。
即,本发明1的元件接合用基板的特征在于,在表面形成有Au电极层的基板的该Au电极层上依次层叠了(i)由铂族元素形成的层,(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层,(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层,以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层。特好的是焊料层(iv)由作为主成分含有Sn或In、且Au的含量不足20重量%的焊料形成。
本发明的元件接合用基板中,作为在表面形成有Au电极层的基板,使用了在以氮化铝为主成分的陶瓷基板上依次层叠了以Ti为主成分的第一基底金属层、以Pt为主成分的第二基底金属层及由Au形成的电极层的镀金属基板,该基板的特征在于,不仅用于接合元件时的高频的介质损耗低,且释放此时产生的热量的性能高。
本发明2的元件接合用基板的制造方法的特征在于,在表面形成有Au电极层的基板的该Au电极层上依次形成(i)由铂族元素形成的层,(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层,(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层,以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层。特好的是焊料层(iv)由作为主成分含有Sn或In,且Au的含量不足20重量%的焊料形成。
本发明3的元件接合基板的制造方法的特征在于,在前述本发明的元件接合用基板的焊料层上配置具有电极的元件使该电极与前述焊料层接触后,进行回流焊接,本发明4为利用上述方法制得的元件接合基板。利用上述本发明3的制法,能够在例如不足280℃的低温下以高精度有效地焊接元件,这样制得的本发明4的元件接合基板可长期稳定地使用。
通过使用本发明的元件接合用基板,能够在表面形成有Au电极的基板的Au电极上,用富锡Au-Su系焊料这样的低熔点的软焊料,于低温条件下以高接合强度焊接半导体元件。此外,被这样接合的本发明的元件接合基板即使使用时的温差大,接合部位也很难被破坏,可长期稳定地使用。特别是作为基板使用了表面形成有Au电极的以氮化铝为主成分的陶瓷基板的元件接合基板是除了具备上述特点之外,还兼具高频的介质损耗低、释放使用时产生的热量的放热特性良好的特点的极佳的元件接合基板。
附图的简单说明

图1为具备代表性的本发明的元件接合用基板的截面的模式图。
图2为比较例2(焊料层厚度5μm)中的焊料熔融后的基板截面的SEM照片(组成图像)。
符号说明100为元件接合用基板,200为表面形成有Au电极层的基板,201为氮化铝烧结体基板,202为以Ti为主成分的第一基底金属层,203为以Pt为主成分的第二基底金属层,204为Au电极层,300为铂族金属层,400为特定过渡金属层,500为阻挡金属层,600为由作为主成分含有Sn或In且Au的含量不足20重量%的金属形成的焊料层。
实施发明的最佳方式本发明的元件接合用基板通过在表面形成有Au电极层的基板的该Au电极层上依次层叠(i)由铂族元素形成的层(以下也称为铂族金属层),(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层(以下也称为特定过渡金属层),(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层(以下也简称为阻挡层),以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层而制得。这里,元件是指具有与其它的导电配线可直接连接的端子的电阻或电容器等电气零部件及半导体元件。
用于本发明的元件接合用基板的“在表面形成有Au电极层的基板”只要是在其表面的一部分或整个面形成有起到电极的作用的由Au构成的层的基板即可,无特别限定,但从用于接合半导体元件时的高频的介质损耗低的角度考虑,最好使用在氮化铝、氧化铝、SiC、Si3N4等陶瓷基板上或Si基板上通过金属化形成了Au电极的镀金属基板。如前所述,这些镀金属基板中,Au电极层一般直接或间接地形成于与陶瓷基板牢固地接合的基底金属层上,例如使用氧化铝基板时,可采用在氧化铝生片材上印刷钨或钼等高熔点金属糊形成的电极图形,同时对该图形和生材片进行烧结后,根据需要在高熔点金属层上形成镍层,再于其上形成Au电极的镀金属基板。另外,使用以氮化铝为主成分的陶瓷基板时,可采用在氮化铝粉末中添加烧结助剂,成形后在经过烧结的基板的表面通过溅射法等形成基本与电极图形相同形状的以Ti为主成分的第一基底金属层,然后在该第一基底金属层上同样通过溅射法等形成Au电极层而获得的镀金属基板。从用于接合元件时释放产生的热量的放热特性良好的角度考虑,本发明的元件接合用基板特别适合采用以上获得的氮化铝系镀金属基板。
本发明的元件接合用基板具备在上述Au电极层上依次层叠了(i)铂族金属层、(ii)特定过渡金属层及(iii)阻挡金属层的层叠结构。通过形成该层结构,在其上由富锡Au-Sn系焊料等低熔点的软焊料形成焊料层进行焊接时,能够在低温下进行高接合强度的焊接,且其结合性具备能够承受热循环的高可靠性。如后所述,即使在成膜时形成了理想的膜的情况下,在其上形成其它的金属层时有时作为基底的金属层的形态也会发生变化。本发明所述的层叠和层叠结构不仅是指图1所示的理想状态,也包括上述成膜时的形态变化而出现部分紊乱的状态(可以是至少一部分中的层叠或层叠结构)。
(i)铂族金属层是指由选自钌、铑、钯、锇、铱及铂的至少1种元素构成的层,较好是由铂及/或钯构成的层,最好是由铂构成的层。通过设置该层,在焊接时即使(ii)特定过渡金属层发生开裂,阻挡金属和电极中的Au也不会直接接合,可充分发挥(ii)特定过渡金属层作为密合金属层的效果。该层的厚度为0.1~5μm,特好为0.2~3μm。该层的厚度如果不足0.1μm,则效果不明显,如果在5μm以上,则该效果与厚度为0.2~3μm时的效果几乎没有区别。该层最好覆盖整个Au电极表面,但如果形成于其上的各种金属层不与Au电极层直接接触,则并不一定要覆盖整个Au电极层。另外,因为在该层上形成其它的金属层时的成膜条件,形成上部的层后该层的形态有时会发生变化(膜的均一性发生变化或部分合金化),但只要不是该层成膜时通过目视可确认的重大缺陷就不会影响到效果。
(ii)特定过渡金属层只要是由选自Ti、V、Cr及Co的至少1种过渡金属构成的层即可,无特别限定,但从接合强度的可靠性考虑,较好的是Ti及/或Cr形成的层,特好的是由Ti形成的层。通过设置该层,可使焊接元件时的接合性提高,籍此提高接合的可靠性。该层的厚度为0.01~1μm,特好为0.03~0.5μm。该层的厚度如果不足0.01μm,则效果不明显,如果在1μm以上,则其效果与厚度为0.03~0.5μm时几乎没有区别。另外,因为在该层上形成其它的金属层时的成膜条件,形成上部的层后该层的形态有时会发生变化(膜的均一性发生变化,出现孔使上层的金属和下层的金属接触或部分合金化),但只要不是该层成膜时通过目视可确认的重大缺陷就不会影响到效果。
(iii)阻挡金属层只要是由选自Ag、Cu及Ni的至少1种金属形成的层即可,无特别限定,从效果的角度考虑,最好是由Ag形成的层。该阻挡金属层的厚度为0.2~5μm,特好为1~3μm。该层的厚度如果不足0.2μm,则效果不明显,如果在5μm以上,则其效果与厚度为1~3μm时几乎没有区别。
对在前述Au电极层上形成前述(i)~(iii)的各种金属层的方法无特别限定,例如可通过溅射法、离子镀法、蒸镀法、CVD法、电镀法实施。
形成有前述(i)~(iii)的各种金属层的基板也可在焊接时供给焊料与元件接合,但本发明中,为了在规定位置以高精度接合元件,在阻挡金属层上形成(iv)焊料层,更好的是仅在元件的接合预定部位形成(iv)焊料层。利用上述基板(带焊料层的基板),能够精密地控制元件的搭载位置,可以方便地进行易于自动化的回流焊接。此时,作为在阻挡金属层上形成焊料层时所用的焊料,因为前述阻挡金属层的效果特别好、其本身较柔软、可进行低温下的焊接,所以使用“作为主成分含有Sn或In的焊料”,较好的是使用“作为主成分含有Sn或In且Au含量不足20重量%、特好是10重量%以下的金属形成的焊料”。这种焊料具体可例示前述富锡Au-Sn系焊料、Sn100%焊料、Sn-Ag焊料、Sn-Bi焊料、Sn-Sb焊料、Sn-In焊料、In100%焊料、In-Au焊料(Au含量不足20重量%)、In-Ag焊料、In-Bi焊料、In-Sb焊料、In-Zn焊料及它们任意组合而成的焊料等。焊接元件时,由于焊料层会与基底的金属(例如,阻挡金属层的Ag)反应(合金化)或互相扩散,所以很难确定严格意义上的焊料层组成。这里,本发明为了方便起见,将形成(iv)层的金属作为焊料金属处理。
其中,基于与元件接合后的模剪切(die shear)试验的接合强度最高的理由,特好的是使用Au-Sn系焊料。另外,本发明的上述作为主成分含有Sn或In且Au含量不足20重量%的金属形成的焊料中,从不易引起用于接合前述元件时的温度变化导致的接合部位的破坏的观点考虑,最好使用熔点不足280℃且弹性模量不足50GPa(25℃时)的金属形成的焊料。
本发明的元件接合用基板中的上述焊料层可以由单一金属或单一组成的合金形成的1层构成,也可以由不同种类的金属(或者合金)形成的多个层的层积体构成,使各层熔融混合时形成满足前述条件的组成。该焊料层的整体厚度为1~10μm,较好为2~6μm,特好为3~6μm。该层的厚度如果未满1μm,则由于焊料的绝对量较少,所以有无法获得足够的接合强度的倾向,相反的,如果厚度超过10μm,则由于焊料量过多,接合后有时会发生焊料遮盖元件的侧面或上表面(半导体元件中也成为发光面)的不良情况。
对在前述阻挡金属层上形成上述焊料层的方法无特别限定,例如可通过溅射法、离子镀法、蒸镀法、CVD法、电镀法实施。
对在本发明的元件接合用基板上接合半导体元件等元件的方法无特别限定,可采用任何公知的焊接方法,但基于可有效地以高精度进行接合的理由,最好采用在作为带有焊料的基板的本发明的元件接合用基板的焊料层上设置具有电极的元件使该电极与前述焊料层接触后再进行回流焊接的方法。回流焊接是指预先向基板的规定焊盘上或元器件电极或双方供给焊料,将元器件固定于基板上的规定位置后,熔解焊料(使焊料流动)而进行元器件和基板的接合的方法。上述方法中,对使焊料回流的方法无特别限定,可采用利用回流输送机的方法、利用热板的方法及气相回流法等。此外,加热温度或加热时间可根据所用的焊料的种类适当决定,在使用了本发明的元件接合用基板的情况下,由于对所用焊料的特性无不良影响,因此在例如使用了富锡Au-Sn系焊料的情况下,可在不足280℃的低温下进行良好的焊接。
焊接的元件只要是具有由通过焊料可接合的金属形成的电极的元件即可,无特别限定。一般的半导体元件中的上述电极大多数情况下由Au构成。焊接具有该Au电极的元件时,Au电极的Au原子虽然会扩散到焊料中,但如后面的实施例所示,焊接具有Au电极的元件时由于获得了高接合强度,因此此时发生的扩散不会对接合强度造成重大影响。由于能够防止这种扩散,所以最好使用具备可与焊料接触的电极表面被选自Ag、Cu及Ni的至少1种金属,特别是Ag覆盖的电极的元件。
以下,例举实施例及比较例对本发明进行更详细地说明,但本发明并不仅限于这些实施例。
实施例1图1所示的结构的元件接合用基板如下制作。图1是表示具备代表性的本发明的元件接合用基板100的截面的示意图,该基板100具备以下的构造,即,在氮化铝烧结体基板201上依次层叠了以Ti为主成分的第一基底金属层202、以Pt为主成分的第二基底金属层203及Au电极层204而形成的基板200的Au电极层上,依次层叠(i)铂族金属层300和(ii)特定过渡金属层400,在其上再层叠(iii)阻挡金属层500及(iv)由Sn系或In系的Au含量不足20重量%的金属形成的焊料层600。
首先,采用溅射装置,通过溅射法在氮化铝烧结体基板{50.8mm×50.8mm×t0.3mm(株)トクャマ制}的表面依次形成厚0.06μm的以Ti为主成分的第一基底金属层、厚0.2μm的以Pt为主成分的第二基底金属层及厚0.6μm的Au电极层后形成图形。然后,在上述Au电极层上形成厚0.25μm的铂族金属Pt,形成图形后,用真空蒸镀装置在上述Pt上形成厚0.06μm的Ti及2μm的Ag构成的阻挡层。接着,通过作为靶使用了Au及Sn的同时蒸镀法,在上述阻挡层上由Au含量为10重量%的Au-Sn合金{熔点217℃及弹性模量45.0GPa(25℃时)}形成厚5μm的焊料层,籍此制得本发明的元件接合用基板。然后,在以上制得的元件接合用基板的焊料层上设置具有Au电极的半导体元件,用芯片焊接装置于250℃进行接合,制得元件接合基板。同样地制作40个元件接合基板,通过模剪切试验器(IMADA公司制)测定其中的10个的接合强度,获知平均接合强度为2.8kgf/mm2。然后,用TABAI公司的冷热冲击试验箱(THERMAL-SHOCK-CHAMBER(TSV-40S)),对剩余的30个接合体进行重复暴露于-55℃和125℃的热循环试验,在暴露100次后、500次后及1000次后每次各取出10个接合体,测定接合强度。其结果示于表1。
表1

实施例2除了利用作为靶使用了In{熔点156℃,弹性模量12.7GPa(25℃时)}的蒸镀法形成厚5μm的焊料层以外,其它操作与实施例1同样,制作元件接合用基板。此外,除了接合温度为210℃以外,其它操作与实施例1同样,制作元件接合基板。同样地制作40个元件接合基板,与实施例1同样测定接合强度,测得的平均接合强度为2.5kgf/mm2。另外,热循环试验后的结果示于表1。
实施例3除了将阻挡层的材质由Ag改为表1所示的金属以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。结果一并示于表1。
实施例4除了将焊料层的膜厚改为表1所示的膜厚以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。结果一并示于表1。
实施例5除了将阻挡层的膜厚改为表1所示的膜厚以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。结果一并示于表1。
实施例6除了将铂族金属层或特定过渡金属层的材质改为表1所示的金属以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。结果一并示于表1。
比较例1除了未设置铂族金属层及特定过渡金属层以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。另外,对同样构成但焊料层的膜厚发生了变化的情况进行评价。结果一并示于表1。如表1所示,未设置铂族金属层及特定过渡金属层的情况下,可靠性试验后的接合强度有些下降。
比较例2除了未设置铂族金属层以外,其它与实施例1同样,制作元件接合用基板及元件接合基板,并与实施例1同样地测定接合强度。结果一并示于表1。如表1所示,未设置铂族金属层的情况下,可靠性试验后的接合强度有些下降。其原因如图2所示,在熔融元件接合用基板的焊料时过渡金属元素Ti开裂,Au电极层和阻挡金属层在开裂部位直接接触,因此与比较例1无大差别。
权利要求
1.元件接合用基板,其特征在于,在表面形成有Au电极层的基板的该Au电极层上依次层叠了(i)由铂族元素形成的层,(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层,(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层,以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层而构成。
2.如权利要求1所述的元件接合用基板,其特征在于,焊料层(iv)由作为主成分含有Sn或In,且Au的含量不足20重量%的焊料形成。
3,如权利要求1或2所述的元件接合用基板,其特征在于,表面形成有Au电极层的基板是在以氮化铝为主成分的陶瓷基板上依次层叠了以Ti为主成分的第一基底金属层、以Pt为主成分的第二基底金属层及由Au形成的电极层的镀金属基板。
4.元件接合用基板的制造方法,其特征在于,在表面形成有Au电极层的基板的该Au电极层上依次形成(i)由铂族元素形成的层,(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层,(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层,以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层。
5.如权利要求4所述的元件接合用基板的制造方法,其特征在于,焊料层(iv)由作为主成分含有Sn或In,且Au的含量不足20重量%的焊料形成。
6.元件接合用基板,其特征在于,由权利要求4或5所述的制法制得。
7.元件接合基板的制造方法,其特征在于,在权利要求1所述的元件接合用基板的焊料层上配置具有电极的元件使该电极与前述焊料层接触后,进行回流焊接。
8.元件接合基板,其特征在于,由权利要求7所述的方法制得。
全文摘要
本发明的目的是提供能够在形成于氮化铝等基板上的Au电极上用Au含量不足 10重量%的Au-Sn系焊料这样的低熔点的软焊料金属进行低温焊接、以高接合强度接合元件的元件接合用基板。本发明的元件接合用基板的特征在于,在表面形成有Au电极层的基板的该Au电极层上依次层叠了(i)由铂族元素形成的层,(ii)由选自Ti、V、Cr及Co的至少1种过渡金属元素形成的层,(iii)由选自Ag、Cu及Ni的至少1种金属形成的阻挡金属层,以及(iv)由作为主成分含有Sn或In的焊料形成的焊料层而构成。
文档编号H01L23/12GK1934688SQ20058000947
公开日2007年3月21日 申请日期2005年3月24日 优先权日2004年3月24日
发明者横山浩树 申请人:德山株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1