接地屏蔽件及其方法

文档序号:6874010阅读:356来源:国知局
专利名称:接地屏蔽件及其方法
技术领域
本发明总地涉及半导体制造,更特别地,涉及用于半导体器件的接地屏蔽件(ground shield)及其相关方法。
背景技术
在硅射频(RF)应用中,流经RF无源元件(passive element)(例如电感器、电容器、传输线等)的电流产生的磁场在下面的导体和硅衬底中产生涡流(eddy current)。结果,磁场在硅中消耗功率,并降低RF无源元件的品质因数(quality factor)。针对该情况,此有损耗的硅衬底通常通过为磁场感应电流提供低电阻返回路径的金属接地屏蔽件或接地平面(ground plane)从RF无源元件屏蔽。接地屏蔽件通常位于硅衬底顶上且在RF无源元件之下从而阻挡涡流进入衬底。
当前实践是利用现有的第一金属(M1)布线层面(wiring level)来在各种互补金属氧化物半导体(CMOS)、双极CMOS(BiCMOS)、硅锗(SiGe)BiCMOS、RF-CMOS等技术中提供接地屏蔽。然而,该方法有若干缺点。例如,理想地接地屏蔽件应尽可能地厚从而最小化电阻且阻挡尽可能多的涡流。相反,第一金属布线层面理想地尽可能薄从而便于密节距布线(tight pitchwiring)。例如,通常90nm CMOS代第一金属(M1)布线节距和高度分别为约220nm和约240nm;而无源电感器节距和高度分别为约2.4μm和约3μm。因此,如果接地屏蔽件制得较厚,则金属线的深宽比(aspect ratio)增大,这有害地导致接地屏蔽件的较高金属电阻。接地屏蔽件还不利地增加导体与地之间的电容。这种情况发生在例如铝(Al)或铜(Cu)金属系统中。对于低损耗接地屏蔽件,金属线电阻应非常小,即接地屏蔽件需要作为具有极小功率损耗的接近理想的地。特别地,对于功率放大器技术,接地屏蔽件上的回波损耗(return loss)会是效率方面的主要限制因素(即电感器中由于I*I*R*f而浪费的功率)。
鉴于上述情况,本领域需要改进的接地屏蔽件。

发明内容
本发明包括一种接地屏蔽件,其包括位于电介质层内的“奶酪式(cheesed)”金属,以及位于所述奶酪式金属之上第一金属层面内的金属区域。所述接地屏蔽件根据所使用的金属可具有不同形式,且进行设置以防止铜(Cu)用作该接地屏蔽件的奶酪式金属中的金属时的扩散。该接地屏蔽件与标准的生产线后端(BEOL)集成(integration)结合在用于无源RF元件的第一金属(M1)层面提供低电阻的、很厚的金属。本发明还包括形成接地屏蔽件的方法。
本发明的第一方面涉及一种结构,包括衬底,其具有位于其上的电介质层;金属层面,其位于所述电介质层之上;以及接地屏蔽件,其包括奶酪式金属,其位于所述电介质层内,以及金属区域,其位于所述奶酪式金属之上所述金属层面内。
本发明的第二方面包括形成接地屏蔽件的方法,该方法包括步骤提供其中具有硅槽隔离(STI)区域的衬底和通过蚀刻停止层与该衬底分隔开的至少一个电介质层;以及通过在所述衬底之上第一电介质层中形成奶酪式金属且在所述第一电介质层之上第二电介质层中形成与所述奶酪式金属电接触的金属区域来形成所述接地屏蔽件。
本发明的第三方面涉及用于半导体器件的接地屏蔽件,该接地屏蔽件包括金属区域,其在所述半导体器件的第一金属层面中;以及奶酪式金属,其位于所述金属区域之下电介质层内,所述奶酪式金属的多个电介质栓的每个与下面的奶酪式硅槽隔离(STI)区域的填充栓对准。
本发明的第四方面涉及用于半导体器件的接地屏蔽件,该接地屏蔽件包括第一奶酪式金属区域,其在所述半导体器件的第一金属层面中;以及第二奶酪式金属区域,其位于所述第一奶酪式金属区域之下电介质层内,所述第二奶酪式金属区域的多个电介质栓的每个与下面的奶酪式硅槽隔离(STI)的填充栓对准。
本发明的上述和其它特征将从下面本发明实施例的更具体的描述变得明显。


现在将参照附图详细说明本发明的实施例,相同的附图标记表示相同的元件,附图中图1A-1B示出根据本发明的接地屏蔽件的第一实施例;图2A-2B示出根据本发明的接地屏蔽件的第二实施例;图3示出根据本发明的接地屏蔽件的第三实施例;图4A-4C示出根据本发明的形成接地屏蔽件的方法的一个实施例;图5A-5D示出根据本发明的形成接地屏蔽件的方法的另一实施例;图6A-6E示出根据本发明的形成接地屏蔽件的方法的另一实施例。
具体实施例方式
参照附图,图1A-1B示出根据本发明第一实施例的接地屏蔽件100。图1B示出沿图1A的线1B-1B的平面图;类似地,图1A示出沿图1B的线1A-1A的横截面图。参照图1A的横截面图,接地屏蔽件100包括结构102,其包括衬底104即硅衬底,该衬底具有位于其上的电介质层106。电介质层106(下面称为金属前电介质(pre-metal dielectric,PMD)层106)可包括任何现在已知的或以后开发的电介质材料,诸如二氧化硅(SiO2)、氢化硅碳氧化物(SiCOH)、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)等,其利用公知方法沉积,例如等离子体增强化学气相沉积(PECVD)、高密度等离子体CVD(HDPCVD)、亚大气压CVD(SACVD)、大气压CVD(APCVD)、原子层沉积(ALD)、液相化学气相沉积(LPCVD)等。用于蚀刻接地屏蔽件100的接触120和奶酪式金属(cheesed metal)140(稍后描述)的电介质反应离子蚀刻(RIE)停止层108优选位于衬底104之上,即设置在PMD层106与衬底104之间,且还能用作移动离子扩散阻挡层。蚀刻停止层108可包括任何常规阻挡材料例如硅氮化物(Si3N4)、硅碳化物(SiC)、硅碳氮化物(SiCN)等,且利用任何本领域公知的方法沉积,例如PECVD、HDPCVD、SACVD、APCVD、ALD、LPCVD等。
第一金属(M1)层面110位于PMD层106之上,其利用本领域公知的减蚀刻(subtractive etch)工艺制造。第一金属层面110包括金属线112。金属线112在此例中通过接触120耦接到PMD层106中晶体管118的栅极和扩展(extension)。接触120可包括钨(W)或任何其它普通接触材料,且通常具有薄的衬(liner)材料(未示出)例如钛氮化物(TiN),如本领域公知的。如下面将论述的,接触120可以与接地屏蔽件100同时形成。
衬底104还包括硅槽隔离(STI)区域130,其是奶酪式从而在平坦化即化学机械抛光期间防止凹陷。STI区域130包括多个填充(衬底)栓(peg)132。如图1B所示,“奶酪式”意味着STI区域130通过设计设置有穿过其延伸的硅衬底104的部分(栓)132,从上面观察产生“瑞士奶酪(swiss chess)”外观。如下面将说明的,术语“奶酪式”还可应用于金属,其可以使部分金属线被去除,电介质穿过其延伸,从上面观察产生“瑞士奶酪”外观。奶酪式化(cheesing)的目的是降低布线或STI区域130的局部图案因子(localpattern factor)从而降低化学机械抛光(CMP)凹陷或侵蚀,化学机械抛光凹陷或侵蚀导致布线的增加的金属线电阻和/或形貌的产生,如本领域所公知的。
接地屏蔽件100包括位于PMD层106内的奶酪式金属140、以及位于第一金属层面110内且电连接到奶酪式金属140的金属区域142。图1A-1B示出接地屏蔽件100的第一实施例,其中奶酪式金属140的边界完全在金属区域142的周边内,金属区域142的周边以幻影(phantom)示于图1B中。在此例中,如本领域所公知的,金属区域142可包括铝铜(Al-Cu),具有标准钛氮化物(TiN)或其它难熔金属覆层(cladding layer),如本领域所公知地优选利用减蚀刻工艺制造。如图1A所示,奶酪式金属140优选延伸至但不完全穿过蚀刻停止层108。在一个优选实施例中,奶酪式金属140的边界还完全在STI区域130的周边内,STI区域130的周边也以幻影示于图1B中。另外,在此实施例中,奶酪式金属140还优选地从不在硅104的正上方,或者通过设计或者由于光刻或RIE在尺寸或配准(registration)上的变异性。为了实现此结构,用于奶酪式金属140而形成的多个电介质栓144中的每个完全接壤或落在相应的衬底栓132上,衬底栓132以幻影示于图1B中。另外,每个电介质栓144尺寸上大于相应的衬底栓132,使得奶酪式金属140被封离衬底104。以此方式,可以防止铜(Cu)形式的奶酪式金属140扩散到衬底104中。另外,该结构避免了铜奶酪式金属140上的STI角落,从而减小了衬层故障以及Cu扩散到衬底104中的可能性。
奶酪式金属140还可包括扩散阻挡层/衬层146(图1A中仅标识一次),该扩散阻挡层/衬层146包括下列中的至少一种如前所述地沉积的诸如硅氮化物(Si3N4)的电介质构成的扩散阻挡层和/或导体例如普通难熔金属衬层,诸如钛氮化物(TiN)、钽(Ta)、钨(W)、钽氮化物(TaN)或其它难熔金属衬层,如本领域所公知的。如本领域所公知的,扩散阻挡层/衬层146可利用任何公知方法沉积,例如物理气相沉积(PVD)、ALD、或化学气相沉积(CVD),且优选利用镶嵌工艺(damascene process)制造,即CMP后扩散阻挡层/衬层146涂覆槽侧壁和底部,如本领域所公知的。扩散阻挡层/衬层146提供进一步保护,防止铜(Cu)形式的奶酪式金属140扩散到衬底104中。扩散阻挡层/衬层146的扩散阻挡材料和/或衬材料的每种优选地被优化以用于下部槽中的覆盖从而防止铜(Cu)扩散。在一个优选实施例中,扩散阻挡层/衬层146的热膨胀系数(CTE)基本匹配下列中的至少一种的热膨胀系数衬底104和STI区域130。例如,硅具有约3.0的CTE,而钨(W)具有约4.5的CTE。因此,钨扩散阻挡层/衬层146可用于匹配所述CTE。在约50-100nm范围的厚扩散阻挡层/衬层146也是优选的。扩散阻挡层/衬层146最小化例如接地屏蔽件100与衬底104之间的界面上的热应力,这通过最小化扩散阻挡层/衬层146上的热应力防止铜扩散到衬底104中。
图2A-2B示出接地屏蔽件200的第二实施例。图2B示出图2A的平面图,图2A示出沿图2B的线2A-2A的横截面图。接地屏蔽件200与图1A-1B的接地屏蔽件100基本类似,除了其包括奶酪式金属区域242以防止凹陷,因为不同于利用减蚀刻工艺制造的层110(图1A),区域242利用镶嵌工艺制造。奶酪式金属区域242位于金属间电介质(inter-metal dielectric,IMD)层114中。IMD层114可包括任何现在公知的或以后开发的金属间电介质材料。普通的金属间电介质层利用旋涂(spin-on)、或PECVD方法沉积且可包括SiO2、氟化SiO2、SiCOH、多孔SiCOH、硅低k电介质(SiLKTM)(可得自Dow Chemical)等。即,在某些情况下,金属区域142(图1A-1B)可以很大,使得其需要奶酪式化以在化学机械抛光(CMP)平坦化期间防止凹陷。在该例中,奶酪式金属区域242包括(IMD层114的)多个电介质栓244。多个电介质栓244的每个位于奶酪式金属140的相应金属部分246上面(以幻影示于图2B中)且具有比奶酪式金属140的相应金属部分246小的尺寸(diameter),使得奶酪式金属140的金属被奶酪式金属区域242的金属栓248覆盖。换言之,奶酪式金属区域242的金属栓248与奶酪式金属140的金属部分246不叠合。该结构还减小了IMD层114以及PMD层106中的电阻。在该实施例中,奶酪式金属区域242和奶酪式金属140都可以包括铜(Cu),如前所述。另外,金属区域242不需完全覆盖奶酪式金属140,如图1A-1B,尽管对于最小化涡流电阻来说这是期望的。
尽管已经说明了用于接地屏蔽件100、200的特定金属,但是应意识到,可以使用各种金属。例如,奶酪式金属140和/或金属区域142、242可包括下面的元素或它们的合金铜(Cu)、铝铜(AlCu)、铝(Al)、银(Ag)或钨(W)。另外,接触120(图1A)可包括各种金属例如钨(W)、铜(Cu),其可以匹配或可以不匹配奶酪式金属140和/或金属区域142、242。
接地屏蔽件100、200结合标准BEOL集成在用于无源RF元件的第一金属(M1)层面提供低电阻的、很厚的铜(Cu)镶嵌层面。如果铜(Cu)用于布线层面和下面的接地屏蔽件两者,则金属线高度为约300nm,接触高度为约600nm,那么与仅由第一金属(M1)构成的接地屏蔽件的约0.5欧姆/平方相比,该结合的接地屏蔽件电阻将为约0.18欧姆/平方。所表现出的电阻可在约0.1至约1.0欧姆/平方的范围。
在图3所示的供选实施例中,铜接地屏蔽件400可落在衬底104的硅化硅(silicided silicon)(RX)上以避免潜在的铜向衬底104中的扩散。在该例中,奶酪式金属440从不与STI区域430叠合(coincident)。
转到图4A-4C、5A-5D、6A-6E,现在将说明形成接地屏蔽件的方法的各种实施例。
参照图4A-4C,现在将说明形成接地平面100、200的“从底向上(ground-up)”实施例。在图4A所示的第一步骤中,进行普通加工以提供其中具有STI区域130的衬底104以及通过蚀刻停止层108与衬底104分隔开的PMD层106。该步骤可包括用于例如形成衬底104、蚀刻从而形成STI区域130、沉积STI电介质、平坦化、沉积蚀刻停止层108以及沉积PMD层106的常规步骤。如上所述,STI区域130被奶酪式化且包括多个衬底栓132。
接着,也如图4A所示,在PMD层106中形成接地屏蔽件镶嵌结构300至蚀刻停止层108。接地屏蔽件镶嵌结构300包括从PMD层106形成的多个电介质栓148。接地屏蔽件镶嵌结构300优选地形成为使得每个电介质栓148与各个衬底栓132水平地对准(如图1A-1B和2A-2B中)。另外,因为上面所描述的原因,使多个电介质栓148的每个在尺寸上大于相应的衬底栓132来设定它们的边界。尽管不是必需,但形成接地屏蔽件镶嵌结构300还可包括在PMD层106中同时形成用于接触通孔120(示为填充以金属诸如钨(W))的接触通孔镶嵌结构302。如果接触通孔120单独形成,则该步骤可包括例如通过蚀刻单独形成接触通孔镶嵌结构302、如前所述地以衬层(未示出)和CVD钨(W)填充接触通孔镶嵌结构302、平坦化超出的衬层和钨、以及常规清洁。这些步骤然后可以接着蚀刻从而形成接地屏蔽件镶嵌结构300。
接着,如图4B所示,金属304例如通过常规沉积技术形成在接地屏蔽件镶嵌结构300中,从而利用多个电介质栓148形成奶酪式金属140。如上所述,奶酪式金属140延伸至蚀刻停止层108。
如上所述,在一个优选实施例中,扩散阻挡层/衬层146(图4A)可在金属304的形成之前形成,且可具有与衬底104和STI区域130中选定的一个基本匹配的CTE。例如对于铜(Cu)的沉积,该步骤还可包括进行常规前体(precursor)清洁;扩散阻挡层/衬层146(图1A)的沉积,其包括下列中的至少一种的沉积铜扩散阻挡层(例如硅氮化物(Si3N4)和任何难熔金属诸如钛氮化物(TiN)、钽氮化物(TaN)、钽(Ta)等。用于铜(Cu)的进一步处理可包括沉积铜籽材料、电镀铜、平坦化和最后的清洁。
在一实施例中,如图1A-1B所示,接触通孔120和奶酪式金属140不包括相同的金属。即,接触通孔镶嵌结构302(图4A)中沉积的接触材料与奶酪式金属140不同。例如,在上面说明的图1A-1B中,奶酪式金属140包括铜(Cu)而接触120包括钨(W)。(在图1A-1B中,第一金属层面110包括铝铜(AlCu))。然而,接触120和奶酪式金属140(图1A-1B和2A-2B)包括相同的金属例如铜(Cu)是可行的。该情形示于图2A-2B中,其中接触120和奶酪式金属140包括铜(Cu)。在该例中,接地屏蔽件镶嵌结构300和接触通孔镶嵌结构302可被同时填充从而同时形成奶酪式金属140和接触通孔120。
图4C示出下一步骤,在奶酪式金属140之上形成金属区域142、242(分别在图1A-1B和2A-2B)从而形成接地屏蔽件100、200。图4C仅示出图1A-1B的实施例。该步骤可包括进行常规金属间电介质(IMD)材料114的沉积、构图、用于金属区域142、242开口的区域以及用于金属布线112的区域的蚀刻、清洁、沉积金属从而形成金属区域142、242和金属布线112、以及平坦化。奶酪式金属140是铜(Cu)的情况下,电介质-铜扩散阻挡层146诸如硅氮化物(Si3N4)、硅碳化物(SiC)或硅碳氮化物(SiCN)优选地首先沉积,即如图4A所示。如上所述,在一实施例中,金属区域142形成在奶酪式金属140之上使得奶酪式金属140完全位于金属区域142的周边之内,如图1A-1B所示。在另一实施例中,金属区域形成为奶酪式金属区域242,如图2A-2B所示,包括多个电介质栓244。如图2A所示,IMD层114栓244的每个在奶酪式金属140的相应金属部分246之上且尺寸上比奶酪式金属140的相应金属区域小。
转到图5A-5D,示出另一实施例,其中在第一金属(M1)层面利用双镶嵌工艺形成接地屏蔽件500(图5D)。在图5A所示的第一步骤中,该实施例包括用于提供其中具有STI区域130的衬底104、通过蚀刻停止层108与衬底104分隔开的PMD层106、接触120和IMD层114的普通处理。该步骤可包括用于例如形成衬底104、蚀刻从而形成STI区域130、沉积STI电介质、平坦化、沉积蚀刻停止层108、沉积PMD层106、蚀刻从而开口接触开口、如前所述地用衬层(未示出)和CVD钨(W)填充接触开口、平坦化超出的衬层和钨、常规清洁、以及沉积IMD层114的常规步骤。如上所述,STI区域130是奶酪式的且包括多个衬底栓132。
接着,如图5B所示,第一镶嵌结构501形成在包括用于金属线的区域502和用于接地屏蔽件的金属区域的区域504的IMD层114中。
接着,如图5C所示,第二镶嵌结构506形成在PMD层106中,PMD层106包括具有多个电介质栓148的用于奶酪式金属的区域。扩散阻挡层/衬层546可被沉积,且如图5D所示,接着例如通过常规沉积技术在镶嵌结构501和506(图5C)中形成金属510从而形成包括奶酪式金属540(利用多个电介质栓148(图5C))和金属区域542的接地屏蔽件500。另外,形成金属线514用于接触120。如上所述,奶酪式金属540延伸至蚀刻停止层108。仍如上所述,在一优选实施例中,扩散阻挡层/衬层546具有与衬底104和STI区域130中选定的一个基本匹配的CTE。
参照图6A-6E,示出另一实施例,其中接地屏蔽件600(图6E)利用三镶嵌工艺形成。在图6A所示的第一步骤中,该实施例包括用于提供其中具有STI区域130的衬底104、以及通过蚀刻停止层108与衬底104分隔开的电介质层606的普通处理。该步骤可包括用于例如形成衬底104、蚀刻从而形成STI区域130、沉积STI电介质、平坦化、沉积蚀刻停止层108、以及沉积电介质层606的常规步骤。如上所述,STI区域130是奶酪式的且包括多个衬底栓132。另外,在该阶段,进行蚀刻从而在电介质层606中将包括至少一个接触开口区域620(示出两个)的第一镶嵌结构618开口至蚀刻停止层108。
接着,如图6B所示,第二镶嵌结构622形成在电介质层606中,电介质层606包括用于金属线的区域624和用于接地屏蔽件600(图6E)的金属区域的区域626。接着,如图6C所示,第一镶嵌结构618的接触开口区域620延伸通过蚀刻停止层108。如图6D所示,下一步骤包括在电介质层606中形成第三镶嵌结构630,其具有用于奶酪式金属的具有多个电介质栓148的区域。如图6D所示,如上所述的扩散阻挡层/衬层646还可以在此阶段被沉积。
最后,如图6E所示,金属610例如通过常规沉积技术形成在镶嵌结构618、622和630(图6B)中,从而形成包括奶酪式金属640(利用多个电介质栓148(图6D))和金属区域642的接地屏蔽件600。另外,形成接触640和金属线614。如上所述,奶酪式金属640延伸至蚀刻停止层108。仍如上所述,在一优选实施例中,扩散阻挡层/衬层646(图6D)具有与衬底104和STI区域130中选定的一个基本匹配的CTE。
尽管结合上述特定实施例描述了本发明,但是显然地,许多替代、修改和变型对本领域技术人员来说是明显的。因此,上述本发明的实施例用于说明目的而不是限制。在不脱离本发明的权利要求所定义的精神和范围的情况下可以进行各种改变。
权利要求
1.一种结构,包括衬底,其具有位于其上的电介质层;金属层面,其位于所述电介质层之上;以及接地屏蔽件,其包括奶酪式金属,其位于所述电介质层内,以及金属区域,其位于所述奶酪式金属之上所述金属层面内。
2.如权利要求1所述的结构,其中所述奶酪式金属完全位于所述金属区域的周边内。
3.如权利要求2所述的结构,其中所述金属区域包括铝铜(Al-Cu)且所述奶酪式金属包括铜(Cu)。
4.如权利要求1所述的结构,其中所述金属区域为奶酪式且包括多个电介质栓,其中所述多个电介质栓的每个位于所述奶酪式金属的相应金属部分之上且具有比相应金属部分小的尺寸。
5.如权利要求4所述的结构,其中所述奶酪式金属和所述金属区域包括铜(Cu)。
6.如权利要求1所述的结构,其中所述奶酪式金属延伸至位于所述衬底之上的扩散阻挡层。
7.如权利要求1所述的结构,还包括所述衬底中的硅槽隔离(STI)区域,其中所述接地屏蔽件完全位于所述STI区域的周边内。
8.如权利要求7所述的结构,其中所述STI区域包括具有多个衬底栓的奶酪式化,且其中通过该奶酪式金属形成的多个电介质栓的每个完全位于相应的衬底栓上,且尺寸上比相应的衬底栓大从而所述奶酪式金属被封离所述衬底。
9.如权利要求1所述的结构,其中所述金属层面还包括耦接到所述电介质层中的有源接触通孔的有源金属线。
10.如权利要求1所述的结构,所述奶酪式金属包括铜且位于所述衬底的硅化硅(RX)上。
11.如权利要求1所述的结构,其中所述接地屏蔽件包括下列中的至少一种衬和扩散阻挡,用于所述奶酪式金属,且其中所述至少一种衬和扩散阻挡的热膨胀系数基本匹配下列的至少一种的热膨胀系数所述衬底和所述衬底中的硅槽隔离(STI)区域。
12.如权利要求11所述的结构,其中所述至少一种衬和扩散阻挡包括下列中的至少一种电介质和导体。
13.如权利要求1所述的结构,其中所述奶酪式金属选自包括铜(Cu)、铝铜(AlCu)、铝(Al)、银(Ag)、钨(W)及其合金的组。
14.如权利要求1所述的结构,其中所述结构具有约0.1至约1.0欧姆/平方的电阻。
15.一种形成接地屏蔽件的方法,该方法包括步骤提供其中具有硅槽隔离(STI)区域的衬底以及通过蚀刻停止层与该衬底分隔开的至少一个电介质层;以及通过在所述衬底之上第一电介质层中形成奶酪式金属以及在所述第一电介质层之上的第二电介质层中形成与所述奶酪式金属电接触的金属区域来形成所述接地屏蔽件。
16.如权利要求15所述的方法,其中所述接地屏蔽件形成步骤包括在所述至少一个电介质层中形成至少一个镶嵌结构,所述至少一个镶嵌结构包括所述蚀刻停止层之上用于所述奶酪式金属具有多个电介质栓的第一区域以及所述第一区域之上用于所述金属区域的第二区域;以及在所述至少一个镶嵌结构中形成金属,以利用所述第一区域中的所述多个电介质栓形成所述奶酪式金属且在所述奶酪式金属之上所述第二区域中形成所述金属区域,从而形成所述接地屏蔽件。
17.如权利要求16所述的方法,其中所述至少一个镶嵌结构的形成步骤包括形成包括所述第二区域的第一镶嵌结构,所述第二区域还包括用于有源金属线的第三区域;以及形成包括所述第一区域的第二镶嵌结构,其中所述金属形成步骤还形成所述有源金属线。
18.如权利要求17所述的方法,还包括在所述镶嵌结构形成步骤之前在与所述第一区域相同的电介质层中形成用于所述有源金属线的接触通孔。
19.如权利要求17所述的方法,其中所述接地屏蔽件形成步骤包括将所述奶酪式金属设置在所述衬底的硅化硅(RX)上。
20.如权利要求16所述的方法,其中所述至少一个镶嵌结构的形成步骤包括形成包括用于至少一个接触通孔的第三区域的第一镶嵌结构;形成包括所述第二区域的第二镶嵌结构,所述第二区域还包括所述至少一个接触区域之上的用于有源金属线的第四区域;以及形成包括所述第一区域的第三镶嵌结构,其中所述金属形成步骤还形成所述有源金属线以及所述至少一个接触。
21.如权利要求16所述的方法,其中所述硅槽隔离(STI)区域为奶酪式且包括多个衬底栓,且其中所述至少一个镶嵌结构的形成步骤包括形成所述多个电介质栓的每个使得每个电介质栓与各个所述多个衬底栓水平地对准。
22.如权利要求21所述的方法,其中所述多个电介质栓的每个尺寸上大于相应的衬底栓。
23.如权利要求16所述的方法,还包括步骤在所述至少一个镶嵌结构中沉积衬和扩散阻挡中的至少一种,其中所述至少一种衬和扩散阻挡具有与所述衬底和所述STI区域中选定的一种基本匹配的热膨胀系数。
24.如权利要求15所述的方法,其中所述奶酪式金属完全位于所述金属区域的周边内。
25.如权利要求15所述的方法,其中所述接地屏蔽件的形成步骤包括以包括多个电介质栓的奶酪式化形成所述金属区域,且其中所述电介质栓的每个在所述奶酪式金属的相应金属部分之上且尺寸上比所述奶酪式金属的所述相应金属部分小。
26.一种用于半导体器件的接地屏蔽件,所述接地屏蔽件包括金属区域,其在所述半导体器件的第一金属层面中;以及奶酪式金属,其位于所述金属区域之下电介质层中,所述奶酪式金属的多个电介质栓的每个与下面的奶酪式硅槽隔离(STI)区域的填充栓对准。
27.如权利要求26所述的接地屏蔽件,其中所述奶酪式金属完全位于所述金属区域的周边内以及所述下面的奶酪式STI区域的周边内。
28.如权利要求26所述的接地屏蔽件,其中每个电介质栓尺寸上比相应的填充栓大从而所述奶酪式金属被封离所述衬底。
29.如权利要求26所述的结构,其中所述电介质层还包括接触通孔。
30.一种用于半导体器件的接地屏蔽件,所述接地屏蔽件包括第一奶酪式金属区域,其在所述半导体器件的第一金属层面中;以及第二奶酪式金属区域,其位于所述第一奶酪式金属区域之下电介质层中,所述第二奶酪式金属区域的多个电介质栓的每个与下面的奶酪式硅槽隔离(STI)的填充栓对准。
全文摘要
本发明公开了一种接地屏蔽件,其包括位于电介质层内的“奶酪式”金属和位于所述奶酪式金属之上第一金属层面内的金属区域。所述接地屏蔽件根据所使用的金属可具有不同形式,且进行设置从而防止铜(Cu)用作该接地屏蔽件的奶酪式金属中的金属时的扩散。该接地屏蔽件与标准的生产线后端(BEOL)集成结合在用于无源RF元件的第一金属(M1)层面提供低电阻的、很厚的金属。本发明还包括形成接地屏蔽件的方法。
文档编号H01L21/70GK1862805SQ200610077209
公开日2006年11月15日 申请日期2006年4月30日 优先权日2005年5月9日
发明者安东尼·K·斯坦伯, 阿尔文·J·约瑟夫, 米特·厄特克 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1