制造液晶显示装置的方法

文档序号:6874020
专利名称:制造液晶显示装置的方法
技术领域
本发明涉及制造液晶显示装置的方法,并且具体涉及解决在制造过程中外部物质附着导致的图形缺陷的制造液晶显示装置的方法。
背景技术
液晶显示装置被用作具有轻便、纤薄优点的平板显示器的情况正愈加扩大。随着这种情况的扩大,希望液晶显示装置进一步提高其显示性能。显示性能的改善预示更高的亮度、分辨率、响应速度等等。另外,作为显示质量的提高,强烈希望解决诸如亮暗点缺陷的显示缺陷。亮点是这样的现象,其中即使在施加的电压变化的情况下,响应于施加的电压的灰度显示也不能示出,并且因为像素总是开启,所以像素看起来呈现白色。暗点引起的缺陷是这样的现象,其中即使在施加的电压变化的情况下,响应于施加的电压的灰度显示也不能示出,并且因为像素总是关断,所以像素看起来呈现黑色。导致这样的显示缺陷的原因之一在于在制造过程中外部物质的混入。
当使用光刻技术来构图时,执行光致抗蚀剂材料的涂覆、曝光和显影。如果在这样的涂覆或曝光之前附着外部物质,在外部物质所附着的点上导致不均匀的涂覆、不均匀的曝光量等等。因此,光致抗蚀剂保留在在设计基础上该光致抗蚀剂不应当保留的区域中。进一步,还考虑显影时的点。当这样的保留的光致抗蚀剂和显影时的点出现时,如果使用这样的光致抗蚀剂图形作为掩膜执行蚀刻并且之后除去该光致抗蚀剂图形则会导致图形缺陷。由于该图形缺陷,导电图形,其本来应当被隔离的,被连接,由此导致短路。另外,如果剩余图形出现在根据设计基础不应该存在的区域中,则该构图于其附近与电极或线路接触,这会导致电极之间或线路之间的短路。
作为修复其中出现这种显示缺陷的液晶显示装置的方法,提议了激光辐射方法。例如,使激光辐射到具有亮点的像素的电极线上,以便该像素被修复为总是显示黑色。请参照日本公开专利No.2002-318393以及日本公开专利No.2004-070182。作为显示缺陷,黑色显示的像素,其总是关断,与总是开启的像素相比不太能被注意到。因此,通过以使其为黑色显示的方式进行修复而减轻了像素缺陷。
但是,在用于显示缺陷的激光辐射的修复方法中,需要通过检查并识别具有显示缺陷的象素来修复亮暗点,在检查中,要向液晶显示装置提供驱动电压以使该装置执行显示操作。在这种情况下,当在即使用电特性测量具有低电阻的半导体薄膜中存在短路或者电容耦合时,也不可能检测到缺陷,因为检查能力低。另外,如果仅仅用于显示缺陷的激光辐射修复方法是可靠的话,则包括图形缺陷(其为显示缺陷)的有源矩阵基板被认为是合格的零件。由此,制造过程行进到将基板和反基板结合在一起而形成液晶显示板的步骤。因此,缺陷部件流出到下游工序,由此导致不合格品率的增加。
期望在图形缺陷出现的步骤中解决图形缺陷区域。作为在图形缺陷出现的步骤中解决图形缺陷的方法,考虑在发现图形缺陷时首先蚀刻然后除去通过构图导电膜形成的导电图形。在除去导电图形之后,重新形成导电膜,之后通过构图形成多个导电图形。但是,在这样的修复方法中,制造步骤的数量急剧增加。

发明内容
因此,本发明的示例性特征是提供一种制造液晶显示装置的方法,其可以修复由附着的外部物质导致的图形缺陷,而无需显著增加制造步骤的数量。
根据本发明的制造液晶显示装置的方法包括在制造具有在有源矩阵基板和反基板之间的液晶层的液晶显示装置的方法中的如下步骤在有源矩阵基板上形成绝缘膜;通过构图形成于绝缘膜上的导电膜形成多个导电图形;形成光致抗蚀剂薄膜,其具有对应于所述多个导电图形的轮廓外形并覆盖至少所述多个导电图形的轮廓外形,并且其覆盖至少所述多个导电图形并覆盖所述多个导电图形附近的所述绝缘膜;通过使用光致抗蚀剂膜作为掩模蚀刻未被光致抗蚀剂膜覆盖并且存在于有源矩阵基板上的剩余图形。
优选地,所述绝缘膜应当是栅绝缘膜,并且导电图形应当是形成于栅绝缘膜之上的源及漏电极和漏极线。
优选地,其中光致抗蚀剂膜被用作掩模的蚀刻应当是其中湿及干蚀刻被顺序执行的蚀刻。
优选地,邻近于光致抗蚀剂膜的轮廓的凹进部分应当通过其中光致抗蚀剂薄膜被用作绝缘膜未被光致抗蚀剂薄膜覆盖的上表面上的掩模的蚀刻来形成。
进一步优选地,其中用于薄膜晶体管的沟道区应当形成于栅绝缘膜和源及漏电极之间的半导体膜、其中导电图形的剩余图形被除去的第一蚀刻、以及其中半导体膜的剩余图形被除去的第二蚀刻应当被顺序执行。
优选地,在除去光致抗蚀剂膜之后,所述方法进一步包括如下步骤形成覆盖绝缘膜和导电图形的层间绝缘膜;在层间绝缘膜上形成延伸至导电图形的接触孔;在层间绝缘膜上形成象素电极以通过接触孔电连接象素电极和导电图形。
根据本发明,形成了覆盖至少多个导电图形并且进一步覆盖多个导电图形附近的绝缘膜的光致抗蚀剂膜,并且通过使用该光致抗蚀剂膜作为掩模蚀刻导电图形的剩余图形。假定还存在延伸横过所述多个导电图形的剩余图形,大部分所存在的剩余图形被除去了。
因此根据本发明的制造液晶显示装置的方法获得了如下示例性优点。
本发明的优点在于本发明可以解决在导电图形的构图之后出现缺陷的步骤中由附着的外部物质导致的图形或显示缺陷。这是因为剩余图形被除去并且起初应当分开的导电图形被分离开,由此使得本发明能够做出改变而不导致图形或显示缺陷。另外,还可以除去全部由使用一个掩模蚀刻而导致的在几个区域中存在的剩余图形。因此,本发明可以解决由附着的外部物质导致的图形或显示缺陷,同时还将制造步骤的数量的增加抑制得尽可能得少。


通过结合附图参照其说明,本发明的这些以及其它目的和进一步的说明对于本领域的技术人员将会更加显然,附图中图1A至1C为俯视图,描述了以制造步骤为顺序的本发明的第一个示例性实施例的制造液晶显示装置的方法;图2A至2C为俯视图,描述了以制造步骤为顺序的本发明的第一个示例性实施例的优点;图3A至3C是以制造步骤为顺序的TFT114附近的横截面图;图4A是IPS型液晶显示装置的横截面图,图4B是TN型液晶显示装置的横截面图;图5A至5C为俯视图,描述了以制造步骤为顺序的本发明的第二个示例性实施例的制造液晶显示装置的方法;图6A至6D为俯视图,描述了以制造步骤为顺序的本发明的第二个示例性实施例的优点,图6E至6I是以制造步骤为顺序的TFT214附近的横截面图;图7A至7C为俯视图,描述了以制造步骤为顺序的本发明的第三个示例性实施例的制造液晶显示装置的方法;图8A至8D为俯视图,描述了以制造步骤为顺序的本发明的第三个示例性实施例的优点,图8E至8I是以制造步骤为顺序的TFT314附近的横截面图。
具体实施例方式
在描述本发明的示例性实施例之前,先解释一下本发明的基本构思。在制造液晶显示装置的方法中,根据本发明,在制造具有在有源矩阵基板和反基板之间的液晶层的液晶显示装置的方法中,在有源矩阵基板上形成绝缘膜。另外,在绝缘膜上形成导电膜。进一步,通过构图导电膜形成于多个导电图形。进一步,形成光致抗蚀剂膜,所述膜覆盖至少所述多个导电图形及其附近区域。另外,通过使用光致抗蚀剂膜作为掩模蚀刻存在于有源矩阵基板上的导电图形的剩余图形。本发明包括上述的步骤。
此处,作为形成于有源矩阵基板上的绝缘膜的例子,可以考虑栅绝缘膜。另外,作为通过构图导电膜形成的多个导电图形的例子,可以考虑源及漏电极和漏极线。
下面开始参照附图描述本发明的第一个示例性实施例制造液晶显示装置的方法。第一个示例性实施例是将本发明应用于板内切换(IPS)型液晶显示装置的例子。
如图1A和3A所示,首先在整个玻璃基板101上形成导电膜,并且如图1A和3C所示,通过构图该膜形成栅电极102、栅极线103、公共电极104和公共线105。如图1A所示,栅电极102与栅极线103被形成为一片,并且通过对栅极线103分支形成栅电极102。进一步,公共电极104与公共线105被形成为一片,并且通过对公共线105分支形成公共电极104。之后形成栅绝缘膜106,其覆盖这些电极和线以及玻璃基板101。
之后顺序形成未掺杂的a-Si(非晶硅)半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,对这些膜进行构图以形成岛形半导体膜107和保护膜108。半导体膜107被布置于栅电极102上面的栅绝缘膜106上。如图3A所示,保护膜108被布置于栅极线103与漏极线113交叉的区域中的栅绝缘膜106上。保护膜108被布置于稍后形成的漏极线113与栅极线103交叉的区域中以提高栅极线103和漏极线113之间的静电电阻。另外,提供保护膜108以防止漏极线113由于栅极线103导致的电平差而被切断。
之后,以覆盖栅绝缘膜106、半导体膜107和保护膜108的方式形成导电膜。在对该膜构图之后,如图1A所示,形成了源电极109、源极线110、象素电极111、漏电极112和漏极线113。在此点上,除去源电极109和漏电极112之间暴露的半导体膜107中的n+半导体膜,由此利用介于其间的沟道区隔离源和漏区。进一步,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的上表面的一部分。
薄膜晶体管(TFT)114包括栅电极102、栅绝缘膜106、半导体膜107、源电极109和漏电极112。如图1A所示,源电极109、源极线110和象素电极111被形成为一片,并且通过对源极线110进行分支而形成多个象素电极111。另外,漏电极112和漏极线113被形成为一片,并且通过对漏极线113进行分支而形成漏电极112。象素电极111和公共电极104相互交替平行布置,并使得栅绝缘膜106介于其间。通过在象素电极111和公共电极104之间施加电压,液晶层中的液晶分子在平坦表面中被旋转以控制显示。
接下去,如图1B和3B所示,形成用于修复的光致抗蚀剂膜115。以至少覆盖源电极109、源极线110、象素电极111、漏电极112、漏极线113、半导体膜107和保护膜108以及进一步覆盖它们附近的栅绝缘膜106的方式形成光致抗蚀剂膜115。光致抗蚀剂膜115具有对应于多个导电图形的轮廓外形并且覆盖源电极109、源极线110、象素电极111、漏电极112、漏极线113、半导体膜107和保护膜108的轮廓外形。光致抗蚀剂膜115还覆盖延伸横过导电图形的剩余图形117。
接下去,通过使用光致抗蚀剂膜115作为掩模顺序执行湿及干蚀刻。通过该蚀刻,未被光致抗蚀剂膜115覆盖且存在于栅绝缘膜106上的剩余图形便被蚀刻。进一步,如图3C所示,在光致抗蚀剂膜115不覆盖的区域中的栅绝缘膜106被蚀刻。由此,在栅绝缘膜106的上表面上形成凹进部分106a。
下面将描述第一示例性实施例的制造方法,假定一种如剩余图形之类的图形缺陷出现的状态。首先,在整个玻璃基板101上形成导电膜。通过构图该膜,如图2A和3A所示,形成栅电极102、栅极线103、公共电极104和公共线105。如图2A所示,栅电极102和栅极线103被形成为一片,并且通过对栅极线103进行分支而形成栅电极102。另外,公共电极104与公共线105被形成为一片,并且通过对公共线105分支形成公共电极104。之后以覆盖这些电极和线以及玻璃基板101的方式形成栅绝缘膜106。作为栅绝缘膜106,使用的是例如厚度在300nm至600nm之间的SiNx膜,SiNx膜通过CVD方法形成。进一步,通过顺序形成未掺杂的a-Si半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,使用光刻技术对这些膜进行构图,并且形成岛形半导体膜107和保护膜108。如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光之前附着了未示出的外部物质,则光致抗蚀剂材料会保留在未预见的区域中。如果利用其中光致抗蚀剂材料保留在未预见的区域中的光致抗蚀剂图形来执行对半导体膜的构图,则形成了由半导体膜构成的剩余图形116。
接下去,以覆盖栅绝缘膜106、半导体膜107和保护膜108的方式通过溅射法形成100nm至250nm厚度的Cr膜。通过执行干蚀刻或者湿及干蚀刻两者对该膜进行构图,由此形成源电极109、源极线110、象素电极111、漏电极112和漏极线113,如图2A所示。在湿蚀刻中,使用例如硝酸根混合酸作为蚀刻剂。在干蚀刻中,使用例如氯和氧混合气体作为蚀刻气体。在此点上,除去源电极109和漏电极112之间暴露的半导体膜107中的n+半导体膜,由此利用介于其间的沟道区隔离源和漏区。另外,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的表面的一部分。
如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光之前附着了未示出的外部物质,则光致抗蚀剂材料会保留在未预见的区域中。如果利用其中光致抗蚀剂保留在未预见的区域中的光致抗蚀剂图形来执行对Cr膜的构图,则形成了由Cr膜构成的剩余图形117。在图2A中,常规的象素电极111和漏极线113的轮廓以及剩余图形117的轮廓被画成分离的构图以便于理解。事实上,由于对一片Cr膜进行构图并且形成象素电极111、漏极线113和剩余图形117,因此它们在相同的层中被形成为一片。
此处,将详细介绍由附着的外部物质导致的图形缺陷。外部物质由操作者、生产设备、光致抗蚀剂膜等产生。其尺寸被假定为3微米或更多。如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光以构图之前附着了这样的外部物质,则光致抗蚀剂材料保留在未预见的区域中。因此,利用其中光致抗蚀剂保留的光致抗蚀剂图形来执行构图,从而形成了半导体膜的剩余图形116和Cr膜的剩余图形117。在附图中,这些剩余图形116和117被略微夸大地显示以便于理解。在图2A中,在源极线110之下形成了一定的剩余图形116,并且在漏极线113之下形成了其它的剩余图形116。进一步,一定的剩余图形117以延伸横过三个象素电极111的方式存在,并且这些象素电极被剩余图形117短路。此外,另一种剩余图形117以延伸横过一个象素电极111和漏极线113的方式存在,并且它们被该剩余图形117短路。
之后,如图2B和3B所示,形成用于修复的光致抗蚀剂膜115。以至少覆盖源电极109、源极线110、象素电极111、漏电极112、漏极线113、半导体膜107和保护膜108以及进一步覆盖它们附近的栅绝缘膜106的方式形成光致抗蚀剂膜115。具体地,以从这些电极和线以及半导体膜的外边缘延伸出仅0.25微米至1.0微米以及覆盖它们附近的栅绝缘膜106的方式形成光致抗蚀剂膜115。例如,以使其宽度仅比各个电极或线的宽度宽仅0.5微米至1.0微米的方式,在用于曝光光致抗蚀剂膜的光掩模上形成覆盖各个电极或线的光致抗蚀剂膜。
接下去,通过使用光致抗蚀剂膜115作为掩模来顺序执行湿及干蚀刻。这是为除去Cr膜的剩余图形117的蚀刻。在湿蚀刻中,使用例如硝酸根混合酸作为蚀刻剂。在干蚀刻中,使用例如氯和氧混合气体作为蚀刻气体。在这种方式中,为什么顺序使用所述蚀刻的原因如下通过单独使用湿蚀刻,光致抗蚀剂膜115膨胀,由此引起脱落或构图损失,其导致后续步骤的蚀刻中的缺陷。另外,通过单独使用干蚀刻,在光致抗蚀剂膜115中导致尺寸的减少,并且可能常规的构图如源电极109、源极线110、象素电极111、漏电极112和漏极线113也被蚀刻。另外,干蚀刻被确定为不能执行三次或三次以上。
由于这些蚀刻,如图2C所示,在未覆盖光致抗蚀剂膜115的区域中剩余图形117被除去。由于这个原因,以延伸横过多个象素电极111的方式存在的大部分剩余图形117被除去,由此使其成为微小的剩余图形117a。象素电极111在有必要隔离的区域被隔离。另外,以延伸横过象素电极111和漏极线113的方式存在的大部分剩余图形117被除去,由此使其成为微小的剩余图形117a。象素电极111和漏极线113被隔离。
接下去,通过使用光致抗蚀剂膜115作为掩模执行干蚀刻。这是用于除去半导体膜的剩余图形116的蚀刻。例如,SF6和He的混合气体被用作蚀刻气体。由于该蚀刻,以延伸于源极线110之下和漏极线113之下的方式存在的大部分剩余图形116被除去,由此使剩余图形116成为微小的剩余图形116a。图2C显示了除去光致抗蚀剂膜115之后的状态。
另外,由于利用光致抗蚀剂膜115作为掩模进行的蚀刻,如图3C所示,在光致抗蚀剂膜115不覆盖的区域中的栅绝缘膜106被蚀刻大约25nm,由此在栅绝缘膜106的表面上形成凹进部分106a。栅绝缘膜106的厚度被略厚地形成,以预期由于该蚀刻造成的减少量。由于以这种方式考虑的设计和制造,可以防止归因于膜厚减少的着色现象的发生,在该现象中,由于改变了背光的透射光谱,在平板显示器上着色为红色。
之后,类似于制造传统的IPS型液晶显示装置的方法,IPS型液晶显示装置如图4A所示被完成。下面给出简要的说明,在如上所述的有源矩阵基板10的表面上形成定向膜11。在反基板12的表面上的显示区域内的象素之间的区域中形成矩阵形或条形的屏蔽膜13。在由屏蔽膜13包围的象素区域的各个范围内布置滤色器。滤色器由红色层14R、绿色层14G和蓝色层14B构成。进一步,在滤色器和屏蔽膜13的表面上形成定向膜11。另外,有源矩阵基板10和反基板12以保持液晶层15的状态被结合,由此完成本实施例的液晶显示装置。
根据本实施例,在对源电极109、源极线110、象素电极111、漏电极112和漏极线113进行构图之后通过使用光致抗蚀剂膜115作为掩模执行蚀刻。由于该蚀刻,除去了在构图源电极109、源极线110、象素电极111、漏电极112和漏极线113时形成的大部分剩余图形117,由此使得剩余图形117剩余为微小的剩余图形117a。因为除去了不必要的剩余图形117,因此便解决了相邻的线和电极之间的短路。因此使得解决由外部物质造成的图形缺陷成为可能。另外,由于使用光致抗蚀剂膜115作为掩模执行蚀刻,除去了在构图半导体膜107和保护膜108时形成的剩余图形116,由此使得剩余图形116变为微小的剩余图形116a。因为除去了不必要的剩余图形116,因此使得相邻的线和电极之间的短路的可能性变得更小,因此使得可以解决由外部物质造成的图形缺陷。
另外,在本实施例中,因为几个区域中的剩余图形117被一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,因为使用同样的掩模对几个区域中的剩余图形116一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,在本实施例中,因为使用同样的光致抗蚀剂膜115作为掩模对剩余图形116和117进行蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。
应当注意,因为在象素电极111和公共电极104之间施加了电压,因此本实施例的液晶显示装置被配置通过旋转平坦表面中的液晶层中的液晶分子来执行显示控制。在附图2C中,尽管微小的剩余图形117a保留在象素电极111的外边缘上,因为剩余图形117a是微小的,因此它们在显示器上不会被识别,不会存在问题。另外,因为剩余图形117a是微小的,因此在亮度特性方面不会存在问题。
下面将参照附图描述本发明的第二个示例性实施例的制造液晶显示装置的方法。第二个示例性实施例是将本发明应用于制造扭曲向列(TN)型液晶显示装置的方法的例子。
首先在整个玻璃基板201上形成导电膜。并且如图5A和6E所示,通过构图该膜形成栅电极202、栅极线203和公共线205。如图5A所示,栅电极202与栅极线203被形成为一片,并且通过对栅极线203分支形成栅电极202。之后形成覆盖这些电极和线以及玻璃基板201的栅绝缘膜206。
进一步,顺序淀积未掺杂的a-Si半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,对这些膜进行构图并且形成岛形半导体膜207和保护膜208。半导体膜207被布置于栅电极202上面的栅绝缘膜206上。保护膜208被布置于稍后形成的漏极线213与栅极线203交叉的区域中以提高栅极线203和漏极线213的静电电阻。另外,提供保护膜208以防止漏极线213由于栅极线203导致的电平差而被切断。
接下去,以覆盖栅绝缘膜206、半导体膜207和保护膜208的方式形成导电膜。通过对该膜构图,如图5A所示,形成了源电极209、源极线210、漏电极212和漏极线213。在此点上,除去源电极209和漏电极212之间暴露的半导体膜207中的n+半导体膜,由此利用介于其间的沟道区隔离源及漏区。进一步,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的表面的一部分。
薄膜晶体管(TFT)214包括栅电极202、栅绝缘膜206、半导体膜207、源电极209和漏电极212。如图5A所示,源电极209和源极线210被形成为一片。另外,漏电极212和漏极线213被形成为一片,并且通过对漏极线213进行分支而形成漏电极212。
接下去,如图5B和6F所示,形成用于修复的光致抗蚀剂膜215。以至少覆盖源电极209、源极线210、漏电极212、漏极线213、半导体膜207和保护膜208以及进一步覆盖它们附近的栅绝缘膜206的方式形成光致抗蚀剂膜215。光致抗蚀剂膜215具有对应于多个导电图形的轮廓外形并且覆盖源电极209、源极线210、漏电极212、漏极线213、半导体膜207和保护膜208的轮廓外形。光致抗蚀剂膜215还覆盖延伸横过导电图形的剩余图形217。
接下去,通过使用光致抗蚀剂膜215作为掩模顺序执行湿及干蚀刻。由于该蚀刻,未被光致抗蚀剂膜215覆盖且存在于栅绝缘膜206上的剩余图形便被蚀刻掉。进一步,如图6G所示,在光致抗蚀剂膜215不覆盖的区域中的栅绝缘膜206被蚀刻,由此在栅绝缘膜206的表面上形成凹进部分206a。
接下去,如图6H所示,整个形成层间绝缘膜218。另外,如图6I所示,在层间绝缘膜218中形成接触孔219。进一步,如图5C和6I所示,在层间绝缘膜218上形成象素电极220,由此其通过接触孔219电连接于源电极209。
下面将描述第二示例性实施例的制造方法,假定一种如剩余图形之类的图形缺陷出现的状态。首先,在整个玻璃基板201上形成导电膜。通过构图该膜,如图6A和6E所示,形成栅电极202、栅极线203和公共电极205。如图6A所示,栅电极202和栅极线203被形成为一片,并且通过对栅极线203进行分支而形成栅电极202。之后以覆盖这些电极和线以及玻璃基板201的方式形成栅绝缘膜206。使用例如厚度在300nm至600nm之间的SiNx膜作为栅绝缘膜206,该膜通过CVD方法形成。进一步,顺序淀积未掺杂的a-Si半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,使用对这些膜进行构图,并且形成岛形半导体膜207和保护膜208。如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光之前附着了未示出的外部物质,则光致抗蚀剂材料保留在未预见的区域中。如果利用其中光致抗蚀剂保留在未预见的区域中的光致抗蚀剂图形来执行对半导体膜的构图,则形成了由半导体膜构成的剩余图形216。
接下去,以覆盖栅绝缘膜206、半导体膜207和保护膜208的方式通过溅射法形成100nm至250nm厚度的Cr膜。通过顺序执行湿及干蚀刻对该膜进行构图。如图6A所示,形成源电极209、源极线210、漏电极212和漏极线213。在此点上,除去源电极209和漏电极212之间暴露的半导体膜207中的n+半导体膜,由此利用介于其间的沟道区隔离源和漏区。进一步,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的表面的一部分。
如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光之前附着了未示出的外部物质,则光致抗蚀剂材料保留在未预见的区域中。如果利用其中光致抗蚀剂保留在未预见的区域中的光致抗蚀剂图形来执行对Cr膜的构图,则形成了由Cr膜构成的剩余图形217。在图6A中,常规的源极线210和漏极线213的轮廓以及剩余图形217的轮廓被画成分离的构图以便于理解。事实上,由于对一片Cr膜进行构图并且形成源极线210、漏极线213和剩余图形217。因此它们在相同的层中被形成为一片。
此处,将详细介绍由附着的外部物质导致的图形缺陷。外部物质由操作者、生产设备、光致抗蚀剂膜等产生。其尺寸被假定为3微米或更多。如果在涂覆光致抗蚀剂材料或者对该光致抗蚀剂材料曝光以构图之前附着了这样的外部物质,则光致抗蚀剂材料保留在未预见的区域中。因此,利用其中光致抗蚀剂保留的光致抗蚀剂图形来执行构图。因此形成了半导体膜的剩余图形216和Cr膜的剩余图形217。剩余图形216和217被略微夸大地显示以便于理解。在图6A中,一种剩余图形216以延伸于源极线210和漏极线213之下的方式存在。另外的剩余图形217以延伸横过源极线210和漏极线213的方式存在,并且它们被剩余图形217短路。
之后,如图6B和6F所示,形成用于修复的光致抗蚀剂膜215。以至少覆盖源电极209、源极线210、漏电极212、漏极线213、半导体膜207和保护膜208以及进一步覆盖它们附近的栅绝缘膜206的方式形成光致抗蚀剂膜215。具体地,光致抗蚀剂膜215从这些电极和线以及半导体膜的外边缘向外延伸仅0.25微米至1.0微米。例如,以使其宽度仅比各个电极或线的宽度宽仅0.5微米至1.0微米的方式,在用于曝光光致抗蚀剂膜的光掩模上形成覆盖各个电极和线的光致抗蚀剂膜。
接下去,通过使用光致抗蚀剂膜215作为掩模来顺序执行湿及干蚀刻。这是为除去Cr膜的剩余图形217的蚀刻。在湿蚀刻中,使用例如硝酸根混合酸作为蚀刻剂。在干蚀刻中,使用例如氯和氧混合气体作为蚀刻气体。为什么以这种方式顺序执行蚀刻的原因已在第一个实施例中进行了解释。由于这种蚀刻,如图6C所示,在未覆盖光致抗蚀剂膜215的区域中剩余图形217被除去。由于这个原因,以延伸横过源极线210和漏极线213的方式存在的大部分剩余图形217被除去,由此使其剩余为微小的剩余图形217a。源极线210和漏极线213被隔离。
使用光致抗蚀剂膜215作为掩模执行干蚀刻。这是用于除去半导体膜的剩余图形216的蚀刻。例如,SF6和He的混合气体被用作蚀刻气体。由于该蚀刻,以延伸于源极线210和漏极线213之下的方式存在的大部分剩余图形216被除去,由此使其剩余为成为微小的剩余图形216a。图6C显示了除去光致抗蚀剂膜215之后的状态。
另外,由于利用光致抗蚀剂膜215作为掩模进行的蚀刻,如图6C所示,在光致抗蚀剂膜215不覆盖的区域中的栅绝缘膜206被蚀刻大约25nm,并且在栅绝缘膜206的表面上形成凹进部分206a。栅绝缘膜206的厚度被略厚地形成,以预期由于该蚀刻造成的减少量。由于以这种方式考虑的设计和制造,可以防止归因于膜厚减少的着色现象的发生,在该现象中,由于改变了背光的透射光谱,在平板显示器上着色为红色。
之后,类似于制造传统的TN型液晶显示装置的方法,TN型液晶显示装置如图4B所示被完成。下面给出简要的说明,在如上所述的有源矩阵基板20的表面上形成定向膜21。在反基板22的表面上的显示区域内的象素之间的区域中形成矩阵形或条形的屏蔽膜23。在由屏蔽膜23包围的象素区域的各个范围内布置滤色器。滤色器由红色层24R、绿色层24G和蓝色层24B构成。进一步,在滤色器和屏蔽膜23的表面上形成反电极25。另外,有源矩阵基板20和反基板22以保持液晶层26的状态被结合,由此完成本实施例的液晶显示装置。在该TN型液晶显示装置中,在有源矩阵基板20的象素电极和反基板22的反电极25之间施加电压。因此,该液晶层中的液晶分子的角度得以控制,并且执行显示。
根据本实施例,在对源电极209、源极线210、漏电极212和漏极线213进行构图之后通过使用光致抗蚀剂膜215作为掩模执行蚀刻。由于该蚀刻,除去了在构图源电极209、源极线210、漏电极212和漏极线213时形成的大部分剩余图形217,并且剩余部分变为微小的剩余图形217a。因为除去了不必要的剩余图形217,因此相邻的线和电极之间的短路不会发生。因此使得解决由外部物质造成的图形缺陷成为可能。另外,由于使用光致抗蚀剂膜215作为掩模执行蚀刻,蚀刻了在构图半导体膜207和保护膜208时形成的剩余图形216,由此使得它们变为微小的剩余图形216a。因为除去了不必要的剩余图形216,因此相邻的线和电极之间的短路不会发生。因此使得可以解决由外部物质造成的图形缺陷。
另外,在本实施例中,因为几个区域中的剩余图形217被一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,因为使用同样的掩模对多个区域中的剩余图形216一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,在本实施例中,因为使用同样的光致抗蚀剂膜215作为掩模对剩余图形216和217进行蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。
下面开始参照附图描述本发明的第三个示例性实施例的制造液晶显示装置的方法。第三个示例性实施例是将本发明应用于制造板内切换(IPS)型液晶显示装置的方法的例子。
尽管第一个实施例的IPS型液晶显示装置具有其中象素电极被设置在与公共电极不同的层中的结构,但是第三个实施例的IPS型液晶显示装置具有其中象素电极被设置在与公共电极相同的层中的结构。
首先在整个玻璃基板301上形成导电膜。并且如图7A和8E所示,通过构图该膜形成栅电极302、栅极线303和公共线305。如图7A所示,栅电极302与栅极线303被形成为一片,并且通过对栅极线303分支形成栅电极302。之后以覆盖这些电极和线以及玻璃基板301的方式形成栅绝缘膜306。
进一步,顺序淀积未掺杂的a-Si半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,对这些膜进行构图并形成岛形半导体膜307和保护膜308。半导体膜307被布置于栅电极302上面的栅绝缘膜306上。保护膜308被布置于稍后形成的漏极线313与栅极线303交叉的区域中以提高栅极线303和漏极线313的静电电阻。另外,提供保护膜308以防止漏极线313由于栅极线303导致的电平差而被切断。
之后,以覆盖栅绝缘膜306、半导体膜307和保护膜308的方式形成导电膜。通过对该膜构图,如图7A所示,形成了源电极309、源极线310、漏电极312和漏极线313。在此点上,除去源电极309和漏电极312之间暴露的半导体膜307中的n+半导体膜,由此利用介于其间的沟道区隔离源和漏区。进一步,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的表面的一部分。
薄膜晶体管(TFT)314包括栅电极302、栅绝缘膜306、半导体膜307、源电极309和漏电极312。如图7A所示,源电极309和源极线310被形成为一片。另外,漏电极312和漏极线313被形成为一片,并且通过对漏极线313进行分支而形成漏电极312。
接下去,如图7B和8F所示,形成用于修复的光致抗蚀剂膜315。以至少覆盖源电极309、源极线310、漏电极312、漏极线313、半导体膜307和保护膜308以及进一步覆盖它们附近的栅绝缘膜306的方式形成光致抗蚀剂膜315。光致抗蚀剂膜315具有对应于多个导电图形的轮廓外形并且覆盖源电极309、源极线310、漏电极312、漏极线313、半导体膜307和保护膜308的轮廓外形。光致抗蚀剂膜315还覆盖延伸横过导电图形的剩余图形317。
接下去,通过使用光致抗蚀剂膜315作为掩模顺序执行湿及干蚀刻。由于该蚀刻,存在于栅绝缘膜306上的剩余图形便被蚀刻。进一步,由于该蚀刻,如图8G所示,在光致抗蚀剂膜315不覆盖的区域中的栅绝缘膜306被蚀刻,并且在栅绝缘膜306的表面上形成凹进部分306a。
接下去,如图8H所示,整个形成层间绝缘膜318。另外,如图8I所示,在层间绝缘膜318中形成延伸至源极线310的接触孔319a。在此点处,形成了穿过层间绝缘膜318和栅绝缘膜306的未示出的接触孔。另外,在层间绝缘膜318上形成如ITO这样的透明导电膜。通过构图该膜,如图7C和8I所示,在层间绝缘膜318上形成象素电极320,由此其通过接触孔319a与源电极309电连接。在此点处,在层间绝缘膜318上形成公共电极321,由此其通过未示出的接触孔电连接于公共线305。象素电极320和公共电极321在层间绝缘膜318上以相互平行的方式交替布置。在象素电极320和公共电极321上施加电压。因此,液晶层中的液晶分子在平坦平面内旋转,由此执行显示控制。
下面将如剩余图形之类的图形缺陷出现的状态描述第三示例性实施例的制造方法。首先,在整个玻璃基板301上形成导电膜。通过构图该膜,如图8A和8E所示,形成栅电极302、栅极线303、公共线105。如图8A所示,栅电极302和栅极线303被形成为一片,并且通过对栅极线303进行分支而形成栅电极302。之后以覆盖这些电极和线以及玻璃基板301的方式形成栅绝缘膜306。例如使用厚度在300nm至600nm之间的SiNx膜作为栅绝缘膜306,该膜通过CVD方法形成。进一步,通过顺序淀积未掺杂的a-Si半导体膜和掺杂了n型杂质的n+半导体膜以形成多层结构。之后,对这些膜进行构图,并且形成岛形半导体膜307和保护膜308。如果在涂覆或者曝光之前附着了外部物质,则光致抗蚀剂材料保留在未预见的区域中。如果利用其中光致抗蚀剂保留的光致抗蚀剂图形来执行构图,则形成了半导体膜的剩余图形316。
接下去,以覆盖栅绝缘膜306、半导体膜307和保护膜308的方式通过溅射法形成100nm至250nm厚度的Cr膜。通过顺序执行湿及干蚀刻对该膜进行构图。如图8A所示,形成源电极309、源极线310、漏电极312和漏极线313。在此点上,除去源电极309和漏电极312之间暴露的半导体膜307中的n+半导体膜,由此利用介于其间的沟道区隔离源和漏区。另外,当除去n+半导体膜时,也除去未掺杂的a-Si半导体膜的表面的一部分。
如果在涂覆或者曝光以构图该Cr膜之前附着了未示出的外部物质,则光致抗蚀剂材料保留在未预见的区域中。如果利用其中光致抗蚀剂保留的光致抗蚀剂图形来执行构图,则形成了Cr膜的剩余图形317。在图8A中,常规的源极线310和漏极线313的轮廓以及剩余图形317的轮廓被画成分离的构图以便于理解。事实上,构图是对一片Cr膜进行的并且形成源极线310、漏极线313和剩余图形317。因此它们在相同的层中被形成为一片。
此处,将详细介绍由附着的外部物质导致的图形缺陷。外部物质由操作者、生产设备、光致抗蚀剂膜等产生。其尺寸被假定为3微米或更多。如果在涂覆或者曝光以构图之前附着了这样的外部物质,则光致抗蚀剂材料保留在未预见的区域中。因此,利用其中光致抗蚀剂保留的光致抗蚀剂图形来执行构图,从而形成了半导体膜的剩余图形316和Cr膜的剩余图形317。剩余图形316和317被略微夸大地显示以便于理解。在图8A中,剩余图形316以延伸于源极线310和漏极线313之下的方式存在。此外,另外的剩余图形317以延伸横过源极线310和漏极线313的方式存在,并且它们被该剩余图形317短路。
之后,如图8B和8F所示,形成用于修复的光致抗蚀剂膜315。以至少覆盖源电极309、源极线310、漏电极312、漏极线313、半导体膜307和保护膜308以及进一步覆盖它们附近的栅绝缘膜306的方式形成光致抗蚀剂膜315。具体地,光致抗蚀剂膜315从这些电极和线以及半导体膜的外边缘延伸出仅0.25微米至1.0微米并且形成光致抗蚀剂膜315以覆盖它们附近的栅绝缘膜306。例如,以使其宽度仅比各个电极或线的宽度宽仅0.5微米至1.0微米的方式,形成覆盖各个电极或线的光致抗蚀剂膜。
接下去,通过使用光致抗蚀剂膜315作为掩模来顺序执行湿及干蚀刻。这是为除去Cr膜的剩余图形317的蚀刻。在湿蚀刻中,使用例如硝酸根混合酸作为蚀刻剂。在干蚀刻中,使用例如氯和氧混合气体作为蚀刻气体。为什么以这种方式顺序执行蚀刻的原因已在第一个实施例中进行了解释。由于这些蚀刻,如图8C所示,在未覆盖光致抗蚀剂膜315的区域中剩余图形317被除去。由于这个原因,以延伸横过源极线310和漏极线313的方式存在的大部分剩余图形317被除去,由此使其剩余为微小的剩余图形317a。源极线310和漏极线313被隔离。
接下去,通过使用光致抗蚀剂膜315作为掩模执行干蚀刻。这是用于除去半导体膜的剩余图形316的蚀刻。例如,SF6和He的混合气体被用作蚀刻气体。由于该蚀刻,以延伸于源极线310和漏极线313之下的方式存在的大部分剩余图形316被除去,由此使其剩余为微小的剩余图形316a。图8C显示了除去光致抗蚀剂膜315之后的状态。
另外,由于利用光致抗蚀剂膜315作为掩模进行的蚀刻,如图8G所示,在光致抗蚀剂膜315不覆盖的区域中的栅绝缘膜306被蚀刻大约25nm,并且在栅绝缘膜306的表面上形成凹进部分306a。栅绝缘膜306的厚度被略厚地形成,以预期由于该蚀刻造成的减少量。由于以这种方式考虑的设计和制造,可以防止归因于膜厚减少的着色现象的发生,在该现象中,由于改变了背光的透射光谱,在平板显示器上着色为红色。
之后,如图8H所示,整个形成层间绝缘膜318。另外,如图8I所示,在层间绝缘膜318中形成接触孔319a。另外,如图8I所示,在层间绝缘膜318上形成延伸至源极线310的接触孔319a。在此点处,形成穿过层间绝缘膜318和栅绝缘膜306的未示出的接触孔。另外,在层间绝缘膜318上形成如ITO这样的透明导电膜。通过构图该膜,如图7C和8I所示,在层间绝缘膜318上形成象素电极320,由此其通过接触孔319a与源电极309电连接。在此点处,在层间绝缘膜318上形成公共电极321,由此其通过未示出的接触孔电连接于公共线305。
之后,类似于制造传统的IPS型液晶显示装置的方法,IPS型液晶显示装置如图4A所示被完成。下面给出简要的说明,在如上所述的有源矩阵基板10的表面上形成定向膜11。在显示区域内的象素之间的区域中的反基板12的表面上形成矩阵形或条形的屏蔽膜13。在由屏蔽膜13包围的象素区域的各个范围内布置滤色器。滤色器由红色层14R、绿色层14G和蓝色层14B构成。进一步,在滤色器和屏蔽膜13的表面上形成定向膜11。另外,有源矩阵基板10和反基板12以保持液晶层15的状态被结合,由此完成本实施例的液晶显示装置。
根据本实施例,在对源电极309、源极线310、漏电极312和漏极线313进行构图之后通过使用光致抗蚀剂膜315作为掩模执行蚀刻。由于该蚀刻,除去了在构图源电极309、源极线310、漏电极312和漏极线313时形成的大部分剩余图形317,由此剩余部分变为微小的剩余图形317a。因为除去了不必要的剩余图形317,因此相邻的线和电极之间的短路便不会发生。因此使得解决由外部物质造成的图形缺陷成为可能。另外,由于使用光致抗蚀剂膜315作为掩模执行蚀刻,也蚀刻掉了在构图半导体膜307和保护膜308时形成的剩余图形316并且除去了大部分构图,由此使得它们变为微小的剩余图形316a。因为除去了不必要的剩余图形316,在相邻的线和电极之间短路的可能性降低,因此使得可以解决由外部物质造成的图形缺陷。
另外,在本实施例中,因为几个区域中的剩余图形317被一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,因为使用同样的掩模对多个区域中的剩余图形316一起蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。另外,在本实施例中,因为使用同样的光致抗蚀剂膜315作为掩模对剩余图形316和317进行蚀刻,因此可以解决由外部物质造成的图形缺陷,同时尽可能少地增加制造步骤的数量。
如上所述,描述了优选实施例。但是,应当注意,本发明并不限于上述的实施例,各种变化以及对其它结构的应用都是可能的。
在上述的实施例中,描述的情况是Cr膜被用作形成于绝缘膜上的导电膜。但是,也有可能使其为另一种材料或层结构。例如,可以考虑其为Al合金/Mo合金的多层结构。在这一点上,用例如磷酸、醋酸和硝酸的混合蚀刻剂进行湿蚀刻来构图Al合金/Mo合金的多层结构。另外,在后续的蚀刻剩余图形以解决图形缺陷时,也使用磷酸、醋酸和硝酸的混合蚀刻剂进行湿蚀刻。
进一步,作为绝缘膜的例子,描述的情况是SiNx膜被用作栅绝缘膜。但是,也有可能使其为另一种材料或多层结构。例如,可以考虑使用SiNx膜/SiOx膜的多层结构。在此点上,SiNx膜的厚度被假定为例如400nm,SiOx膜的厚度被假定为例如100nm。同样在这种情况下,要考虑栅绝缘膜的表面要被蚀刻的事实来设计膜的厚度。
进一步,在上述的实施例中,描述的情况是应用于有源矩阵基板中的显示区。但是,也可以将本发明应用于有源矩阵基板的显示区的邻近的周边区域。在该周边区域中,设置了外部连接终端、上述实施例中采用的栅极线、将公共线连接至漏极线的引线、用于减轻栅和漏极线的静电导致的损害的静电保护电路、在栅极线需要与漏极线交叉的区域中替换布线层的线路替换部分,等等。由附着的外部物质导致的图形缺陷不但可以发生在显示区域,也可以发生在设置了这些部件的周边区域。因此可以将本发明应用于这样的周边区域中的导电图形。由于这样的应用,除去了导电图形的大部分剩余图形,由此使得剩余图形微小。因为这样,可以解决由附着的外部物质导致的图形缺陷。另外,可以解决由附着的外部物质导致的图形缺陷,而不很大程度地增加制造步骤的数量。
另外,本发明可以用一个掩模同时蚀刻显示区中的剩余图形和周边区域中的剩余图形,由此使得可以解决由外部物质导致的图形缺陷而不很多程度地增加制造步骤的数量。即使在显示或周边区域中的栅绝缘膜上存在很多剩余图形,本发明也可以一并同时去除它们,由此使得剩余图形微小。因此可以一并解决由外部物质导致的图形缺陷。
另外,标识本发明特征的使用光致抗蚀剂膜115、215和315的蚀刻并不是根据执行检查以在必要处检测图形缺陷或显示缺陷而获得的结果执行的,而是优选地在所有制造的有源矩阵基板上无条件地执行。由于这种蚀刻,可以使得栅绝缘膜的厚度在大规模生产过程中制造的多个有源矩阵基板时间是相同的。因此,可以使得背光的透射光谱的偏移量相同,该偏移量由厚度的差异导致。因此,可以消除制造的多个有源矩阵基板之间的颜色变化。
另外,在上述的实施例中,描述了其中以夹持液晶层的状态将有源矩阵基板与反基板结合的制造方法。但是,也可以使用在结合了有源矩阵基板和反基板之后在基板之间注入液晶材料的方法。
尽管已经参照附图描述了本发明的优选实施例,但是对于本领域的技术人员很显然,在不脱离本发明的实际范围的情况下,可以进行各种变更和修改。
权利要求
1.一种制造液晶显示装置的方法,所述液晶显示装置在有源矩阵基板和反基板之间夹持有液晶层,所述方法包括如下步骤在有源矩阵基板上形成绝缘膜;通过在绝缘膜上形成导电膜并且构图该膜形成多个导电图形;形成光致抗蚀剂膜,其具有对应于所述多个导电图形的轮廓外形并覆盖至少所述多个导电图形的轮廓外形,并且其覆盖所述多个导电图形附近的所述绝缘膜;并且通过使用光致抗蚀剂膜作为掩模蚀刻未被光致抗蚀剂膜覆盖、位于光致抗蚀剂膜的轮廓外形之外并且存在于所述有源矩阵基板上的剩余图形。
2.根据权利要求1的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
3.根据权利要求1的制造液晶显示装置的方法,其中,在使用光致抗蚀剂膜作为掩模的蚀刻中,在光致抗蚀剂膜未覆盖的区域中的所述绝缘膜的表面被蚀刻,由此形成邻近于所述光致抗蚀剂膜的轮廓的凹进部分。
4.根据权利要求3的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
5.根据权利要求3的制造液晶显示装置的方法,其中形成半导体膜,在所述半导体膜中,薄膜晶体管的沟道区被形成于栅绝缘膜和源及漏电极之间;并且通过使用光致抗蚀剂膜作为掩模顺序执行除去导电图形的剩余图形的第一蚀刻和除去半导体图形的剩余图形的第二蚀刻。
6.根据权利要求1的制造液晶显示装置的方法,其中,利用光致抗蚀剂膜作为掩模的蚀刻是其中湿及干蚀刻被顺序使用的蚀刻。
7.根据权利要求6的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
8.根据权利要求6的制造液晶显示装置的方法,其中,在使用光致抗蚀剂膜作为掩模的蚀刻中,在光致抗蚀剂膜未覆盖的区域中的所述绝缘膜的表面被蚀刻,由此形成邻近于所述光致抗蚀剂膜的轮廓的凹进部分。
9.根据权利要求8的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
10.根据权利要求8的制造液晶显示装置的方法,其中形成半导体膜,在所述半导体膜中,薄膜晶体管的沟道区被形成于栅绝缘膜和源及漏电极之间;并且通过使用光致抗蚀剂膜作为掩模顺序执行除去导电图形的第一剩余图形的第一蚀刻和除去半导体膜的第二剩余图形的第二蚀刻,并且第一剩余图形位于第一级别的第一位置处,第二剩余图形位于比第一级别更深的第二级别的第二位置处。
11.根据权利要求1的制造液晶显示装置的方法,其中所述绝缘膜是栅绝缘膜;并且所述导电图形是形成于所述栅绝缘膜之上的源和漏电极以及漏极线。
12.根据权利要求11的制造液晶显示装置的方法,其中形成半导体膜,在所述半导体膜中,薄膜晶体管的沟道区被形成于栅绝缘膜和源及漏电极之间;并且通过使用光致抗蚀剂膜作为掩模顺序执行除去导电图形的第一剩余图形的第一蚀刻和除去半导体膜的第二剩余图形的第二蚀刻,并且第一剩余图形位于第一级别的第一位置处,第二剩余图形位于比第一级别更深的第二级别的第二位置处。
13.根据权利要求11的制造液晶显示装置的方法,其中,在使用光致抗蚀剂膜作为掩模的蚀刻中,在光致抗蚀剂膜未覆盖的区域中的所述绝缘膜的表面被蚀刻,由此形成邻近于所述光致抗蚀剂膜的轮廓的凹进部分。
14.根据权利要求13的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
15.根据权利要求13的制造液晶显示装置的方法,其中形成半导体膜,在所述半导体膜中,薄膜晶体管的沟道区被形成于栅绝缘膜和源及漏电极之间;并且通过使用光致抗蚀剂膜作为掩模顺序执行除去导电图形的剩余图形的第一蚀刻和除去半导体膜的剩余图形的第二蚀刻。
16.根据权利要求11的制造液晶显示装置的方法,其中,利用光致抗蚀剂膜作为掩模的蚀刻是其中湿及干蚀刻被顺序使用且所述湿蚀刻之后为所述干蚀刻的蚀刻。
17.根据权利要求16的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
18.根据权利要求16的制造液晶显示装置的方法,其中,在使用光致抗蚀剂膜作为掩模的蚀刻中,在光致抗蚀剂膜未覆盖的区域中的所述绝缘膜的表面被蚀刻,由此形成邻近于所述光致抗蚀剂膜的轮廓的凹进部分。
19.根据权利要求18的制造液晶显示装置的方法,进一步包括在除去光致抗蚀剂膜之后的如下步骤形成覆盖所述绝缘膜和所述导电图形的层间绝缘膜;在所述层间绝缘膜中形成延伸至导电图形的接触孔;和在所述层间绝缘膜上形成象素电极并且通过所述接触孔将所述象素电极电连接于所述导电图形。
20.根据权利要求18的制造液晶显示装置的方法,其中形成半导体膜,在所述半导体膜中,薄膜晶体管的沟道区被形成于栅绝缘膜和源及漏电极之间;并且通过使用光致抗蚀剂膜作为掩模顺序执行除去导电图形的剩余图形的第一蚀刻和除去半导体膜的剩余图形的第二蚀刻。
全文摘要
公开了一种光致抗蚀剂膜,其以至少覆盖源电极、源极线、象素电极、漏电极、漏极线、半导体膜和保护膜以及进一步覆盖它们附近的栅绝缘膜的方式形成。进一步,使用该光致抗蚀剂膜作为掩模顺序执行湿及干蚀刻。由于这种蚀刻,存在于栅绝缘膜上的剩余图形被蚀刻掉。
文档编号H01L21/027GK1854841SQ20061007730
公开日2006年11月1日 申请日期2006年4月26日 优先权日2005年4月26日
发明者元岛秀人, 下堂园寿, 西本淳二, 堀之内诚, 园畠将一 申请人:Nec液晶技术株式会社
...
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1