臭氧发生器的制作方法

文档序号:7212480阅读:245来源:国知局
专利名称:臭氧发生器的制作方法
技术领域
本发明涉及一种具有叠层的多个平板状高压电极及低压电极并且在其间施加交流电压使其放电生成臭氧气体的平板叠层型臭氧发生装置,特别涉及,作为该平板叠层型臭氧发生装置的主要部分具有高压电极及低压电极并且供给氧气生成臭氧气体的臭氧发生器。
背景技术
图27为例如专利第3113885号“臭氧发生装置用放电单元”所述的以往的臭氧发生器剖面图。以往的氧气发生器如图27所示,将近似平板状的刚性体构成的多个低压电极7在板厚方向重叠并夹住两侧的一对块状体25,通过这样构成多个电极组件的叠层体。电极组件叠层体在电极压板22及底座24之间,利用在叠层方向贯通两侧部分的多个固紧螺栓21固紧。
各电极组件具有上下一对低压电极7、夹在该低压电极7与7之间的两侧的一对块状体25、位于块状体25与25内侧并配置在低压电极7与7之间的电介质单元30、以及设置在电介质单元30的两面用来形成放电间隙6的多个放电间隙形成用的弹性体衬垫26。弹性体衬垫26形成沿相对于纸面沿垂直方向延伸的圆形截面的棒状体。
两侧的一对块状体25是由不锈钢板等导电性板材制成的刚性体,由于通过低压电极7之间的两侧部分,这样,在它们之间形成与块状体厚度相等间隔量的空间。
又,图中将上下方向的尺寸都加以放大,实际厚度例如低压电极7为3mm以下,块状体25为3mm以下,都做得非常薄。
上下一对低压电极7在内部形成冷却水通路9,兼作为散热器。又,在一侧的块状体25中也形成冷却水通路9。然后,低压电极7内的冷却水通路9,为了使作为制冷剂的冷却水流通,通过块状体25而与设置在底座24的冷却水出入口12连通。
又,在低压电极7的与放电间隙6相对的主表面,例如,通过蚀刻等加工形成臭氧气体通路8。该臭氧气体通路8经由块状体25上形成的臭氧气体通路8与设置在底座24的臭氧气体出口11连通。又,在放电间隙6的两侧部分,设置在面向纸面的垂直方向上向放电间隙6供给氧气的氧气入口10。
在由上下一对低压电极7与两侧的一对块状体25包围的空间中所配置的电介质单元30,是在作为电介质的上下一对玻璃5之间夹住高压电极3的、形成的“三明治”结构的薄板状刚性体。高压电极3由不锈钢板等导电性薄板制成,其一部分作为未图示的馈电端被引出到外面。
在电介质单元30的两表面侧上为了形成放电间隙6而设置的放电间隙形成用弹性体衬垫26,是具有耐臭氧性及弹力性的、截面为圆形的细树脂线材,将其以规定间隔配置在放电间隙6内。各衬垫26的厚度(外径)设定为在不压缩的状态下比放电间隙6的各间隙量大5~6%左右。
根据该设定,弹性体衬垫26被低压电极7及电介质单元30从上下压缩,由于该压缩,电介质单元30从上下以相等的压力被弹性按压,并保持在上述空间内的上下方向中央部位。结果,在电介质单元30的两面形成相等间隙量的放电间隙6。
又,在采用刚性体衬垫代替弹性体衬垫26时,采用的刚性体衬垫的直径肯定比在固紧块状体25时所决定的放电间隙长度(放电间隙在叠层方向的高度)要小。因此,在放电间隙中沿叠层方向没有压缩衬垫。
下面说明工作情况。
一旦在低压电极7与高压电极3之间施加交流高电压时,则通过电介质5在放电间隙6产生电介质阻挡(barrier)放电。利用该放电,氧气暂时分离为氧原子,几乎同时该氧原子与其它的氧分子和壁面等引起三体碰撞,生成臭氧气体。利用该组合,通过对放电间隙6连续供给氧气,则通过放电生成臭氧气体能够从臭氧气体出口11作为臭氧化气体连续取出。
在该放电中取出的臭氧发生效率一般最大约为20%。即放电功率的80%用于加热电极而消耗掉。又,臭氧气体的发生效率取决于电极温度(严格讲是放电气体温度),电极温度越低,发生效率越高。因此,通过用冷却水等直接冷却电极,或缩短放电间隙6的间隙长,以抑制放电间隙6中的气体温度上升,而且通过提高电子温度,以提高臭氧生成效率,抑制臭氧分解,结果能够构成高效率取出高浓度臭氧气体的臭氧发生器。
在这样构成的以往的臭氧发生器中,电极的冷却是低压电极7侧的单面冷却,并没有冷却高压电极3。因此,与冷却高低压电极的两面冷却方式相比,投入相同功率时,放电间隙6的气体温度约为4倍左右。而且,由于该气体温度上升,将生成的臭氧进行分解的量增大,因此不能进一步提高投入到电极的放电功率密度,不能高效产生臭氧气体。
又,在采用弹性体衬垫26时,在放电间隙6内存在因放电而具有相当高能量的电子,用有机材料形成的弹性体衬垫26,由于受该放电作用,高能量电子(放电能)碰撞,受到化学键游离的损伤。而且,若连续运行臭氧发生器,则与金属衬垫相比,其缺点在于,衬垫26在短时间内会产生劣化,由于该劣化,就不可能使气体均匀流动,效率急剧下降,装置的寿命缩短。
又,在使用有耐臭氧性的特氟纶(Teflon,登记商标)制的弹性体衬垫时,上述高能量电子(放电能)也会碰撞并受到化学键游离的损伤。再有,即使采用在空气中一般是“阻燃性物质”的物质,而在高浓度臭氧及氧气气氛中也与“可燃性物质”一样,若设置在放电空间直接接触的部分上,则存在的问题在于,由于放电能量的作用,弹性体衬垫的升华反应活化,不能得到纯净的臭氧气体。
又,在采用刚性体衬垫代替弹性体衬垫26时,要进行这样设计,以使得其直径肯定比在通过块状体25进行固紧时所决定的放电间隙长度要小。因此,在想要使放电间隙6形成微小间隙而以产生高浓度臭氧时,与放电气体通路的压力损失(与图27的低面垂直的气体通路的压力损失)相比,以放电间隙形成用衬垫26隔开的间隙的压力损失(放电间隙形成衬垫26与电介质5之间的微小间隙的压力损失)非常小。因此,很难利用放电间隙形成用衬垫26使电流均匀流过。结果存在的问题有,臭氧发生效率下降,不能构成紧凑的臭氧发生器等。
一般,若不使衬垫26形成的间隙的压力损失为在放电通路部分的压力损失的约10倍以上,则不能使气流均匀流过。例如,放电间隙6为0.1mm左右时,对于衬垫26的厚度与放电间隙之间的缝隙,要求非常高的精度。因此,要以这样的精度制成衬垫26并且要不与放电间隙接触而配置,这是非常困难的。由于这样的原因,为了高精度制成衬垫26,成本就会上升,不可能以低价制成装置。
又,在这样构成的以往的臭氧发生器中,由上下一对低压电极7、夹在该低压电极7与7之间的两侧一对块状体25、位于块状体25与25内侧并配置在低压电极7与7之间的电介质单元30、以及设置在电介质单元30的两面用来形成放电间隙6的多个放电间隙形成用的弹性体衬垫26构成电极组件,将多个电极组件隔着低压电极7叠层,作为固定手段,以电极组件两侧位置上的在叠层方向贯通的固紧螺栓21,将设置在上端的电极压板22与设置在下端的底座24之间进行固紧。即在夹住电极组件的低压电极7的两端上进行固紧而构成,因此电极组件的两边成为支点,这样存在的问题有,原来应该是平面的低压电极7变形为圆弧状,特别是在0.1mm厚度的放电间隙中,间隙长变得不均匀,不能够得到高浓度的臭氧。
再有,以往的臭氧气体通路8是不进行气密而作成的。因此,对于由各叠层的低压电极7夹住的电极组件,不能100%供给原料氧气。即产生氧气不通过电极组件的放电通路而直接泄漏到臭氧气体出口11的这种“短路现象”。若发生该“短路现象”,则产生的问题有,电极组件的臭氧发生效率下降,同时不能生成高浓度的臭氧,进而放电间隙6产生的臭氧浓度因原料氧气的短路流量而降低,因此,得不到高浓度的臭氧气体。
本发明是为总结并解决上述若干个问题而提出的。
第1目的在于,提供具有不损害臭氧发生性能且可靠性高的电极组件结构、并能够延长电极组件寿命的臭氧发生器。
第2目的在于,提供能够以简单的操作将非常薄的平板状电极组件进行叠层组装、并进一步能够实现紧凑组件化的臭氧发生器。
第3目的在于,提供具有能够对高压电极3及低压电极7的两种电极进行很好冷却的结构的臭氧发生器。
第4目的在于,提供对电极的至少一方同时具有冷却结构及臭氧取出结构、并能够形成又薄又轻而且又便宜、质量又好的电极的臭氧发生器。
第5目的在于,提供生成的臭氧气体的纯度高、即能够生成纯净臭氧气体的臭氧发生器。
第6目的在于,提供使臭氧发生器内的零部件功能合并以能够减少零部件数量或降低零部件成本的臭氧发生器。
本发明是为达到上述目的而进行的,得到的臭氧发生器能够容易支持电极组件,能够将电极组件间的原料气体可靠密封,同时能够容易进行电极定位,并能够支持多个电极组件,而不产生放电间隙的差异,而且性能良好。
又,本发明能够实现耐臭氧性优异、结构紧凑且寿命长、高质量的臭氧发生器。
又,能够获得一种臭氧发生器,它的放电间隙的结构不采用专利第3113885号所用的放电间隙内的弹性体,也不需要直径小于间隙长度的高精度的刚性体衬垫,能够采用厚度等于放电间隙长度的衬垫。

发明内容
在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对设置的平板状高压电极;设置在低压电极与高压电极之间的平板状电介质及用于在叠层方向上形成厚度小的放电间隙用的衬垫;相对于高压电极的与放电间隙相反侧的主表面设置的、用于冷却高压电极的电极冷却板;以及夹在高压电极与电极冷却板之间的导热·电气绝缘板,并且,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,产生臭氧气体。
又,低压电极是将在主表面上形成沟槽的2片以上的金属平板以使沟槽相对而粘合制成,以此在内部形成臭氧气体通路及冷却水通路。
又,电极冷却板是将在主表面上形成沟槽的2片以上金属平板以使沟槽相对贴合而制成,通过这样在内部形成冷却水通路。
又,金属平板是仅通过加热及加压贴合。
又,低压电极的与放电间隙相对的主表面被由无机物形成的电介质膜覆盖。
又,电介质膜由陶瓷材料制成。
又,电介质膜由玻璃材料制成。
又,电介质的与高压电极相对的主表面被由具有导电性的导电膜覆盖,导电膜与高压电极接触。
又,电介质与高压电极用导电性粘结剂贴合。
又,导电膜的外周边缘部分被由无机物形成的绝缘保护膜覆盖。
又,导电性粘结剂的外周边缘部分被由无机物形成的绝缘保护膜覆盖。
又,高压电极的外径小于电介质的外径。
又,高压电极的外径小于覆盖电介质的导电膜的外径。
又,在高压电极与导热·电气绝缘板之间夹入与两者接触的具有伸缩性的导热片。
又,在高压电极与导热·电气绝缘板之间以及导热·电气绝缘板与低压电极之间夹入分别与两者接触的具有伸缩性的导热片。
又,导热片用硅制成,在导热片的主表面涂付陶瓷粉末。
又,在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对的平板状的高压电极;设置在低压电极与高压电极之间的平板状的电介质及用于在叠层方向上形成厚度小的放电间隙的衬垫;相对于高压电极的与放电间隙的相反侧的主表面设置的、用于冷却高压电极的电极冷却板;夹在高压电极与电极冷却板之间的具有伸缩性的导热·电气绝缘板,并且,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,使其产生臭氧气体。
又,具有设置在低压电极与电极冷却板之间的、形成冷却水通路或者臭氧气体通路的总管块状体(manifold block),所述冷却水通路将分别设置在低压电极、电极冷却板的冷却水通路相互连接起来,所述臭氧气体通路连接于设置在该低压电极上的臭氧气体通路。
又,总管块状体具有在低压电极、高压电极的叠层方向有弹性功能的弹性结构。
又,衬垫配置在与低压电极的形成冷却水通路的筋条相对的位置。
又,在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对设置的平板状的高压电极;设置在低压电极与高压电极之间的平板状的电介质及用于在叠层方向上形成厚度小的放电间隙的衬垫;相对于高压电极的与放电间隙相反侧的主表面设置的、用于冷却高压电极的电极冷却板;夹在高压电极与电极冷却板之间的导热·电气绝缘板;以及分别设置在低压电极与电极冷却板之间的、形成冷却水通路或者臭氧气体通路的总管块状体,所述冷却水通路将分别设置在低压电极、电极冷却板的冷却水通路相互连接起来,所述臭氧气体通路连接于设置在该低压电极上的臭氧气体通路,低压电极的与放电间隙相对的主表面被无机物形成的电介质膜覆盖,电介质的与高压电极相对的主表面被具有导电性的导电膜覆盖,导电膜与高压电极接触,在高压电极与导热·电气绝缘板之间以及导热·电气绝缘板与低压电极之间夹入分别与两者接触并有伸缩性的导热片,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,使其产生臭氧气体。
又,将多个具有低压电极、高压电极、电介质、衬垫、电极冷却板、以及导热·电气绝缘板的电极组件进行叠层。


图1是说明本发明的臭氧发生器模式性的示意图。
图2是表示本发明实施形态1的臭氧发生器的臭氧发生器电极的模式性的具体剖面图。
图3是表示本发明实施形态2的臭氧发生器的低压电极7俯视图。
图4是沿图3的A-A线的箭头方向的剖面图。
图5是沿图3的B-B线的箭头方向的剖面图。
图6是表示本发明实施形态3的臭氧发生器的电极冷却板1的俯视图。
图7是沿图6的C-C线的箭头方向的剖面图。
图8是沿图6的D-D线的箭头方向的剖面图。
图9是表示本发明实施形态5的臭氧发生器的臭氧发生器电极的具体剖面图。
图10是表示本发明实施形态6的臭氧发生器的低压电极7俯视图。
图11是沿图10的E-E线的箭头方向的剖面图。
图12是沿图10的F-F线的箭头方向的剖面图。
图13是表示本发明实施形态7的臭氧发生器的低压电极7俯视图。
图14是沿图13的G-G线的箭头方向的剖面图。
图15是沿图13的H-H线的箭头方向的剖面图。
图16是表示本发明实施形态8的臭氧发生器的臭氧发生器电极的具体剖面图。
图17是表示本发明实施形态9的臭氧发生器的高压电极3及电介质5的侧视图。
图18是表示本发明实施形态10的臭氧发生器的电介质5的俯视图及侧视图。
图19是表示本发明实施形态11的臭氧发生器的高压电极3及电介质5的侧视图。
图20是表示本发明实施形态13的臭氧发生器的臭氧发生器电极的具体剖面图。
图21是表示本发明实施形态14的臭氧发生器的导热片17的俯视图及侧视图。
图22是表示本发明实施形态15的臭氧发生器的臭氧发生器电极的具体剖面图。
图23是表示本发明实施形态16的臭氧发生器的总管块状体23的剖面图。
图24是表示本发明实施形态17的臭氧发生器的低压电极7俯视图。
图25是沿图24的I-I线的箭头方向的剖面图。
图26是表示本发明实施形态18的臭氧发生器的臭氧发生器电极的具体剖面图。
图27是为以往的臭氧发生器的剖面图。
符号说明1电极冷却板,2导热·电气绝缘板,3高压电极,5电介质,6放电间隙,7低压电极,8臭氧气体通路,9冷却水通路,11臭氧气体出口,12冷却水出入口,13电介质膜,13a陶瓷电介质膜,13a1陶瓷电介质放电间隙用衬垫,13b玻璃电介质膜,13b1玻璃电介质放电间隙用衬垫,13b2粘结剂,14导电膜,15导电性粘结剂,16绝缘保护膜,17导热片,18陶瓷粉末,19导热·电气绝缘片,23总管块状体,23a上侧总管块状体,23b下侧总管块状体,23cO形圈,23d盘形弹簧,100臭氧发生器,101臭氧发生器电极,102电极组件。
具体实施例方式
下面根据

本发明。
图1是模式性说明平板叠层型臭氧发生装置的示意图,平板叠层型臭氧发生装置由作为产生臭氧的主要构成部分的臭氧发生器100、对该臭氧发生器100供给功率的臭氧变压器200及高频逆变器300构成。
高频逆变器300将从电源输入端404输入的功率变换为所需要的频率,并输出给逆变器输出电缆403。臭氧变压器200将该功率升压至规定的电压,将产生臭氧所需要的功率供给臭氧发生器100。高频逆变器300还具有对电流/电压进行控制的功能,以控制供给的功率输入量。
由臭氧变压器200供给的高电压,从高压电缆401通过套管120供给臭氧发生器100的高压电极3。又,低电压从低压电缆402通过底座24供给低压电极7。
臭氧发生器100包括具有高压电极3及低压电极7的多个电极组件102,将规定个数的电极组件102在底座24上沿图中箭头Z方向叠层并构成臭氧发生器电极101。臭氧发生器电极101被发生器外壳110覆盖。在发生器外壳110上设置供给包含微量氮、二氧化碳等的氧气的臭氧发生器的氧气入口130。供给的氧气充满在发生器外壳110,并进入下述的放电间隙。又,在底座上设置将在后述的放电间隙生成的臭氧气体从臭氧发生器100送出到外部的臭氧气体出口11及冷却电极组件102的冷却水出入用的冷却水出入口12。
在这样结构的平板叠层型臭氧发生装置中,本发明特别涉及的臭氧发生装置的主要部分即臭氧发生器100,详细地说,涉及臭氧发生器100的臭氧发生器电极101及电极组件102的构造。
实施形态1图2为模式性表示本发明实施形态1的臭氧发生器的臭氧发生器电极的剖面示意图。在图2中,臭氧发生器电极101具有平板状低压电极7、与低压电极7的主表面相对设置的平板状的高压电极、设置在低压电极7与高压电极3之间的平板状的电介质5及用于在叠层方向上形成厚度小的放电间隙6的未图示的衬垫。
臭氧发生器电极101还具有相对于高压电极3的与放电间隙6的相反侧主表面设置的、用于冷却高压电极3的电极冷却板以及夹在高压电极3与电极冷却板1之间的导热·电气绝缘板2。
然后,臭氧发生器电极101在低压电极7与高压电极3之间施加交流电压,在注入氧气的放电间隙6产生放电,以使得产生臭氧气体。
从图1所示的臭氧变压器200通过高压套管120向高压电极3的馈电端4供电。高压电极3用不锈钢或铝等金属制成。电介质5的主表面与高压电极3贴紧。电介质5用陶瓷、玻璃或硅等材料制成。在电介质5与低压电极7之间,利用后述的衬垫形成放电间隙6。在本实施形态中,放电间隙6形成圆板状,从放电间隙6的周围向中心方向注入充满图1的发生器外壳110的氧气。
通过在高压电压3与低压电极7之间施加交流高电压,将流过放电间隙6的氧气变换为臭氧。在放电间隙6变换为臭氧化氧气的臭氧气体,从低压电极7的中心部分经由设置在低压电极7内的臭氧气体通路8,引导到臭氧气体出口11。
低压电极7是将不锈钢等制成的2片导电板接合并在板间形成臭氧气体通路8的薄板状导电性刚体。在低压电极7中,除了臭氧气体通路8以外,还设置提高臭氧发生效率的冷却水通路9。然后,通过在该冷却水通路9流过冷却水,来降低放电间隙6内的气体温度。
又,在与电压电极7的放电间隙6相对的面的相反侧主表面上,通过导热·电气绝缘板2配置高压电极3。因此,电压电极7不仅冷却放电间隙6,也冷却高压电极3。又,在最上级的高压电极3上,通过导热·电气绝缘板2设置水冷式电极冷却板1。电极冷却板1是将不锈钢等制成的2片钢板接合、在板间形成冷却水通路9的薄板状刚体。即在电极冷却板1内也设置冷却水通路9,冷却水流过该冷却水通路9。
低压电极7内形成的臭氧气体通路8,经由总管块状体23形成的臭氧气体通路8,与底座24设置的臭氧气体出口11连通。另一方面,电极冷却板1及低压电极7中形成的冷却水通路9,经由总管块状体23形成的冷却水通路9与底座24设置的冷却水出入口12连通。
图中未特别图示,在电极冷却板1或低压电极7与总管块状体23或底座24之间,夹入O形圈等垫圈材料进行冷却水的密封。又,为了对臭氧气体进行密封,还夹入O形圈等垫圈材料。
在低压电极7、高压电极3、电介质5、衬垫、电极冷却板1及导热·电气绝缘板2构成的电极组件102,提供贯通各构成要素的固紧螺栓21,在电极压板22与底座24之间紧固。放电间隙6利用总管块状体23在叠层方向保持规定的厚度。
又,本实施形态在高压电极3与低压电极7之间设置无声(电介质声障)放电所必须的电介质5,然后在该电介质5与低压电极7之间配置衬垫并设置放电间隙6。但是,也可以在高压电极3与电介质5之间配置衬垫并设置放电间隙6。
下面说明工作情况。若对高压电极3与低压电极7施加交流高电压,则在放电间隙6产生无声(电介质声障)放电。若对该放电间隙6通以氧气,则使氧气发生变化,产生臭氧。充满发生器外壳110的氧气通过在形成在低压电极7与电介质5之间的放电间隙6,在此期间变换成臭氧。在本实施形态中,电介质5、高压电极3及形成在两者之间的放电间隙6,分别近似形成圆板状。然后,氧气从电介质5的周围向中心流动,在放电间隙6形成臭氧化氧气。
为了高效地生成臭氧,特别必须要高精度保持厚度很薄的空间即放电间隙6。通过在电极压板22与底座24之间,在两侧部分配置块状体23,利用在叠层方向贯通多个固紧螺栓21将电极组件叠层体固紧,以获得规定的间隙精度。然后,利用配置在低压电极7表面上的、未图示的放电间隙用衬垫来形成放电间隙6。即利用该放电间隙用衬垫的高度来设定放电间隙6的厚度(叠层方向的高度)。通过对该放电间隙用衬垫的高度进行均匀加工以及用固紧螺栓21将各电极固紧,可确保放电间隙6的精度。
作为高效生成臭氧的另一个手段,存在降低放电间隙6内的温度的方法。作为电极,设置了高压电极3及低压电极7,研究采用水或气体等冷却该两电极的方法。水与气体的冷却效果中,水的冷却效果大,在用水的情况下,由于对高压电极3要施加高电压,因此必须减小冷却水的电导率(采用离子交换水等)。又,在用气体的情况下,虽不需要上述条件,但构造复杂,噪声大,又制冷剂的热容量小等等,因此各有优缺点。
在本实施形态中,与低压电极7相邻地形成放电间隙6,通过在低压电极7内设置冷却水通路9,来冷却放电间隙6。又,为了冷却高压电极3,是隔着导热·电气绝缘板2设置电极冷却板1,这样形成将高压电极3的热量进行散热的结构。高压电极3产生的热量,通过导热性好、电气绝缘性优异的导热·电气绝缘板2,利用作为散热器的低压电极7由冷却水冷却。又,最上段由电极冷却板1进行冷却。这样,通过同时冷却高压电极3及低压电极7,能够将放电间隙6的气体温度维持在较低。
又,由于其结构上通过电气绝缘板用低压电极7来冷却高压电极3,而且,最上级能够由电极冷却板1冷却,因此,没有必要减小流过电极冷却板1的冷却水的电导率,也可以用一般的自来水。所以其优点在于,能够与冷却低压电极7的冷却水通用。
根据上述情况,在本实施形态中,能够提高放电间隙6的冷却效率,以及能够很好地降低放电间隙6的温度。这样,不会降低臭氧发生效率,并能提高功率密度,能够减少电极组件个数,能够实现装置小型化及降低价格。再有,由于通过导热·电气绝缘板2来冷却高压电极3,因此,作为冷却水也可以不使用电导率小的离子交换水等,而可以使用一般的自来水作冷却水。所以,不需要电导率监视装置及离子交换水循环设备,由于减少装置构成数量而能够降低价格及减少维持费用。
实施形态2图3是表示本发明实施形态2的臭氧发生器的低压电极7俯视图。图4为沿图3的A-A线的箭头方向剖面图,图5为沿图3的B-B线的箭头方向剖面图。低压电极7如图4及图5中所示,由上侧低压电极7a与下侧低压电极7b这2片金属电极构成。在2个电极7a与7b的单侧主表面上预先通过蚀刻或机械加工而形成深度为若干mm的沟槽。然后将2个电极7a与7b贴合并使该沟槽相对,制成低压电极7。相对的构槽在低压电极7的内部形成臭氧气体通路8及冷却水通路9。
又,在低压电极7的单侧端部(图3的左侧)的臭氧气体及冷却水取出部分900,形成沿叠层方向延伸的臭氧气体通路8及冷却水通路9。这里,冷却水通路9分为冷却水入口9a及冷却水出口9b。连通冷却水入口9a及冷却水出口9b的冷却水通路9如图3的虚线所示,形成在低压电极7的内部几乎所有整体中。即在近似圆形的低压电极放电部分700从中心到外周部分形成多个同心圆形状。又,相邻同心圆状的冷却水通路9利用宽度很窄的筋条隔开。又,形成在低压电极7内部的臭氧气体通路8从单侧端部沿叠层方向延伸的通路起向中心部分延伸,并与形成在中心部分主表面上的开口连通。
设置在低压电极7的单侧端部的沿叠层方向延伸的臭氧气体通路8以及冷却水通路9,与设置在总管块状体23的臭氧气体通路以及冷却水通路连接,最后与与设置在底座24的臭氧气体出口11以及冷却水出入口12连接。
在上侧电极7a的、与用于形成臭氧气体通路8及冷却水通路9的面的相反侧面上,同样地通过蚀刻或机械加工在整个主表面上形成多个用于形成放电间隙6的圆形突起。上述臭氧气体通路8与形成该放电间隙6的面上所形成的开口连通。
产生的臭氧气体从低压电极7的中心部分,通过设置在低压电极7内的臭氧气体通路8,而到达设置在低压电极7单侧端部的臭氧气体及冷却水取出部分900上的、沿叠层方向延伸的臭氧气体通路8。另一方面,在整个低压电极7的内部流动的冷却水从臭氧气体及冷却水取出部分900的冷却水入口孔9a进入低压电极7,冷却低压电极放电部分700的整个面,然后流向臭氧气体及冷却水取出部分900的冷却水出口孔9b。
设置在低压电极7的端部上的臭氧气体及冷却水取出部分900的臭氧气体出口集合及冷却水出入口的集合结构,同与低压电极7相邻设置的总管块状体23一起,连接到设置在底座24的臭氧气体出口11及冷却水出入口12。这样,在本实施形态中,通过在低压电极7及总管块状体23内形成通路,实现不需要集合接头及管道构件,减少这些接头及管道构件占用的空间,从而实现结构紧凑、简化的臭氧发生器。
根据上述情况,在本实施形态中,由于利用蚀刻或机械加工对低压电极7进行数mm以内的凹凸加工,将这样凹凸加工后的至少2片金属板贴合,通过这样构成气密流通空间,使臭氧气体通路8及冷却水通路9气密分离而形成,因此能够减小低压电极7的厚度,实现装置小型化。又,由于不需要冷却水及臭氧气体取出用管道,因此能够提供一种能简单组装、分解并且廉价的臭氧发生器。
又,在本实施形态中,将2个电极7a与7b接合制成低压电极7,但也可以是3个以上电极接合并在内部形成臭氧气体通路8及冷却水通路9。
又,在本实施形态中,在低压电极7与电介质5之间设置放电间隙6并在低压电极7内形成臭氧气体通路8,但也可以在高压电极3与电介质5之间设置放电间隙,在高压电极3内形成臭氧气体通路。
实施形态3图6是表示本发明实施形态3的臭氧发生器的电极冷却板1俯视图。图7是沿图6的C-C线的箭头方向的剖面图,图8是沿图6的D-D线的箭头方向的剖面图。电极冷却板1如图7及图8中所示,由上侧冷却板1a下侧冷却板1B这2片金属板构成,在2片金属板1a及1b的单侧主表面上预先通过蚀刻或机械加工而形成深度数mm以内的沟槽。然后将2片金属板1a与1b贴合并使该沟槽相对,制成电极冷却板1。相对的沟槽在电极冷却板1的内部形成冷却水通路9。
在电极冷却板1的单侧端部(图6的左侧),与实施形态2的低压电极7的臭氧气体及冷却水取出部分900相同,形成沿叠层方向延伸的臭氧气体通路8及冷却水通路9。这里,冷却水通路9分为冷却水入口9a及冷却水出口9b。连通冷却水入口9a及冷却水出口9b的冷却水通路9如图6的虚线所示,形成在电极冷却板1的内部几乎遍布整个范围。即在近似圆形的主要部分从中心到外周部分形成多个同心圆形状。又,相邻同心圆状的冷却水通路9利用宽度很窄的筋条而隔开。
设置在电极冷却板1的单侧端部的、沿叠层方向延伸的臭氧气体通路8及冷却水通路9,与设置在总管块状体23的臭氧气体通路及冷却水通路连接,最后与设置在底座24的臭氧气体出口11及冷却水出入口12连接。
根据上述情况,在本实施形态中,由于利用蚀刻或机械加工对电极冷却板1进行数mm以内的凹凸加工,将这样凹凸加工的至少2片金属板贴合,通过这样构成气密流通空间,形成冷却水通路9,因此能够减小电极冷却板1的厚度,实现装置小型化。又,由于不需要冷却水及臭氧气体取出用管道,因此能够提供能简单装配、分解并且廉价的臭氧发生器。
又,在本实施形态中,是2片金属板1a及1b接合制成电极冷却板1,但也可以是3个以上的电极接合,在内部形成臭氧气体通路8及冷却水通路9。
实施形态4本实施形态是关于金属板的接合方法。作为2片金属板接合的一般方法,有采用钎料作为接合剂的钎焊方式。但是,臭氧气体通路8由于有臭氧流通,因此产生臭氧气体与钎料的氧化反应,产生臭氧气体的分解,生成氧化物等,这些对于臭氧发生器是不好的现象。所以,在本实施形态中,不采用该一般的钎焊方式。
即在实施形态2的2个电极7a与7b的接合中,以及在实施形态3的2片金属板1a与1b的接合中,不采用该一般的钎焊方式。在本实施形态中,关于2片金属板的接合,是采用加热加压式接合方法。该方法是一面将2片金属板加热,一面在叠层方向上施加大的压力进行压紧,在接触面使两金属熔融接合。金属在该金属特有的熔点熔融。因此,通过取决于该接合材料的规定加热及规定加压,能够将金属接合。该方法不仅不使用钎料,而且也完全不使用其它接合剂。因此,不因臭氧而生成氧化反应物,能够生成纯净的臭氧。
根据上述情况,在本实施形态中,涉及2片以上金属板的贴合方法,由于不使用接合剂,采用仅利用加热及加压的接合方法,因此能够获得不会产生臭氧对接合剂的腐蚀并且使用寿命长、可靠性高的臭氧发生器。
实施形态5图9是表示本发明实施形态5的臭氧发生器的臭氧发生器电极的具体剖面图。在本实施形态中,低压电极7的与放电间隙6相对的整个放电面被无机材料构成的电介质膜13覆盖。该电介质膜13面向放电间隙6。该电介质膜13的厚度具有能够充分阻止金属离子的厚度。
在这样构成的臭氧发生器中,产生无声放电的放电间隙6的两面都被无机材料包围,向该间隙中通氧气,这样能够产生无金属污染的纯净的臭氧。
实施形态6图10是表示本发明实施形态6的臭氧发生器的低压电极7的俯视图。图11是沿图10的E-E线的箭头方向的剖面图。图12是沿图10的F-F线的箭头方向的剖面图。在本实施形态中,低压电极7的与放电间隙6相对的整个放电面被陶瓷电介质膜13a覆盖。该陶瓷电介质膜13a面向放电间隙6。在陶瓷电介质膜13a上,为了形成放电间隙6,配置小型圆片状的多个陶瓷电介质放电间隙用衬垫13a1。
在这样构成的臭氧发生器中,氧气从低压电极7的外周部分流入放电间隙6内,一面通过陶瓷电介质放电间隙用衬垫13a1之间,一面利用无声放电生成臭氧,从形成在低压电极7的中心的臭氧气体通路8,通过低压电极7的内部而流出到外部。这时,由于放电间隙6的两面都用无机材料包围,连衬垫也是无机材料,因此能够更进一步产生无金属污染的纯净的臭氧。
又,陶瓷电介质膜13a是利用喷镀方式形成,能够将其膜厚控制为几μm。又,利用该喷镀方式,也能够同时形成陶瓷电介质放电间隙用衬垫13a1。
实施形态7图13是表示本发明实施形态7的臭氧发生器的低压电极7的俯视图。图14是沿图13G-G线的箭头方向的剖面图。图15是沿图13的H-H线的箭头方向的剖面图。在本实施形态中,低压电极7的与放电间隙6相对的整个放电面被玻璃电介质膜13b覆盖。该玻璃电介质膜13b面向放电间隙6。在玻璃电介质膜13b上,为了形成放电间隙6,配置小型圆片状的多个玻璃电介质放电间隙用衬垫13b1。
在这样构成的臭氧发生器中,氧气从低压电极7的外周部分流入放电间隙6内,一面通过玻璃电介质放电间隙用衬垫13b1之间,一面利用无声放电生成臭氧,从形成在低压电极7的中心的臭氧气体通路8,通过低压电极7的内部而流出到外部。这时,由于放电间隙6的两面都用无机材料包围,连衬垫也是无机材料,因此能够更进一步产生无金属污染的纯净的臭氧。
又,为了制成玻璃电介质膜13b,首先对石英材料的玻璃板利用掩膜进行喷砂处理,形成凸起的玻璃电介质放电间隙用衬垫13b1。然后将该玻璃电介质膜13b用粘结剂13b2与低压电极7粘贴。
实施形态8
图16是表示本发明实施形态8的臭氧发生器的臭氧发生器电极的具体剖面图。在本实施形态中,电介质5的高压电极3一侧的主表面被导电膜14覆盖整个面。
在不设置导电膜14时,若不采用粘结等方法而仅利用机械压力将高压电极3的表面与电介质5的表面互相压接时,不能够使高压电极3的表面与电介质5的表面很好贴紧接触。因而,接触面的一部分产生间隙,在该间隙中会产生异常放电(局部放电)。该异常放电导致的问题在于,会损坏电介质5,或会降低臭氧发生效率,或会妨碍产生纯净的臭氧。
在本实施形态中,通过在电介质5表面涂布导电膜14,则即使不能完全很好贴紧接合的情况下,而由于电介质5的导电膜14与高压电极3处于同电位,因此即使接触面的一部分形成间隙,也能够防止异常放电(局部放电),能够阻止产生金属污染。
实施形态9图17是表示本发明实施形态9的臭氧发生器的高压电极3及电介质5的侧视图。在本实施形态中,高压电极3与电介质5之间无间隙,而利用导电性粘结剂粘结。在这样的结构中,也能够提高高压电极3与电介质5的贴附性,能够防止异常放电,能够阻止产生金属污染。而且,不需要进行定位等调整,组装容易。
实施形态10图18是表示本发明实施形态10的臭氧发生器的电介质5的俯视图及侧视图。本实施形态具有防止导电膜14的边缘部分产生金属污染的结构。对导电膜14施加高电压的电位,在其边缘部分将会产生异常辉光放电。该异常辉光放电的产生成为产生金属污染的主要原因。在本实施形态中,在导电膜14的外周部分形成台阶的部分,遍及整个外周覆盖绝缘保护膜16。因此能够防止在边缘部分产生异常辉光放电,能够防止产生金属污染。
其它结构与实施形态8相同。
实施形态11图19是表示本发明实施形态11的臭氧发生器的高压电极3及电介质5的侧视图。在本实施形态中,遍及导电性粘结剂15外周部分中形成台阶的部分,覆盖绝缘保护膜16。因此,能够防止在导电性粘结剂15的边缘部分产生的异常辉光放电,能够防止产生金属污染。其它结构与实施形态9相同。
实施形态12在本实施形态中,高压电极3的外径小于电介质5的外径及设置在电介质5表面的导电膜14的外径。其它结构与实施形态8相同。
由于使高压电极3的外径小于电介质5及导电膜14的外径,因而不会产生异常辉光放电,能够防止金属污染。在导电膜14的外径小于高压电极3时,在高压电极3与电介质5之间要产生放电,成为产生金属污染的主要原因。
实施形态13图20是表示本发明实施形态13的臭氧发生器的臭氧发生器电极的具体剖面图。在本实施形态中,在高压电极3与导热·电气绝缘板2之间、低压电极7与导热·电气绝缘板2之间以及最上段中,分别夹入伸缩性优异且热导率高的材料,例如硅橡胶等制成的导热片17。其它结构与实施形态1相同。
在高压部分的冷却中,使高压电极3产生的热量通过导热·电气绝缘板2而从低压电极7散热。又,在最上段中,由电极冷却板散热。由于高压电极3、电极冷却板1与导热·电气绝缘板2的各接合面的加工精度的原因,在高压电极3与导热·电气绝缘板2之间、低压电极7与导热·电气绝缘板2之间产生间隙以及电极冷却板1与导热·电气绝缘板2之间能够产生间隙。氧气的热导率非常低,并且间隙的存在增大了热阻。因此,为了高效进行高压电极3的冷却,必须消除该间隙。
本实施形态的导热片17,由于是由伸缩性优异且热导率高的材料制成,因此能够消除因加工精度不同而产生的间隙,能够将高压电极3的发热传递给电压电极7或电极冷却板1,很好地降低高压电极3的温度。
根据上述情况,在本实施形态中,能够消除在高压电极3与导热·电气绝缘板2之间、以及在导热·电气绝缘板2与电极冷却板1之间的微小空间,能够消除使导热性恶化的微小空间,改善高压电极3与电极冷却板1之间的导热性,提高放电间隙6的冷却效率,很好地降低放电间隙6的温度,提高臭氧发生效率。又,导热片17由于具有伸缩性,因此从通过从两面施加规定的压力,将其压紧,还具有很好的气密效果。
又,导热片17不限于硅橡胶,只要是伸缩性优异且热导率高的材料,都能够得到规定的效果。
实施形态14图21是表示本发明实施形态14的臭氧发生器的导热片17的俯视图及侧视图。本实施形态中,导热片17是在其两个主表面的整个面上涂布陶瓷粉末18,其它结构与实施形态13相同。
作为导热片17所用的材料,必须是伸缩性及导热性优异而且加工性优异的材料。作为最适合的材料有硅凝胶。但硅凝胶的粘结性好,在高压电极3、导热·电气绝缘板2以及电极冷却板1之间进行贴附时,存在在其接合面混入气泡(微小空间)的加工上的问题。若产生间隙,则如前所述,冷却效率恶化。为了解决这一问题,在本实施形态中,对导热片17涂布陶瓷粉末18。若将陶瓷粉末18轻轻喷涂在有粘结性的导热片上,则导热片的粘结性消失。这样,不会产生气泡,而且容易贴附导热片17。
根据上述情况,在本实施形态中,由于使用表面上涂附陶瓷粉末18的硅凝胶作为实施形态13的导热片17,因此能够抑制导热片17的粘结性,容易消除导热片17与高压电极3、导热·电气绝缘板2及电极冷却板1之间的气泡,容易安装导热片13,能够提供廉价的臭氧发生器。
实施形态15图22是表示本发明实施形态15的臭氧发生器的臭氧发生器电极具体剖面图。在本实施形态中,在高压电极3与电极冷却板1之间夹入伸缩性优异、热导率高且电气绝缘性好的材料例如硅橡胶等制成的导热·电气绝缘片19。即在高压电极3与电极冷却板1之间夹入导热·电气绝缘片19,以代替实施形态1的导热·电气绝缘板2。
作为对高压电极3与电极冷却板1之间的材料所要求的功能,是能够将高电压的电加以绝缘的绝缘功能及高效导热的导热功能。本实施形态的导热·电气绝缘片19,除了该两特性外,再施加伸缩性优异。因此,能够在高压电极3与电极冷却板1之间消除间隙,能够将高压电极3的发热传递给电极冷却板1,能够很好地降低高压电极3的温度。除此之外,能够省略实施形态1的导热·电气绝缘板2,能够减少零部件数量、实现小型化并降低成本。
即在本实施形态中,由于采用的结构是在高压电极3与电极冷却板1之间夹入具有绝缘功能及导热功能且伸缩性优异的导热·电气绝缘片19,以代替实施形态1的臭氧发生器中导热·电气绝缘板2,因此能够将导热片13、导热·电气绝缘板2及导热片13这3个零部件缩减为1个零部件,能够降低装置价格。
实施形态16图23是表示本发明实施形态16的臭氧发生器的总管块状体23的剖面图。总管块状体23沿叠层方向分为2个构件,即上侧总管块状体23a及下侧总管块状体23b。在两者中,形成沿叠层方向穿通的臭氧气体通路8及冷却水通路9。这些臭氧气体通路8及冷却水通路9,与设置在低压电极7及电极冷却板1中的臭氧气体通路8及冷却水通路9连通。
在下侧总管块状体23b中,形成包围臭氧气体通路8及冷却水通路9而设置的面向图的上方并竖立的圆筒部分。又,上侧总管块状体23a具有该圆筒部分能插入的凹孔。在该凹孔的中心形成臭氧气体通路8及冷却水通路9。该圆筒部分与凹孔具有沿叠层方向能够滑动的间隙,就像汽缸与活塞的关系那样进行配合。然后,在该圆筒部分与凹孔之间为保持气密性,设置O形圈23c。又,在上侧总管块状体23a与下侧总管块状体23b之间设置盘形弹簧23d,使得在叠层方向有弹性。本实施形态的总管块状体由于是这样的结构,因此具有与设置在低压电极7及电极冷却板1上的臭氧气体通路8及冷却水通路9连通的、沿叠层方向延伸的通路,同时在电极叠层方向上可进行伸缩。
如实施形态1所述,为了提高臭氧发生效率,还必须提高放电间隙6的精度。因此,通过提高放电间隙6形成用衬垫的高度的精度,再将整个电极用电极压板22及固紧螺栓21固紧在底座24上,这样使放电间隙6的精度提高。但是,与总管块状体23相邻地设置低压电极7及电极冷却板1,若与总管块状体23的连接力强时,则对电极固紧产生恶劣影响,有可能无法保持放电间隙6的精度。
即,例如实施形态2的图2中,在图2的右侧叠层包括高压电极3及低压电极7在内的多个构件,并用固紧螺栓21在底座24上固紧。然后,在该叠层体中利用放电间隙6形成用衬垫形成放电间隙6。又,在该叠层体中,由于多个构件叠层,因此各构件的尺寸误差会积累,在纵方向上将产生一定程度的误差。而且,电极冷却板1及低压电极7例如是由不锈钢等制成的刚性体。因此,即使无论如何以高精度制成夹在电极冷却板1与低压电极7之间的块状体,但由于叠层体在纵方向的误差,电极冷却板1及低压电极7要产生变形。若产生该变形,则不可能以高精度形成放电间隙6。与上不同的是,本实施形态的总管块状体23具有在电极叠层方向上有弹性的结构。因此,能够吸收叠层体在纵方向的误差,能够高精度地形成放电间隙6。
根据上述情况,在本实施形态中,由于设置了形成将设置与各电极上的冷却水通路9相互连接的冷却水通路9、或者与臭氧气体通路8连接的臭氧气体通路8的总管块状体23,因此能够减少设置冷却水用管道的空间或设置取出臭氧气体用的管道的空间,能够实现装置的小型化、减轻重量、减少零部件数量及提高装置质量。
又,总管块状体23具有在电极的叠层上方向有弹性功能的弹性结构。因此,总管块状体23可以消除因固紧产生的对放电间隙的恶劣影响,能够提高放电间隙的精度。
实施形态17图24是表示本发明实施形态17的臭氧发生器的低压电极7的俯视图。图25是沿图24的I-I线的箭头方向的剖面图。本实施形态涉及形成放电间隙6的放电间隙用衬垫7c的配置。在2个电极7a及7b的单侧主表面上预先利用蚀刻或机械加工而形成深度数mm的沟槽。然后,将该沟槽相对,形成臭氧气体通路8及冷却水通路9。在相邻的沟槽与沟槽之间,设置将通路隔开的筋条7d。然后,本实施形态的放电间隙用衬垫7c配置在与筋条7d相对的位置上。即放电间隙用衬垫7c配置在低压电极7的与放电气隙6相对的面上,配置在沿叠层方向透过筋条的位置上。
在低压电极7的内部,在遍及整个面上形成冷却水通路9。而且,为了尽量增大该冷却水通路9的面积,使得通路隔开的筋条7d的厚度尽量薄,又,对于形成放电间隙6的放电间隙用衬垫7c,为了增大放电间隙6,希望其直径尽可能小。低压电极7是用不锈钢等制成的,但整体上形成薄的刚性体,当在叠层方向施力时,有筋条7d的部分不易变形,而没有筋条7d的部位容易变形。即产生凹陷。本实施形态的放电间隙用衬垫7c,由于配置在与筋条7d相对的位置,因此低压电极7几乎不变形。结果,能够抑制放电间隙6的变形,能够形成高精度的放电间隙6。
根据上述情况,在本实施形态中,将衬垫7c配置在低压电极7的与形成冷却水通路9的筋条7d相对的位置上。因此,低压电极7不会产生变形,能够消除因电极固紧所产生的对放电间隙6的恶劣影响,能够提高臭氧发生效率。
实施形态18图26是表示本发明实施形态18的臭氧发生器的臭氧发生器电极的具体剖面图。在本实施形态中,具有将低压电极7的与放电间隙6相对的整个放电面用无机材料形成的电介质膜13覆盖的实施形态5的结构、将电介质5的整个高压电极3一侧的主表面用导电膜14覆盖的实施形态8的结构、以及分别在电极冷却板1和导热·电气绝缘板2和高压电极3之间夹入导热片17的实施形态13的结构。
因此,能够形成不产生金属污染、生成纯净臭氧的放电间隙6,同时能够提高放电间隙6的冷却性。
实施形态19下面用图1及图2说明本实施形态。本实施形态的臭氧发生器电极101如图2所示,将电极组件102如图1中N-1、N-2、N-3、…、N-7、N-8所示那样,全部由8个叠层而构成,所述电极组件102具有平板状的低压电极7;与低压电极7的主表面相对的平板状的高压电极3;设置在低压电极7与高压电极3之间的平板状的电介质5及用于在叠层方向上形成厚度小的放电间隙6的未图示的衬垫;相对于高压电极3的与放电间隙6的相反侧主表面设置的、用于冷却高压电极3的电极冷却板1;以及夹在高压电极3与电极冷却板1之间的导热·电气绝缘板2。
这样,在本实施形态中,由于将多个电极组件102叠层,因此能够增大容量,同时构成紧凑的装置。
又,在本实施形态中,叠层了8个电极组件102,但若叠层不限于8个的多个电极组件102,也能够得到同样的效果。
在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对设置的平板状高压电极;设置在低压电极与高压电极之间的平板状电介质及用于在叠层方向上形成厚度小的放电间隙用的衬垫;相对于高压电极的与放电间隙相反侧的主表面设置的、用于冷却高压电极的电极冷却板;以及夹在高压电极与电极冷却板之间的导热·电气绝缘板,并且,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,产生臭氧气体。因此,能够提高放电间隙的冷却效率,又能够有效地降低放电间隙的温度。这样,能够不降低臭氧发生效率,而提高功率密度,能够减少电极组件数量能够力图实现装置小型化及降低价格。再有,由于隔着导热·电气绝缘板来冷却高压电极,因此作为冷却水也可以不使用电导率小的离子交换水等,可以使用一般的自来水作冷却水。所以,不需要电导率监视装置及离子交换水循环设备,能够由于减少装置构成数量而实现降低价格及减少维持费用。
又,低压电极是将主表面形成沟槽的2片以上金属平板使沟槽相对贴合而制成,通过这样在内部形成臭氧气体通路及冷却水通路。因此,能够减小低压电极的厚度,实现装置小型化。又,由于不需要冷却水及臭氧气体取出用管道,因此能够提供一种简单组装及分解、廉价的臭氧发生器。
又,电极冷却板是将主表面形成沟槽的2片以上金属平板使沟槽相对贴合而制成,通过这样在内部形成冷却水通路。因此,能够减小电极冷却板的厚度,实现装置小型化。又,由于不需要冷却水及臭氧气体取出用管道,因此,能够提供一种简单进行组装及分解、廉价的臭氧发生器。
又,金属平板仅通过加热及加压贴合而成。因此,不产生因臭氧导致的接合剂的腐蚀,能够形成寿命长、可靠性高的臭氧发生器。
又,低压电极的与放电间隙相对的主表面用无机物形成的电介质膜覆盖。因此,该结构的放电间隙全部用无机物包围,能够抑制因放电产生的金属飞溅而导致的金属污染,能够提供产生纯净臭氧气体的臭氧发生器。
又,电介质膜用陶瓷材料制成。因此,能够利用喷涂方式容易形成,又能够控制膜厚为数μm。再有,利用该喷涂方式还能够同时形成陶瓷电介质放电间隙用衬垫。
又,电介质膜用玻璃材料制成。因此,能够利用粘结剂将石英材料的玻璃板贴在低压电极上,这样容易形成电介质膜。又,在将该玻璃板贴在低压电极上之前,利用掩膜进行喷砂处理,通过这样能够容易形成突起的玻璃电介质放电间隙用衬垫。
又,电介质的与高压电极相对的主表面用具有导电性的导电膜覆盖,导电膜与高压电极接触。因此,该结构使用导电膜覆盖电介质的单面,使得用该导电膜覆盖的面与高压电极贴紧,根据该结构,即使高压电极与电介质之间存在间隙,但高压电极的电位与导电膜为同电位,因此能够消除局部放电,能够防止产生金属污染。又,由于仅通过简单的压接就能够将高压电极与电介质接合,因此能够容易组装及分解,对于零部件的再生利用也有效果。
又,电介质与高压电极用导电性粘结剂贴合。因此,能够消除电介质与高压电极之间的间隙,防止局部放电,能够防止产生金属污染。
又,导电膜的外周边缘部分用无机物形成的绝缘保护膜覆盖。因此,能够抑制在导电膜的外周边缘部分产生的异常辉光放电,能够防止产生金属污染。
又,导电性粘结剂的外周边缘部分用无机物形成的绝缘保护膜覆盖。因此,能够抑制在导电性粘结剂的外周边缘部分产生的异常辉光放电,能够防止产生金属污染。
又,高压电的外径小于电介质的外径。因此,能够消除异常辉光放电,防止产生金属污染。又,能够抑制电介质损伤,能够提供电介质寿命长、可靠性高的臭氧发生器。
又,高压电极的外径小于覆盖电介质的导电膜的外径。因此,能够更进一步消除异常辉光放电,防止产生金属污染。又,能够更进一步抑制电介质损伤,能够提供电介质寿命长、可靠性高的臭氧发生器。
又,在高压电极与导热·电气绝缘板之间、以及导热·电气绝缘板与电压电极之间分别夹入与两者接触并具有伸缩性的导热片。因此,能够消除高压电极与导热·电气绝缘板之间、以及导热·电气绝缘板与电极冷却板之间的微小空间,并能够消除使导热性恶化的微小空间,改善高压电极与电极冷却板之间的导热性,提高放电间隙的冷却效率,有效降低放电间隙的温度,提高臭氧发生效率。又,由于导热片具有伸缩性,因此利用从两面施加规定的压力进行按压,还具有优异的气密效果。
又,导热片用硅制成,在导热片的主表面涂附陶瓷粉末。因此,提供的臭氧发生器能够抑制导热片的粘结性,能够容易消除导热片与高压电极之间、以及在导热·电气绝缘板与电极冷却板之间的微小空间,并且,导热片容易安装,装置价格便宜。
又,在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对设置的平板状高压电极;设置在低压电极与高压电极之间的平板状电介质及用于在叠层方向上形成厚度小的放电间隙用的衬垫;相对于高压电极的与放电间隙相反侧的主表面设置的、用于冷却高压电极的电极冷却板;以及夹在高压电极与电极冷却板之间的导热·电气绝缘板,并且,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,产生臭氧气体。因此,能够提高放电间隙的冷却效率,又能够有效降低放电间隙的温度。这样,能够不降低臭氧发生效率,而提高功率密度,能够减少电极组件数量,能够力图实现装置小型化及降低价格。再有,由于通过导热·电气绝缘板来冷却高压电极,因此作为冷却水也可以不使用电导率小的离子交换水等,可以使用一般的自来水作冷却水。所以,不需要电导率监视装置及离子交换水循环设备,能够由于减少装置构成数量而降低价格及减少维持费用。又,能够减少零部件数量,能够降低装置价格。
又,具有设置在低压电极与电极冷却板之间的、形成冷却水通路或者臭氧气体通路的总管块状体,所述冷却水通路将分别设置在低压电极、电极冷却板的冷却水通路相互连接起来,所述臭氧气体通路连接于设置在该低压电极上的臭氧气体通路。因此,能够减少设置冷却水用管道的空间及设置取出臭氧气体用管道的空间,能够实现装置小型化、减轻重量、减少零部件数量及提高装置质量。
又,总管块状体具有在低压电极、高压电极的叠层方向有弹性功能的弹性结构。因此,能够消除总管块状体因固紧而产生的对放电间隙的间隙长的不良影响,能够提高放电间隙的精度。
又,衬垫配置在与低压电极的形成冷却水通路的筋条相对的位置。因此,低压电极不会产生变形,结果能够抑制放电间隙的变形,能够形成高精度的放电间隙。
又,在本发明的臭氧发生器中,具有平板状的低压电极;与低压电极主表面相对设置的平板状的高压电极;设置在低压电极与高压电极之间的平板状的电介质及用于在叠层方向上形成厚度小的放电间隙的衬垫;相对于高压电极的与放电间隙相反侧的主表面设置的、用于冷却高压电极的电极冷却板;夹在高压电极与电极冷却板之间的导热·电气绝缘板;以及设置在低压电极与电极冷却板之间的、形成冷却水通路或者臭氧气体通路的总管块状体,所述冷却水通路将分别设置在低压电极、电极冷却板的冷却水通路相互连接起来,所述臭氧气体通路连接于设置在该低压电极上的臭氧气体通路,低压电极的与放电间隙相对的主表面被无机物形成的电介质膜覆盖,电介质的与高压电极相对的主表面被具有导电性的导电膜覆盖,导电膜与高压电极接触,在高压电极与导热·电气绝缘板之间夹入分别与两者接触并有伸缩性的导热片,在低压电极与高压电极之间施加交流电压,在注入氧气的放电间隙产生放电,使其产生臭氧气体。因此,能够形成不产生金属污染、生成纯净的臭氧的放电间隙,能够提高放电间隙的冷却性。
又,将多个具有低压电极、高压电极、电介质、衬垫、电极冷却板、以及导热·电气绝缘板的电极组件进行叠层。因此,能够利用电极组件的叠层数来改变装置的容量,能够容易增大容量,又即使增大容量,也能够形成紧凑的装置。
权利要求
1.一种臭氧发生器,由至少一个电极模块层叠构成,其特征在于,所述电极模块具有平板状的高压电极;与所述高压电极的主表面相对的、对该高压电极以及位于该高压电极另一侧的相邻所述电极模块的高压电极进行冷却、在其内部形成了臭氧通路和冷却水通路的平板状的低压电极;设置在所述低压电极与所述高压电极之间的平板状的电介质及用于在叠层方向上均匀地形成厚度小的放电间隙的衬垫;以及夹在所述高压电极与位于所述衬垫另一侧的相邻所述电极模块的低压电极之间、或者所述高压电极与其内部形成有冷却水通路的电极冷却板之间的导热·电绝缘板,其中,最旁边的所述电极模块的所述导热·电绝缘板的与所述高压电极相对的一侧上也设置了冷却该高压电极的所述电极冷却板;使得在所述低压电极与所述高压电极之间施加交流电压,并在注入了含氧气的原料气体的所述放电间隙中产生放电,以产生臭氧气体,所述臭氧发生器还包括在所述各电极模块的一侧分别设置在所述低压电极与相邻模块的所述低压电极之间或者在所述低压电极与所述电极冷却板之间的、形成冷却水通路或者臭氧气体通路的总管块状体,所述冷却水通路将分别设置在所述低压电极、所述电极冷却板的冷却水通路相互连接起来,所述臭氧气体通路连接到设置在所述低压电极上的臭氧气体通路。
2.如权利要求1所述的臭氧发生器,其特点在于,所述电极模块、电极冷却板、总管块状体被收纳在充满了含氧气的原料气体的发生器外壳内部,所述含氧气的原料气体从周围向所述放电间隙侵入,所发生的臭氧气体从所述低压电极中心部的孔被导入所述臭氧气体通路。
3.如权利要求1所述的臭氧发生器,其特点在于,各所述总管块状体在叠层方向上被分成2个部件,在所述部件之间设置所述弹性结构,利用形成冷却水通路和臭氧气体通路的圆筒部和接受这些圆筒部的凹部以及在它们之间设置的用于保证气密性的O形圈来连接所述部件之间的这些冷却水通路和臭氧气体通路。
4.如权利要求1所述的臭氧发生器,其特点在于,分别用不同的夹持部件来夹持固定层叠了所述低压电极、导热·电绝缘板、高压电极、电介质、衬垫以及低压电极的部分和层叠了所述电极冷却板、低压电极、总管块状体的部分,在所述低压电极所述两个部分之间设置两端大中间小的部分。
5.如权利要求1所述的臭氧发生器,其特征在于,所述衬垫形成在与所述低压电极的形成所述冷却水通路的筋条相对的位置。
6.如权利要求1所述的臭氧发生器,其特征在于,所述电介质膜由陶瓷材料或玻璃材料制成。
7.如权利要求1所述的臭氧发生器,其特征在于,所述电介质和所述高压电极用导电性粘合剂贴合。
8.如权利要求7所述的臭氧发生器,其特征在于,所述导电性粘合剂的外周边缘部分用无机物形成的绝缘保护膜覆盖。
9.如权利要求1所述的臭氧发生器,其特征在于,所述导热片用硅制成,在该导热片的两个主表面上涂付有陶瓷粉末。
全文摘要
本发明提供一种可提高放电间隙冷却性能并可形成用于产生纯净臭氧的放电间隙的臭氧发生器,它具有平板状的低压电极7、与电压电极7的主表面相对的平板状的高压电极3、设置在低压电极7与高压电极3之间的平板状的电介质5以及用于在叠层方向上形成厚度小的放电间隙6的衬垫、设置在高压电极3的与放电间隙6的反面侧主面相对的用于冷却高压电极3的电极冷却板1、夹在高压电极3与电极冷却板1之间的导热·电气绝缘板2,使得在低压电极7与高压电极3之间施加交流电压,在输入了氧气的放电间隙6中产生放电并生成臭氧气体。
文档编号H01T19/00GK1923672SQ20061013987
公开日2007年3月7日 申请日期2002年7月26日 优先权日2001年11月22日
发明者冲原雄二郎, 田畑要一郎, 臼井明, 小宫弘道, 眼龙裕司, 葛本昌树, 和田昇, 太田幸治, 八木重典, 钟江裕三 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1