将稀释氮化物功能性地集成至高效Ⅲ-Ⅴ太阳能电池的制作方法

文档序号:6988983阅读:322来源:国知局
专利名称:将稀释氮化物功能性地集成至高效Ⅲ-Ⅴ太阳能电池的制作方法
将稀释氮化物功能性地集成至高效11 I-V太阳能电池相关申请的交叉引用不适用关于在联邦资助的研究和开发中进行的发明权利的声明不适用“序列表”、表格或计算机程序列表附件参见所提交的光盘不适用
背景技术
本发明涉及光伏太阳能电池技术,尤其涉及构造高效多结III-V太阳能电池的方法。通过将位于单层结构中的各子电池共同集成为单个功能性太阳能电池来形成III-V太阳能电池。子电池中的每一个都吸收位于太阳光谱的不同区域中的光,并将该光转换为电流和电压。这些子电池由被称为隧道结的子结构电连接。这些子结构中的每一个都影响太阳能电池的总体性能,并且集成并非无关紧要。例如,在传统的三结电池中,存在5个子结构三个光吸收子电池和两个隧道结(TJ)(见图I)。所有这些子元件必须良好地集成在一起。通过合适地选择用于III-V太阳能电池的子电池的带隙,能够优化该电池的总体转换效率(见 J. F. Geisz,D. J. Friedman, J. S. Ward, A. Duda,WJ. Olavarria, T. E. Moriarty,J. T. Kiehl, M. J. Romero, A. G. Norman, Κ. M. Jones 的"40. 8 % efficient invertedtripIe-junction solar cell with two independently metamorphic junctions (具有两个独立变质结的、40. 8%效率的倒置三结太阳能电池),"Appl. Phys. Lett. · Vol. 93,No. 123505, 2008) ο众所周知,具有 IeV带隙子电池砂(其与GaAs晶格匹配)的三结III-V太阳能电池能够具有超越传统三结III-V太阳能电池(即,具有基于锗的底部结的太阳能电池)的改善的效率。事实上,具有小于GaAs带隙(1.42eV)的可调带隙的材料系统将优选用于创造具有三结或更多结的太阳能电池。已经被考虑用于该任务的主要材料系统中的一种是稀释氮化物材料系统(通常被描述为GalnNAs,可能具有少量的Sb或Bi。例如,见 K. Volz, J. Koch, B. Kunert, I. Nemeth, ff. Soltz 的"Influence of annealingon the optical and structural properties of N-containing III/V semiconductorheterostructures (退火对含氮III/V半导体异质结构的光学性质和结构性质的影响)",J. of Crystal Growth, Vol. 298, pp 126-130,2007)。在下文中,这些类型的材料将简称为稀释氮化物。该材料系统似乎适于集成至太阳能电池,这是因为其能够与GaAs晶格匹配,而不取决于其带隙,因为带隙< 1.42eV。已知隧道结中的稀释氮化物用于其他环境,例如LED。例如,参见第6,765,238号美国专利。然而,将稀释氮化物材料集成至太阳能电池中不仅仅需要晶格匹配。还需要其它集成考虑以将该材料成功用于高性能III-V太阳能电池。迄今为止,还未发现如何解决这些集成问题以在多结太阳能电池中创造高性能稀释氮化物子电池,而不破坏其它子电池、子结构的性能,或太阳能电池作为整体的性能。多结太阳能电池集成需求a.晶格匹配已知通过适当选择材料组成,能够使稀释氮化物材料系统(含有或不含少量Sb或Bi)生长得与GaAs晶格匹配。事实上,通过权衡层中的化合物中的元素(诸如铟和氮)的相对组成的加权,可以在保持晶格匹配的同时调谐稀释氮化物材料的带隙。晶格匹配材料通常不具有在非晶格匹配的生长期间所出现的水平的结晶缺陷。这些缺陷既影响装置的性能,又影响装置的可靠性。b.电流兀配
必须评估以判断是否将子电池集成至多结装置的另一个基本子电池参数是其电流密度(Jsc)。为了将稀释氮化物子电池有效地集成至多结太阳能电池中,必须产生等于或大于装置中的其他子电池(例如,基于GaAs和InGaP的子电池)的电流。由于所有子电池均通过隧道结串联连接在一起,故流过所有子电池的电流必须相同(见图2)。因此,所有子电池必须生成近似等量的电流,从而以最佳效率(即,它们必须是“电流匹配的”)转换太阳光谱。对于在AMI. 5D太阳辐射下使用GaAs和InGaP作为其他两种子电池材料的典型三结装置来说,稀释氮化物子电池必须在I-太阳浓度下产生大于约13mA/cm2的电流,以实现电流匹配。作为生成高电流的低带隙电池的进一步动机,以一些总体太阳能电池效率为代价使低带隙电池产生比所需更大的电流是有利的。例如,使底部电池产生比电流匹配所需更大的电流放松了系统集成器上的光学传递函数限制。在这种情况下,系统集成器能够集中于使系统的光学生产率在由(例如)GaAs和InGaP子电池覆盖的光谱范围内保持较高,并且放松底部子电池的生产率限制。尽管其对太阳能电池效率有着预见的好处,但稀释氮化物仍然不被用于商业III-V太阳能电池,因为制造具有还产生足以实现电流匹配的高电流的合适带隙的稀释氮化物子电池极具挑战性。仅存在所需电流水平(> 13mA/cm2)已被实现的一个已知报告(D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. Harris, A. J. Ptak, S. ff. Johnston,D. J. Friedman,S. R. Kurtz的〃 Dilute nitride GaInNAs and GaInNAsSb solar cells bymolecular beam epitaxy (通过分子束外延的稀释氮化物GaInNAs和GaInNAsSb太阳能电池)",J. Appl. Phys, Vol. 101,No. 114916,2007)。实现所需性能的一个关键点是使稀释氮化物子电池经受热退火步骤。稀释氮化物材料在其沉积之后所遇到的所有升高的温度均可影响稀释氮化物层的性质。在稀释氮化物层的顶部生长附加太阳能电池层所需的温度和时间可以作为稀释氮化物退火过程的一部分而被考虑。通常,用于在稀释氮化物层的顶部上的附加生长的温度和时间不足以最大程度地改善稀释氮化物的参数。就此而言,在太阳能电池的完全外延沉积之后对稀释氮化物材料进行退火有助于显著改善稀释氮化物子电池的参数,从而能够将该子电池成功地集成至多结电池中。根据公开的文献,各种研究者和机构已经在非常大的时间和温度范围内完成了稀释氮化物退火。虽然不是每一种时间/温度组合都最佳地改善基于稀释氮化物的装置的性能,但来自文献的退火示例为在525°C至800°C的范围内持续高达 2 小时(K. Voltz, D. Lackner, I. Nemeth, B. Kunert, ff. Stolz, C. Bauer, F. Dimroth,A. ff. Bett 的 "Optimization of annealing conditions of (Gain)(NAs) for solarcell applications (太阳能电池应用的(Gain) (NAs)的退火条件的优化)",Journalof Crystal Growth,310,pp. 2222-2228,2008),以及在> 800°C 时持续更短的时间(例如 30 秒至 I 分钟或更长)(J. Miguel-Sanchez, A. Guzman, J. M. Ulloa, A. Hierro, E. Munoz的"Effect of nitrogen on the optical properties of InGaAsN p-i-n structuresgrown on misoriented(lll)B GaAs substrates (氮对生长于定向错误的(Ill)B GaAs基板的 InGaAsN p-i-n 结构的光学性质的影响)",Appl Phys. Lett. , Vol. 84, No. 14,pp.2524-2526,2004)。c.完全集成的装置必须经得住热退火还不足以制造良好的独立的稀释氮化物子电池。还有必要将稀释氮化物子电池集成至完全功能的多结装置中。虽然可通过使用稀释氮化物的适当组成来满足晶格匹配和带隙的限制,但可以通过退火来改善子电池的性能(见J. S. Harris等人的第12/217818号美 国专利申请)。GaInNAs子电池所遇到的用于改善其性能的热剂量可以相对于使材料在其中沉积的沉积腔原位进行、异位进行、或二者结合。虽然有益于GaInNAs子电池,但对稀释氮化物子电池(或电池)应用热负载(或剂量)会对其他子结构造成显著的不利影响。为了将稀释氮化物用于多结电池中,这些其他子结构必须被设计为经得住稀释氮化物退火步骤。该退火限制是包含稀释氮化物材料的多结电池所特有的。不具有稀释氮化物子电池的太阳能电池不具有这种限制。不具有稀释氮化物子电池的传统太阳能电池的示例见图I。虽然其他普通类型的子电池(例如,GaAs和InGaP)通常在退火之后几乎没有表现出劣化(例如,灾难性故障),但在稀释氮化物退火之后,典型隧道结却显著劣化,甚至灾难性地劣化。(见 S. Ahmed,M. R. Melloch,E. S. Harmon,D. T. Mclnturff, J. Μ. Woodall 的"Useof nonstoichiometry to form GaAs tunnel junctions (使用非化学计量形成 GaAs 隧道结)",Appl. Phys. Lett.,Vol. 72 No 25,pp 3667-3369,1997)。此外,图 8 示出在约 820个太阳(suns)下测量的来自多结太阳能电池装置的电流⑴对电压(V)的两条曲线。这两条曲线来自于具有相同外延堆的两个不同晶片。所使用的隧道结设计是n-GaAs/p-AlGaAs型设计(非ErAs)。一个晶片在780°C下退火(曲线1,黑色),而另一个晶片则在740°C下退火(曲线2,灰色)。这两个晶片的退火时间是相同的。能够清楚地看见,得到更热退火的晶片展现出明显的隧道结失效。这种类型的隧道结失效限制了能够应用于太阳能电池堆以改善GaInNAs子电池性能的退火热负载的范围(例如,时间和温度)。隧道结背景通过创造如图3所示的能级图指示的突变p++/n++结,能够创造使带隧穿(band-to-band tunneling)出现的条件。该隧穿取决于从高度掺杂p型向高度掺杂η型的突变跃迁所导致的高电场。在这种装置中,ρ-η结表现出约O伏的电流-电压特性,非常像电阻器,并且使一个子电池的P侧与相邻子电池的η侧连接。图5示出了多结太阳能电池内部的这种隧道结所关心的参数,它们是I.)在工作点处的低有效电阻(理想小于或等于Im Ω/cm2,但实际上小于5m Ω/cm2)a.有效电阻R被定义为工作电流Itjp处的电压降Vtjp,或换言之,V0p(I0p)除以工作电流。这不是工作点处的斜率电阻。
R = V0p(I0p)7I0p(O. I)b.对于500x浓度下的三结太阳能电池,Iop约为7. 5A/cm2。当实现具有不同带隙组合或大量带隙的其他多结设计时,其他浓度水平导致其他工作电流。2.)低光学吸收(理想小于入射光的I % )随着掺杂水平在结两侧的增加,或随着带隙的减小,隧穿电流Jt增加(见公式(O. 2)突变结的近似,其中Na是受体掺杂,Nd是施主掺杂,并且Eg是带隙)。Jt - θχρ (- (Na+Nd) /NaNd(O. 2)
从公式(O. 2)我们能够看见,隧穿电流随着掺杂水平的增加而增加。然而,通过标准硅掺杂物实现高于约5el8CnT3的η型掺杂是困难的。对于后退火,将活性掺杂水平保持在高于5el8cm_3硅是特别困难的。高于约5el8cm_3的GaAs中的硅掺杂水平趋向于在退火之后锁定于在5el8cnT3周围。(见表I)。
预退火后退火
活性硅掺杂物 lel9cm-35el8cm-3表I在稀释氮化物材料退火之前和之后的GaAs中的活性硅掺杂物水平。为了实现更高的η型掺杂水平,许多人使用Te或Se。虽然这些掺杂物在基于GaAs的材料中具有更高的活性溶解度,但当掺杂高且它们禁受在稀释氮化物材料退火的范围内的温度时掺杂物快速扩散。类似地,当使用铍作为P型掺杂物时,热处理下的掺杂物扩散也是有害的。此外,掺杂物扩散通常随着掺杂水平的增加而加强,并且隧道结的强场区域能够导致场加强的掺杂物扩散。由于隧道结中的掺杂物扩散,故它们清除了结的突变并因此降低了电场。这对该装置增加其电阻并降低其峰值电流密度的隧穿行为产生不利影响。如果扩散足够大,则隧穿行为能够完全消失。因此,基于高掺杂水平的隧道结本身易受劣化影响,如例如通过热退火而劣化。Ahmed等人研究了退火对低温生长的GaAs隧道结的效果(S. Ahmed,M. R. Melloch,E. S. Harmon, D. T. Mclnturff, J. Μ. Woodall StJ " Use of nonstoichiometry to form GaAstunnel junctions (使用非化学计量形成 GaAs 隧道结)",Appl. Phys. Lett. , Vol. 72No. 25,pp 3667-3369,1997) o根据作者所述,在退火之前,隧道结表现得非常良好,而在退火之后,隧道二极管的特性显著劣化。事实上,在80(TC下退火30秒(充分位于稀释氮化物退火的范围内)的隧道二极管勉强满足集成至多结太阳能电池中的所需规格。该劣化是基于高的、突变掺杂水平的所有隧道二极管的特点。然而,根据Ahmed等人所述,隧穿通过在隧道结(中间隙态)中低温生长的GaAs缺陷而加强。对于多结太阳能电池,不期望将晶体缺陷故意引入III-V材料外延层堆,因为这些缺陷会随着时间的推移而导致可靠性问题。此外,如果隧道结中的有缺陷材料禁止生长于隧道结顶部的高质量(低缺陷)材料的可靠形成,则会出现产量问题。最终,如上面在“电流匹配”章节中所陈述,相比于Ahmed所使用的800°C下30秒,稀释氮化物材料退火步骤可能需要更长的退火时间和更高的退火温度。这些更加激进的退火条件将导致该隧道结劣化至高浓度III-V太阳能电池所需的性能水平之下。
此外,隧道结优选由带隙构成,该带隙大于隧道结之下的任何子电池的最大带隙。高带隙材料的使用降低了隧道结中的光学吸收并增加了总体太阳能电池效率。然而,如公式(O. 2)可见,对于相同的偏置电压,更高带隙的隧道结表现出更低的隧道电流(更高的隧道电阻),使得退火存活性更加困难。此外,大带隙材料通常具有更低的活性掺杂物最大量。将提供中间隙态的层插入中间隧道结二极管是已知的,因为其通过二步式处理使得隧穿能够出现。例如,在P+层和η+层之间插入稀土-V族组合(诸如ErAs)提供了中间隙态,这有效地降低了隧道势鱼的大小。例如参见J. Μ. O. Zide, A. Kleiman-Shwarsctein,N. C. Strandwitz, J. D. Zimmerman, T.Steenblock-Smith, A. C. Gossard 的 "Increasedefficiency in multi junction solar cells through the incorporation ofsemimetallic ErAs nanoparticles into the tunnel junction (通过将半金属 ErAs 纳米粒子结合至隧道结中来增加多结太阳能电池的效率)",Appl. Phys. Lett. , Vol. 88,No. 162103,2006,或参见Gossard等人的第2007/0227588号美国专利公布(申请号11/675,269)。然而,迄今为止,并没有关于多结装置中这种隧道结的热稳定性的任何报道。 由于前述原因,需要一种利用稀释氮化物层改善多结太阳能电池的效率的新手段。

发明内容
根据本发明,在由III-V材料组成的包括稀释氮化物子电池的多结太阳能电池中,影响中间隙态的材料的附加层被插入隧道结中的一个或多个,从而实现隧道结设计,该隧道结设计是热稳定的并在太阳能电池中的稀释氮化物材料所需的特别热退火时间和温度之后表现出良好的性能。合适的热能剂量或负载能够以多种方式被影响,诸如通过对整个结构进行加热,并且其可以包括增加导致整个结构的退火的附加热步骤,即使这不利于传统隧道结。根据本发明,使隧道结转变的附加层由砷化铒(ErAs)组成,砷化铒已经被发现在热能负载之后保持其良好的性质。隧穿行为对掺杂水平和P至η掺杂变化的突变的依靠因此通过插入这些层来降低,即使是在经受实现稀释氮化物材料的改善性质所需的热能之后,也能实现良好的性能。参照结合附图的下列详细描述,将更好地理解本发明。


图I是以示意图形式的传统(现有技术)III-V太阳能电池的侧截面图;图2是以示意图形式的具有稀释氮化物的高性能III-V太阳能电池(现有技术)的侧截面图;图3是示出隧穿带隙(现有技术)的具有电压偏置的ρ++ η++结的能带图;图4(a)是现有技术的传统(现有技术)二极管的能带图,其中不存在电子隧穿进入的状态;图4(b)是作为结合根据本发明的退火稀释氮化物型多结太阳能电池使用的ErAs中间隙态辅助隧道二极管的能带图;图5是多种类型的基于高掺杂和突变的隧道结的V-I图一例如非退火标准型,其中示出满足期望规格的隧道结(实线),以及基于中间隙态和高掺杂和突变的隧道结(虚线I)和基于中间隙态和更低掺杂和突变的隧道结(虚线2);图6是ErAs隧道结在持续I分钟的780°C下的稀释氮化物材料退火之前(曲线I)和之后(曲线2)的电压电流图,示出了 ErAs隧道结在退火之后不显著劣化,并保持高峰值电流密度。图7是以根据本发明的III-V多结太阳能电池的ErAs隧道结结构的一个实施方式的示意图形式的截面图;图8是来自具有相同生长但具有不同退火温度的两个晶片的装置的电流⑴对电压(V)的曲线,示出了在更高退火温度下的隧道结的失效;以及图9是在约820个太阳下测量的使用ErAs隧道结的退火多结太阳能电池的电流
(I)对电压(V)的曲线。
具体实施例方式参照图4(b),示出了具有砷化铒的隧道结的操作。该操作包括,首先使电子载流子从III-V材料的更高电势η+态隧穿至稀土-V族材料(特别是砷化铒(ErAs))的薄中间层,然后,电子从稀土-V族材料的中间电势隧穿至III-V材料(诸如砷化镓(GaAs))的更低电势P+态。因此,电子载流子仅需要穿过小势垒隧穿至中间隙态,随后穿过小势垒离开中间隙态。对于给定的所施加偏置,隧道势垒大小的这种降低增加了隧道电流。(见图5,虚曲线I)。当用更高带隙材料制造隧道结时,隧道势垒大小的降低也是有用的。对于穿过包含中间隙态(见图5,虚曲线I)的隧道结的期望电流水平,需要比不具有中间隙态(见图5,实曲线)的隧道结更小的偏置,即,更小的电场。所需电场的降低意味着对于与不具有中间隙态的装置相同的偏置电压,中间隙态的装置能够使用更低掺杂和/或更低结突变来实现相同的电流。因此,期望具有中间隙态的装置使用更低的掺杂和突变(见图5,虚曲线2)来实现与具有更高掺杂和突变但不具有中间隙态(见图5,实曲线)装置类似的电阻和峰值隧道电流。通过使用稀土纳米颗粒(诸如插入隧道结的砷化铒),能够创造这种中间隙态(见图4a和4b)。当例如稀土 -V族组合物ErAs沉积在薄层中的GaAs上时,其成为球形的纳米颗粒岛。这些岛非常小且不连续,从而其能够使GaAs的蔓延继续,并且保持GaAs晶格匹配。使用截面透射电子显微镜(TEM)对GaAs中的ErAs纳米颗粒进行的显微照相分析表明,晶格在跨越ErAs界面上是连续的,意味着即使是在诸如由退火导致的异常加热之后,GaAs晶体也保持记录(registry)。此外,ErAs层的光学波长吸收相当小,使得它们理想地用于太阳能电池集成。使用其他稀土 -V族化合物也能够实现相同的效果。虽然其它工作已经示出ErAs对隧道结电行为的效果以及纳米岛层导致很少的光学吸收的事实,但既没有工作示出ErAs加强隧道结的热稳定性,也没有工作示出ErAs加强隧道结在含有稀释氮化物层的III-V太阳能电池中是否有效。本发明已经确定ErAs加强隧道结事实上在调整(即加强稀释氮化物层性能)所需的退火之后是热稳定的。图6和表I说明嵌入基于GaAs的材料中的ErAs加强隧道结能够承受住与稀释氮化物子电池层相关的热处理。曲线I是ErAs隧道结在加热之前的V-I特性,曲线2是ErAs隧道结在加强稀释氮化物层所需的加热之后的V-I特性。显然,如斜率的改变(或电压降)所示,仅电阻改变,并且在所测试的电流范围内不存在电流随着电压减小(或该隧道二极管无法工作)的“峰值电流密度”。相比较而言,非ErAs型隧道结表现出失效或具有显著降低的峰值电流密度。这里,如果电阻不大,差别可以忽略。图6和表I中的ErAs层的生长与 J. D. Zimmerman 的论文 “Growth and use of epitaxially grown ErAs semimetalto enhance III-V Schottky diode and tunnel junction performance (生长和使用外延ErAs半金属以加强III-V肖特基二极管和隧道结的性能)” (Ph. D. Dissertation,University of California Santa Barbara, March 2008)所述和 Kadow 等人(C. Kadow,S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, Appl. Phys. Lett. , 75, 35481999)所述的生长类似。关于图6和表I的ErAs隧道结装置结构在图7中示出,其包括2个单层厚度的ErAs层。所有其他层都基本是传统的。在图6中,退火条件为在快速热退火器(RTA)中在780°C持续I分钟。对于用于多结电池的GaInNAs (稀释氮化物)材料来说, 最佳退火温度的合适范围为500°C至900°C,退火时间为几个小时,基本上退火温度越高,所需时间就越少。在500x浓度下的三结太阳能电池中,隧道结必须能够传导约7. 5A/cm2。图6中的隧道结能够维持远超三结电池所需的峰值电流密度的峰值电流密度。此外,电阻率
<ImOhm/cm2,这也远超用于集成至多结太阳电池所需的规格。预期基本所有镧系稀土元素(周期表的57至71号元素)都适于以一种形式或其它形式结合至稀土-V族二极管中。然而,在包含化合物的二极管装置中,砷和铒以及磷和铒为当前优选的稀土元素和V族元素。其它基于铒的化合物也可能有效,但还未被证实。这些化合物包括铒和锑、铒和铋以及铒和氮。预期该ErAs隧道结方法将允许GaInNAs最优退火范围的大部分(如果不是全部)被开发并应用于利用至少一个GaInNAs子电池的多结太阳能电池,而没有类似图8所示的隧道结失效。当直接用作带隙小于GaAs的带隙的子电池顶部上的隧道结(例如,作为图I和图2中的“隧道结#1”)时,图7所示的示例性装置结构表现出较低的光学吸收。图7中的最顶层p-GaAs在多结电池中是不需要的并且在此仅直接帮助隧道结的电测试。然而,包围ErAs层的两个20nm层p-GaAs和n_GaAs材料将出现在集成的太阳能电池中。当该隧道结被用于连接具有大于或等于GaAs的带隙的子电池时,该40nm的GaAs能够导致不期望的光学吸收。在这种情况下,隧道结将充当过滤器以吸收一些穿过其的光。对该问题的解决方案是制造由更高带隙材料构成的、包围含有ErAs的中间层的一个或多个层(或P+层和η+层之一,或ρ+层和η+层二者)以。这些材料可以是GaAs、AlGaAs、AlGalnP、GalnP、GaInAs或AlGalnAsP。换言之砷化镓、磷化镓铟铝、磷化镓铟、砷化镓铝、砷化铟镓或磷化砷铟镓铝。在基于磷化物的材料的情况下,ErAs的角色由ErP替代。稀释氮化物还可以填充隧道结。这些稀释氮化物包括单独的GalnNAs,或具有Bi、Sb或二者的组合,即,GalnNAs、GaInNAsSb,GaInNAsBi或GaInNAsSbBi。还示出,利用在隧道结中的更高带隙材料,高浓度多结太阳能电池完成良好的后高温退火(没有隧道结失效直至并超过820个太阳)。这些太阳能电池利用具有p-AlGaAs/ErAs/n-GaAs设计的隧道结。隧道结的更高带隙ρ-AlGaAs侧增加了隧道结子结构的光传输。图9示出了来自这种装置的I-V曲线。退火温度为850°C,并且退火时间少于图8所示装置的退火时间的一半。
表2退火前后的ErAs隧道结性能
峰值隧道电流~ 在7. 5A/cm2处的有效电阻 非退火 > 400A/cm2O. 25m Ω/cm2
退火 > 150A/cm20.80m Ω /cm2总的来说,具有稀土-V族中间层的隧道结经得住在将稀释氮化物材料集成至III-V多结太阳能电池所需的范围内的退火条件(时间/温度)。ErAs所创造的中间隙态、以及ErAs的明显固有的热稳定性降低了隧道结对高的、突变的掺杂水平的依赖,使其不易受热劣化影响。
已经参照具体实施方式
对本发明进行了说明。对本领域技术人员来说,其它实施方式也是显而易见的。因此不打算对本发明进行限制,除了所附权利要求所指示的之外。
权利要求
1.一种形成III-V多结太阳能电池的方法,包括在所述太阳能电池中形成隧道结,所述方法包括 在所述多结太阳能电池中设置至少一个包含稀释氮化物的层; 设置与隧道结关联的Π+半导体层; 设置面对所述η+半导体层的ρ+半导体层; 在所述P+层与所述η+层之间设置形成中间隙态辅助隧道二极管的稀土 -V族中间层;以及 加强所述稀释氮化物层,以改善所述太阳能电池的性能。
2.根据权利要求I所述的方法,加强步骤包括 向所述多结太阳能电池施加足以调整所述稀释氮化物层的电压和电流特性的热能。
3.根据权利要求I所述的方法,其中所述η+层是基于III-V的化合物。
4.根据权利要求3所述的方法,其中所述ρ+层是基于III-V的化合物。
5.根据权利要求4所述的方法,其中所述稀土-V族中间层是基于铒的化合物。
6.根据权利要求I所述的方法,其中所述稀土-V族中间层是镧系元素和V族元素的化合物。
7.根据权利要求I所述的方法,其中所述η+层是稀释氮化物。
8.根据权利要求I所述的方法,其中,作为稀释氮化物,所述η+层选自由GalnNAs、GaInNAsSb、GaInNAsBi 以及 GaInNAsSbBi 构成的组。
9.根据权利要求I所述的方法,其中所述P+层是稀释氮化物。
10.根据权利要求I所述的方法,其中,作为稀释氮化物,所述P+层选自由GalnNAs、GaInNAsSb、GaInNAsBi 以及 GaInNAsSbBi 构成的组。
11.根据权利要求I所述的方法,其中 所述η+层选自由砷化镓、磷化镓铟铝、磷化镓铟、砷化镓铝、砷化铟镓、以及磷化砷铟镓招构成的组; 所述P+层选自由砷化镓、磷化镓铟铝、磷化镓铟、砷化镓铝、砷化铟镓、以及磷化砷铟镓铝构成的组;以及 所述稀土 -V族中间层选自由砷化铒和磷化铒构成的组。
12.—种III-V化合物型多结太阳能电池,具有至少一个子电池,所述太阳能电池包括 a)结结构,具有: η+半导体层; P+半导体层;以及 稀土 -V族中间层,位于所述ρ+层与所述η+层之间,并形成中间隙态辅助的辅助隧道二极管; b)至少一个含有稀释氮化物的层, c)其中所述太阳能电池已受到足以调整所述含有稀释氮化物的层的热能。
13.根据权利要求12所述的太阳能电池,其中退火步骤足以调整所述稀释氮化物层的电压和电流特性。
14.根据权利要求12所述的太阳能电池,其中所述η+层是基于III-V的化合物。
15.根据权利要求14所述的太阳能电池,其中所述ρ+层是基于III-V的化合物。
16.根据权利要求15所述的太阳能电池,其中所述稀土-V族中间层是镧系元素和V族元素的化合物。
17.根据权利要求15所述的太阳能电池,其中所述稀土-V族中间层
18.根据权利要求12所述的太阳能电池,其中所述η+层是稀释氮化物。
19.根据权利要求12所述的太阳能电池,其中,作为稀释氮化物,所述η+层选自由GalnNAs、GaInNAsSb、GaInNAsBi、以及 GaInNAsSbBi 构成的组。
20.根据权利要求12所述的太阳能电池,其中所述ρ+层是稀释氮化物。
21.根据权利要求12所述的太阳能电池,其中,作为稀释氮化物,所述P+层选自由GalnNAs、GaInNAsSb、GaInNAsBi、以及 GaInNAsSbBi 构成的组。
22.根据权利要求12所述的太阳能电池,其中所述η+层选自由砷化镓、磷化镓铟铝、磷化镓铟、砷化镓铝、砷化铟镓、以及磷化砷铟镓铝构成的组; 所述P+层选自由砷化镓、磷化镓铟铝、磷化镓铟、砷化镓铝、砷化铟镓、以及磷化砷铟镓铝构成的组;以及 所述稀土 -V族中间层选自由砷化铒和磷化铒构成的组。
全文摘要
通过设置诸如砷化铒(ErAs)的稀土-V族中间层以产生中间隙态辅助隧道二极管结构来改善隧道结。这种隧道结经得住将稀释氮化物材料集成至III-V多结太阳能电池所需的范围内的热能条件(时间/温度)。
文档编号H01L31/0336GK102804383SQ201080028460
公开日2012年11月28日 申请日期2010年6月22日 优先权日2009年6月23日
发明者迈克尔·W·维摩, 侯曼·B·禺恩, 维基特·A·萨博尼斯, 迈克尔·J·谢尔登, 伊欧雅·富士曼 申请人:太阳结公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1