内插件及使用了该内插件的电子装置的制作方法

文档序号:7250936阅读:309来源:国知局
专利名称:内插件及使用了该内插件的电子装置的制作方法
技术领域
本发明涉及使用于电子设备(例如各种视听设备、家电设备、通信设备、计算机设备及其周边设备)等的内插件及使用了该内插件的电子装置。
背景技术
以往,在电子设备中使用具备配线基板和安装在配线基板上的电子部件的电子装置。在日本特开平11-214449号公报中,记载了具备配线基板和倒装式安装在该配线基板上的裸芯片的电子装置。
如此,当在配线基板上倒装式安装裸芯片时,在裸芯片安装时或工作时等在电子装置上施加热的情况下,因配线基板与裸芯片的热膨胀率之差而导致在配线基板与裸芯片的连接部上产生热应力,该热应力施加在耐久性差的裸芯片的电极上而使其发生破坏,进而导致电子装置的电可靠性降低。另一方面,在日本特开2004-311574号公报中,记载了一种电子装置,该电子装置具备配线基板、搭载在该配线基板上的电子元件、介插于所述配线基板与所述电子元件之间的内插件,该内插件具有由具有绝缘性的无机材料(无机绝缘材料)形成的基体;贯通基体且在贯通部填充有导体的导体埋入通孔。如此,基体由无机绝缘材料构成的内插件与配线基板相比,容易减小与电子元件之间的热膨胀率之差,因此,能够降低在内插件与电子元件的连接部上产生的热应力,进而能够降低施加在电子元件的电极上的热应力。然而,由于与电子元件的热膨胀率之差小的无机绝缘材料的热膨胀率比导体小,因此,在对电子装置施加热时,导体埋入通孔比基体热膨胀大,从而从通孔的内壁剥离且从基体突出,因该突出而存在内插件与电子元件的连接部被破坏的情況,进而电子装置的电可靠性容易降低。从而,期望提供ー种改良了电可靠性的内插件。

发明内容
本发明通过提供改善了电可靠性的内插件而解决上述要求。本发明的一方式涉及的内插件具备具有沿着厚度方向的贯通孔的基体;配设在该贯通孔内的贯通导体,其中,所述基体具有沿厚度方向相互分离的第一及第ニ无机绝缘层、夹设在该第一及第ニ无机绝缘层之间并与所述第一及第ニ无机绝缘层抵接的第一树脂层,所述第一树脂层向厚度方向及平面方向的热膨胀率比所述第一及第ニ无机绝缘层向厚度方向及平面方向的热膨胀率大。发明效果根据上述结构,能够提供改善了电可靠性的内插件。


图1(a)是沿厚度方向剖开本发明的第一实施方式涉及的电子装置的剖视图,图I (b)是图I的Rl部分的放大图,图I (C)是示意地显示两个第一无机绝缘粒子结合的状况的图。图2是对图I所示的电子装置的制造エ序进行说明的沿厚度方向剖开的剖视图。图3是对图I所示的电子装置的制造エ序进行说明的沿厚度方向剖开的剖视图。图4是对图I所示的电子装置的制造エ序进行说明的沿厚度方向剖开的剖视图。图5是将本发明第二实施方式涉及的电子装置沿厚度方向剖开的剖视图。图6是对图5所示的电子装置的制造エ序中的内插件所包含的第二树脂层的形成 エ序进行说明的沿厚度方向剖开的剖视图。图7是将本发明第三实施方式涉及的电子装置沿厚度方向剖开的剖视图。图8是将本发明第四实施方式涉及的电子装置沿厚度方向剖开的剖视图。图9(a)是图8中的R2部分的放大图,图9 (b)是图9(a)中的R3部分的放大图。
具体实施例方式(第一实施方式)以下,基于附图,对包含本发明第一实施方式涉及的内插件的电子装置进行详细说明。图I (a)所示的电子装置I为使用于例如各种视听设备、家电设备、通信设备、计算机装置或其周边设备等电子设备的装置,与例如母插件等外部电路电连接。该电子装置I包括电子部件2 ;安装了电子部件2的配线基板3 ;夹设在电子部件2与配线基板3之间的内插件4 ;将内插件4和电子部件2电连接的第一凸块5a ;将内插件4和配线基板3电连接的第二凸块5b ;将配线基板3和外部电路电连接的第三凸块5c。电子部件2经由内插件4而安装在配线基板3上,为例如LSI或IC等半导体元件。该半导体元件可以使用CPU或MPU等逻辑系或存储系的半导体元件,母材含有例如硅、锗、神化镓、镓砷磷、氮化镓或碳化硅等半导体材料。该电子部件2的厚度设定为例如O. 05mm以上且O. 8mm以下,向平面方向及厚度方向的热膨胀率设定为3ppm/°C以上且5ppm/°C以下,拉伸弹性模量设定为IOOGPa以上且150GPa以下。在此,在本实施方式的电子装置I中,电子部件2优选使用逻辑系的半导体元件。该逻辑系的半导体元件与存储系的半导体元件比较,端子数多且电路被微细配线化,当施加应カ时,电路容易发生断线,因此,与配线基板3的电连接可靠性容易降低。因而,通过将内插件4夹设在该电子部件2与配线基板3之间,来缓和施加在电子部件2的电路上的应力,从而能够提高电子部件2与配线基板3的电连接可靠性。需要说明的是,热膨胀率使用市售的TMA装置并利用基于JISK7197-1991的測定方法来测定。另外,拉伸弹性模量使用MT Ssystmes公司制Nano Indentor XP/DCM来測定。以下,各构件的热膨胀率及拉伸弹性模量与电子部件2同样地进行測定。配线基板3为树脂制的组合基板,包括中心基板6和在中心基板6的上下形成的一对组合部7。该配线基板3的厚度设定为O. 3mm以上且I. 8mm以下,并且该厚度设定为电子部件2的2倍以上且20倍以下,该配线基板3的平面方向上的热膨胀率设定为15ppm/°C以上且25ppm/°C以下,向厚度方向的热膨胀率设定为20ppm/°C以上且40ppm/°C以下,向平面方向的热膨胀率设定为电子部件2的3倍以上且8倍以下,拉伸弹性模量设定为5GPa以上且40GPa以下。中心基板6为提高配线基板3的刚性的部件,包括形成有沿厚度方向贯通的通孔的树脂基板8 ;沿该通孔的内壁形成为圆筒状的通孔导体9 ;以及在该通孔导体9的内部形成为柱状的绝缘体10。该中心基板6的厚度形成为例如O. 2mm以上且I. 2mm以下。树脂基板8为提闻中心基板6的刚性的部件,包含例如环氧树脂等树脂材料。另夕卜,也可以包含由无机绝缘填料或纤维构成的基材。贯通该树脂基板8的通孔形成为例如直径为O. Imm以上且Imm以下的圆柱状。通孔导体9为将中心基板6的上下的组合部7电连接的部件,包含例如铜等导电材料。该通孔导体9的从通孔内壁至该通孔导体9与绝缘体10的边界的厚度设定为例如 15 μ m以上且100 μ m以下。 绝缘体10为形成后述的穿孔导体13的支承面的部件,包含例如环氧树脂等树脂材料。另ー方面,组合部7包括形成有沿厚度方向贯通的通穿孔,且配置在中心基板6上的绝缘层11 ;配置在中心基板6上或绝缘层11上的配线层12 ;在通穿孔中形成为柱状,且与配线层12电连接的穿孔导体13。配线层12及穿孔导体13相互电连接,构成包含接地用配线、电カ供给用配线及/或信号用配线的配线部。绝缘层11具有作为配线层12的支承构件的功能、作为抑制配线层12彼此的短路的绝缘构件的功能,该绝缘层11包含例如环氧树脂等树脂材料。配线层12隔着绝缘层11而在厚度方向上相互分离,且包含例如铜等导电材料。穿孔导体13为将沿厚度方向相互分离的配线层12彼此相互连接的部件,形成为朝向平面方向的截面积朝向中心基板6而变小的柱状(锥状),包含例如铜等导电材料。该穿孔导体13向平面方向的截面积设定为例如O. OOlmm2以上且O. Olmm2以下。内插件4是作为电子部件2及配线基板3的连接构件而发挥作用的部件,包括具有沿着厚度方向的贯通孔P的基体14 ;与基体14的一主面抵接的第一导电层15a ;与基体14的另ー主面抵接的第二导电层15b ;填充于该贯通孔P中,与第一导电层15a及第ニ导电层15b电连接的贯通导体16。另外,内插件4的厚度设定为比电子部件2及配线基板3小。其结果是,通过使内插件4变薄,能够使电子装置I小型,并且能够缩短电子部件2与配线基板3之间的配线长度而提高信号传送特性。另外,通过使内插件4厚度变薄,从而容易因来自外部的应カ而变形,因此,例如在电子部件2热膨胀时,通过内插件4变形,而能够缓和向其与电子部件2连接的连接部施加的应力,进而提高内插件4与电子部件2的电连接可靠性。需要说明的是,内插件4的厚度设定为电子部件2的例如O. 2倍以上且O. 8倍以下,并且该厚度设定为配线基板3的例如O. 015倍以上且O. 5倍以下。这种内插件4的厚度设定为例如O. 03mm以上且O. 15mm以下。基体14作为内插件4的支承构件及绝缘构件而发挥功能,包括第一无机绝缘层17a ;沿厚度方向与第一无机绝缘层17a分离的第二无机绝缘层17b ;夹设在第一无机绝缘层17a与第二无机绝缘层17b之间,与第一无机绝缘层17a及第ニ无机绝缘层17b抵接的第一树脂层18a。需要说明的是,基体14的拉伸弹性模量设定为IOOGPa以上且150GPa以下。由于第一无机绝缘层17a以低热膨胀率及高刚性的无机绝缘材料作为主成分,因此,基体14成为低热膨胀率及高刚性。该无机绝缘材料可以使用以氧化硅为主成分的陶瓷材料,还可以含有氧化铝、氧化镁、氧化钙、氮化铝、氢氧化铝或碳酸钙等。另外,第一无机绝缘粒子Ila优选含有65重量%以上且100重量%以下的氧化娃。另外,该无机绝缘材料优选为非结晶(非晶质)状态。其结果是,能够降低第一无机绝缘层17a的结晶构造引起的热膨胀率的各向异性,因此,在对电子装置I施加热的情况下,在加热后冷却时,能够使第一无机绝缘层17a的收缩在各方向上更均匀,进而能够提高内插件4和电子部件2的电连接可靠性。作为非结晶状态的无机绝缘材料优选结晶相的区域设定为例如小于10体积%,尤其优选小于5体积%。需要说明的是,无机绝缘材料中的结晶相区域的体积比以下这样 測定。首先,制作以不同的比率含有100%结晶化的试样粉末和非晶质粉末的多个比较试样,并通过X射线衍射法测定该比较试样,从而作成表示该测定值与结晶相区域的体积比的相对关系的校准线。然后,通过X射线衍射法測定作为测定对象的调查试样,对该测定值和校准线进行比较,从而根据该测定值算出结晶相区域的体积比,由此,測定调查资料的结晶相区域的体积比。该第一无机绝缘层17a的厚度设定为O. Ollmm以上且O. 07mm以下。另外,第一无机绝缘层17a向平面方向及厚度方向的热膨胀率设定为0ppm/°C以上且7ppm/°C以下,并且,拉伸弹性模量设定为例如IOGPa以上且150GPa以下。第一无机绝缘层17a包含例如97体积%以上且100体积%以下的无机绝缘材料,在包含无机绝缘材料以外的剰余部分的情况下,例如包含大于O体积%且3体积%以下的树脂材料及空隙。如图I (b)所示,第一无机绝缘层17a包含第一无机绝缘粒子19a及第ニ无机绝缘粒子1%。该第一无机绝缘粒子19a及第ニ无机绝缘粒子19b可以使用由构成第一无机绝缘层17a的无机绝缘材料形成的物质。第一无机绝缘粒子19a的粒径设定为例如3nm以上且IlOnm以下,并如图I (C)所示那样经由边界面而相互結合。其结果是,能够使第一无机绝缘层17a致密地形成,因此,能够提高第一无机绝缘层17a的平坦性,进而能够提高内插件4与电子部件2的电连接可靠性。另外,第二无机绝缘粒子19b的粒径比第一无机绝缘粒子19a的粒径大,粒径设定为例如O. 5 μ m以上且5 μ m以下,经由第一无机绝缘粒子19a而相互粘接。其结果是,在第一无机绝缘层17a产生裂缝而伸长的情况下,当裂缝到达表面积大的第二无机绝缘粒子19b时,裂缝的应力在第二无机绝缘粒子19b的表面分散,因此,能够抑制裂缝的伸长,进而能够提高第一无机绝缘层17a的绝缘性。需要说明的是,对于第一无机绝缘粒子19a及第ニ无机绝缘粒子19b,通过利用场致发射电子显微镜观察第一无机绝缘层17a的研磨面或断裂面来确认,第一无机绝缘粒子19a及第ニ无机绝缘粒子19b的粒径如下測定,即,利用场致发射电子显微镜观察第一无机绝缘层17a的研磨面或断裂面,并对以包含20粒子数以上且50粒子数以下的粒子的方式放大了的截面进行拍摄,利用该放大的截面測定各粒子的最大直径。
另外,第一无机绝缘粒子19a优选为球状。其结果是,能够提高第一无机绝缘粒子19a的填充密度,能够使第一无机绝缘粒子19a彼此更牢固地結合,井能够提高第一无机绝缘层17a的刚性。另外,第二无机绝缘粒子19b优选为球状。其结果是,能够使第二无机绝缘粒子19b的表面的应カ分散,并能够减少以第二无机绝缘粒子19b的表面为起点的第一无机绝缘层17a中的裂缝的产生。另外,第一无机绝缘粒子19a与第二无机绝缘粒子19b优选由同一材料构成。其结果是,在第一无机绝缘层17a中,第一无机绝缘粒子19a与第二无机绝缘粒子19b的结合牢固,从而能够降低材料特性的不同引起的裂縫。需要说明的是,第二无机绝缘层17b具有与上述的第一无机绝缘层17a同样的结构。另ー方面,第一树脂层18a具有对第一无机绝缘层17a及第ニ无机绝缘层17b进行粘接的功能,包含树脂材料及无机绝缘填料。该第一树脂层18a的厚度设定为例如
O.009mm以上且小于O. 05mm。另外,第一树脂层18a向平面方向及厚度方向的热膨胀率设定为例如8ppm/°C以上且20ppm/°C以下,并且,拉伸弹性模量设定为例如5GPa以上且35GPa以下。包含于第一树脂层18a的树脂材料构成第一树脂层18a的主要部分,包含例如环氧树脂、双马来酰亚胺三嗪树脂、氰酸酯树脂、聚对苯撑苯并ニ噁唑树脂、全芳香族聚酰胺树脂、聚酰亚胺树脂、芳香族液晶聚酯树脂、聚醚醚酮树脂、聚醚酮树脂或液晶聚合物等树脂材料。包含于第一树脂层18a内的无机绝缘填料是降低第一树脂层18a的热膨胀率且提高第一树脂层18a的刚性的物质,例如包含氧化硅、氧化铝、氮化铝、氢氧化铝或碳酸钙等无机绝缘材料。该无机绝缘填料的粒子的粒径设定为例如O. 5 μ m以上且5. O μ m以下,热膨胀率设定为例如0ppm/°C以上且15ppm/°C以下,第一树脂层18a中的含有量设定为例如3体积%以上且70体积%以下。需要说明的是,无机绝缘填料的粒径如下測定,即,利用场致发射电子显微镜观察基体14的研磨面或断裂面,并对以包含20粒子数以上且50粒子数以下的粒子的方式放大的截面进行拍摄,利用该放大的截面測定各粒子的最大直径。另外,基体14的树脂部中的无机绝缘填料的含有量(体积% )如下測定,即,利用场致发射电子显微镜对基体14的研磨面进行拍摄,并使用图像分析装置等在10处截面測定基体14的树脂部中占有的无机绝缘填料的面积比率(面积% ),并算出该测定值的平均值来视作含有量(体积%)。第一导电层15a具有作为与电子部件2连接的连接焊盘的功能,包含例如铜、银、金、铝、镍、铬、钨或钥等导电材料,从导电性和加工性的观点考虑优选含有铜。该第一导电层15a与低介质损耗角正切的第一无机绝缘层17aX抵接,因此,能够提高信号传送特性。第二导电层15b具有作为与配线基板4连接的连接焊盘的功能,且具有与第一导电层15a相同的结构。贯通导体16具有将第一导电层15a及第ニ导电层16a电连接的功能,包含例如铜、银、金、铝、镍、铬、钨或钥的导电材料,从导电性和加工性的观点考虑优选含有铜。该贯通导体16向平面方向的截面积设定为例如O. OOlmm2以上且O. Olmm2以下。另外,贯通导体16向平面方向及厚度方向的热膨胀率设定为12ppm/°C以上且20ppm/°C以下,并且,拉伸弹性模量设定为SOGPa以上且200GPa以下。需要说明的是,在贯通导体16含有铜的情况下,贯通导体16向平面方向及厚度方向的热膨胀率为例如17ppm/°C左右。另外,贯通导体16填充于贯通孔P。其结果是,即使在使贯通孔P的直径更小而微细化的情况下,通过降低贯通导体16中的断线,也能够提高配线基板3与电子部件2的电连接可靠性。另外,贯通导体16形成为朝向平面方向的截面积朝向电子部件2而变小的柱状(锥状)。其结果是,在端子被微细化的电子部件2侧,能够使第一导电层15a微细化。另夕卜,由于该贯通导体16填充于锥状的贯通孔P中,因此当施加热时,由于向平面方向热膨胀而要向贯通孔P内的直径更大的部位移动,因此,容易向锥状的贯通孔P的朝向平面方向的截面积大的端部移动。从而,贯通导体16不易向朝向平面方向的截面积小的端部突出,因此,通过将贯通导体16的朝向平面方向的截面积小的端部配置在电子部件2侧,从而能够降低贯通导体16朝向电子部件2突出的情況。
第一凸块5a作为电子部件2与内插件4的电连接构件而发挥作用,其夹设在电子部件2与内插件4的第一导电层15a之间,由包含例如铅、锡、银、金、铜、锌、铋、铟或铝等的焊料等导电材料构成。另外,第二凸块5b作为内插件4与配线基板3的电连接构件而发挥作用,其夹设在内插件4的第二导电层15b与配线基板3的最上层的配线层12之间,由与第一凸块5a相同的导电材料构成。另外,第三凸块5c作为配线基板3与外部电路的电连接构件而发挥作用,形成在配线基板3的最下层的配线层12的主面上,由与第一凸块5a相同的导电材料构成。另外,搭载在内插件4的基体14上的电子部件2的平面方向上的热膨胀率设定为比沿厚度方向贯通基体14的贯通导体16的厚度方向上的热膨胀率小。例如,电子部件2向平面方向的热膨胀率设定为贯通导体16向厚度方向的热膨胀率的O. 2倍以上且O. 4倍以下。另ー方面,在本实施方式的内插件4中,向厚度方向及平面方向的热膨胀率比第ー无机绝缘层17a及第ニ无机绝缘层17b大的第一树脂层18a夹设在沿厚度方向相互分离的第一无机绝缘层17a与第二无机绝缘层17b之间。其结果是,在基体14中,第一无机绝缘层17a及第ニ无机绝缘层17b配置在比第一树脂层18a靠外侧且接近基体14的两主面,因此,对基体14的主面的向平面方向的热膨胀率的贡献比第一树脂层18a大,因此,容易降低基体14的两主面的向平面方向的热膨胀率。另ー方面,在基体14中,第一无机绝缘层17a、第一树脂层18a及第ニ无机绝缘层17b沿厚度方向顺次层叠,因此对基体14的贯通孔P内壁的向厚度方向的热膨胀率的贡献同等,从而不易降低基体14的贯通孔P内壁的向厚度方向的热膨胀率。因此,基体14能够将两主面的向平面方向的热膨胀率设定为比贯通孔P内壁的向厚度方向的热膨胀率小,进而能够降低基体14与电子部件2在平面方向上的热膨胀率之差,并同时能够降低基体14与贯通导体16在厚度方向上的热膨胀率之差。因此,在电子部件2安装时或工作时对电子装置I施加热的情况下,通过降低基体14与电子部件2在平面方向上的热膨胀率之差引起的热应力,从而保护耐久性低的电子部件2的电极,以免被该热应カ影响,并且,通过降低基体14与贯通导体16在厚度方向上的热膨胀率之差引起的贯通导体16从基体14主面的突出,从而能够保护贯通导体16上的第ー凸块5a,以免受该突出影响,进而使内插件4与电子部件2的电连接可靠性提高,从而能够获得电可靠性优良的电子装置I。需要说明的是,基体14向厚度方向的热膨胀率设定为平面方向的例如3倍以上且7倍以下。另外,基体14向平面方向的热膨胀率设定为电子部件2的例如O. 75倍以上且I. 25倍以下,并且,向平面方向的热膨胀率设定为配线基板3的例如O. 2倍以上且O. 4倍以下。另外,基体14向厚度方向的热膨胀率设定为贯通导体16的例如O. 75倍以上且
I.25倍以下。这样的内插件4的基体14向平面方向的热膨胀率设定为例如3ppm/°C以上且7ppm/°C以下,向厚度方向的热膨胀率设定为例如IOppm/°C以上且20ppm/°C以下。另外,填充于贯通孔P的贯通导体16与圆筒状的贯通导体比较,相对于贯通导体16与贯通孔P的内壁的粘接面积的贯通导体16的体积大,因此,对电子装置I施加热时,贯通导体16在厚度方向上热膨胀且容易从贯通孔P的内壁剥离,但是,在本实施方式的内插件4中,能够降低基体14与电子部件2在平面方向上的热膨胀率之差,并同时能够降低基 体14与贯通导体16在厚度方向上的热膨胀率之差,因此,即使在填充于贯通孔P的贯通导体16中,也能够有效降低贯通导体16从内插件4的主面突出的情況。第一树脂层18a的厚度优选比第一无机绝缘层17a及第ニ无机绝缘层17b的厚度的合计值小,进而优选比第一无机绝缘层17a及第ニ无机绝缘层17b的厚度小。其结果是,通过增加基体14的第一无机绝缘层17a及第ニ无机绝缘层17b的体积比率,能够降低基体14与电子部件2在平面方向上的热膨胀率之差,并同时提高基体14的刚性,从而能够提高内插件4与电子部件2的电连接可靠性。进而,通过减小第一树脂层18a的厚度,能够使内插件4小型化而提高信号传送特性。需要说明的是,第一树脂层18a的厚度设定为第一无机绝缘层17a的例如O. I倍以上且O. 9倍以下。另外,第一树脂层18a向平面方向及厚度方向的热膨胀率设定为例如第ー无机绝缘层17a的2倍以上且7倍以下,并且,拉伸弹性模量设定为第一无机绝缘层17a的O. 03倍以上且O. 3倍以下。这样,上述的电子装置I根据从配线基板3经由内插件4供给的电源或信号而对电子部件2进行驱动或控制,从而发挥所期望的功能。接着,基于图2 图4,对上述电子装置I的制造方法进行说明。(配线基板的制作)(I)制作中心基板6。具体而言,例如以下这样进行。首先,层叠包含例如未固化树脂和基材的多个树脂片,通过进行加热加压而使未固化树脂固化,从而制作树脂基板8。需要说明的是,未固化是指以IS0472 :1999为基准的A-级或B-级的状态。接着,通过例如钻孔加工或激光加工等,形成沿厚度方向贯通树脂基板8的通孔。接着,通过例如非电解镀法、电镀法、蒸镀法、CVD法或溅射法等,在通孔的内壁覆盖导电材料而形成圆筒状的通孔导体9。另外,在树脂基板8的上表面及下表面覆盖导电材料而形成导电材料层。接着,在圆筒状的通孔导体9的内部填充树脂材料等,形成绝缘体10。接着,将导电材料覆盖在绝缘体10的露出部上后,通过现有公知的照相平版印刷影印技术、蚀刻等对导电层材料层进行图制而形成配线层12。通过以上那样,能够制作出图2(a)所示的中心基板6。
(2)在中心基板6的两侧形成一对组合部7,制作配线基板5。具体而言,例如以下这样进行。首先,将未固化的树脂配置在配线层12上,对树脂进行加热而使其流动密接,并进ー步加热而使树脂固化,从而在配线层12上形成绝缘层11。其次,利用例如YAG激光装置或ニ氧化碳激光装置在绝缘层11上形成贯穿孔,使配线层12的至少一部分在贯穿孔内露出。接着,使用例如半添加法、金属面腐蚀法或全加成法等在贯穿孔内形成穿孔导体13,且在绝缘层11的上表面形成配线层12,从而形成组合部7。需要说明的是,通过重复该エ序,从而能够形成将绝缘层11多层化了的组合部7。通过如上步骤,能够制作图2(b)所示的配线基板3。(内插件的制作)(3)如图3 (a)所示,制作具有铜箔15x和在该铜箔15x上形成的无机绝缘层17的绝缘片20。具体而言,例如以下这样进行。 首先,准备铜箔15x和包含第一无机绝缘粒子19a、第二无机绝缘粒子19b及溶剂的第一无机绝缘溶胶,在铜箔15x的一主面上涂敷第一无机绝缘溶胶。接着,使第一无机绝缘溶胶干燥而使溶剂蒸发,然后,对第一无机绝缘溶胶的固态部分进行加热,使第一无机绝缘粒子19a彼此结合,并且,使第一无机绝缘粒子19a与第二无机绝缘粒子19b结合,由此在铜箔15x上形成无机绝缘层17。在此,在使第一无机绝缘溶胶干燥而使溶剂蒸发时,通过使粒径小的第一无机绝缘粒子19a流动,从而第一无机绝缘粒子19a及第ニ无机绝缘粒子19b被最密填充,因此,能够形成平坦性高的无机绝缘层17,进而能够制作与电子部件2的连接可靠性优良的内插件4。另外,对第一无机绝缘溶胶的固态部分进行加热时,粒径小且容易结合的第一无机绝缘粒子19a彼此相互結合,并且,第一无机绝缘粒子19a与第二无机绝缘粒子19b结合,因此,粒径大且不易结合的第二无机绝缘粒子19b彼此能够经由第一无机绝缘粒子19a相互粘接,从而能够形成刚性高的无机绝缘层17,进而能够制作可靠性优良的内插件4。铜箔15x优选例如一主面通过以甲酸等有机酸为主成分的蚀刻液粗化而形成凹凸。其结果是,沿着该凹凸形成无机绝缘层17,因此,通过该凹凸的锚定效果而能够提高无机绝缘层17与铜箔15x的粘接強度,并且,能够在无机绝缘层17的表面形成凹凸,进而,能够在内插件4中提高第一无机绝缘层17a与第一导电层15a的粘接强度。第一无机绝缘溶胶含有固态部分和溶剤。第一无机绝缘溶胶优选含有5%体积以上50体积%以下的固态部分,含有50体积%以上且95体积%以下的溶剤。其结果是,通过使溶剂占有第一无机绝缘溶胶的50体积%以上,能够降低第一无机绝缘溶胶的粘度,从而能够提高无机绝缘层17的上表面的平坦性。另外,通过使溶剂占有第一无机绝缘溶胶的95体积%以下,从而能够增加第一无机绝缘溶胶的固态物成分量,由此能够提高无机绝缘层17的生产率。另外,在该固态部分中,优选含有10体积%以上且小于50体积%的第一无机绝缘粒子19a,含有50体积%以上且小于90体积%的第二无机绝缘粒子19b。粒径小的第一无机绝缘粒子19a可以通过对硅酸钠水溶液(水玻璃)等硅氧化合物等的硅氧化合物进行提炼,并通过加水分解等方法而使氧化硅化学地析出来制作。另外,通过这样制作,能够抑制第一无机绝缘粒子19a的结晶化,維持非结晶状态。需要说明的是,在这样制作的情况下,第一无机绝缘粒子19a可以包含Ippm以上且5000ppm以下的氧化钠等杂质。另外,第一无机绝缘粒子19a的粒径优选设定为3nm以上。其结果是,能够降低第一无机绝缘溶胶的粘度,提高无机绝缘层17的上表面的平坦性。粒径大的第二无机绝缘粒子19b可以通过对例如硅酸钠水溶液(水玻璃)等硅氧化合物进行提炼,将使氧化硅化学地析出后的溶液向火焰中喷雾,并在抑制凝聚物的形成的同时加热到800°C以上且1500°C以下而制作。在此,第二无机绝缘粒子19b与第一无机绝缘粒子19a比较,容易在降低凝聚体的形成的同时以高温的加热进行制作,因此,通过以高温的加热制作第二无机绝缘粒子1%,从而能够使第二无机绝缘粒子19b的硬度比第一无机绝缘粒子19a更容易提闻。需要说明的是,制作第二无机绝缘粒子19b时的加热时间优选设定为I秒以上且180秒以下。其结果是,通过缩短该加热时间,从而即使在加热到800°C以上且1500°C以下 的情况下,也能够抑制第二无机绝缘粒子19b的结晶化,而维持非结晶状态。作为溶剂,可以使用包含例如甲醇、异丙醇、η-丁醇、こニ醇、こニ醇单丙基醚、甲基こ基酮、甲基异丁基甲酮、ニ甲苯、丙ニ醇甲醚、丙ニ醇甲醚醋酸酷、或ニ甲基こ酰胺等有机溶剂在内的溶剤。其中,优选使用包含甲醇、异丙醇或丙ニ醇甲醚的溶剤。其结果是,能够将第一无机绝缘溶胶均匀地涂敷,且能够使溶剂有效蒸发。第一无机绝缘溶胶的涂敷可以使用例如分配器、棒式涂料器、金属型涂料机或网板印刷来进行。涂敷在铜箔15χ的一主面上的第一无机绝缘溶胶形成为平板状,干燥后的厚度设定为例如3 μ m以上且110 μ m以下。第一无机绝缘溶胶的干燥通过例如加热及风干来进行,优选温度设定为小于20°C以上的溶剂的沸点(混合两种以上的溶剂的情况下,沸点最低的溶剂的沸点),干燥时间设定为20秒以上且30分以下。其结果是,通过降低溶剂的沸腾,从而,能够提高第一无机绝缘粒子19a及第ニ无机绝缘粒子19b的填充密度,并提高无机绝缘层17的平坦性。对于第一无机绝缘溶胶的加热,优选将温度设定为溶剂的沸点以上且第一无机绝缘粒子19a及第ニ无机绝缘粒子19b的结晶化开始温度以下。其结果是,通过使该加热温度为溶剂的沸点以上,从而能够使剩余的溶剂效率良好地蒸发。另外,通过使该加热温度小于第一无机绝缘粒子19a及第ニ无机绝缘粒子19b的结晶化开始温度,从而,能够降低第一无机绝缘粒子19a及第ニ无机绝缘粒子19b的结晶化,提高非结晶状态的比例。其结果是,在无机绝缘层17中能够降低伴随结晶化的相变而产生的裂縫。特别是,使用氧化硅作为第ー无机绝缘粒子19a及第ニ无机绝缘粒子19b的无机绝缘材料的情况下,可以有效地降低第一无机绝缘粒子19a的结晶化。需要说明的是,结晶化开始温度为非晶质的无机绝缘材料开始结晶化的温度、即结晶相区域的体积增加的温度。另外,例如氧化硅的结晶化开始温度为1300°C左右。需要说明的是,对于第一无机绝缘溶胶的加热,优选将温度设定为100度以上且小于600度,时间设定为例如O. 5小时以上且24小时以下。另外,第一无机绝缘溶胶的加热可以在例如大气气氛中进行。另外,将温度提高到150°C以上的情况下,为了抑制铜箔15x的氧化,第一无机绝缘溶胶的加热优选在真空、氩等惰性气氛或氮气氛下进行。
另ー方面,在第一无机绝缘溶胶的加热前的第一无机绝缘粒子19a的粒径优选设定为IlOnm以下、尤其优选设定为50nm以下。其结果是,即使第一无机绝缘溶胶的加热温度小于第一无机绝缘粒子19a的结晶化开始温度及第ー树脂粘接层12a的热分解温度而为低温,也能够使第一无机绝缘粒子19a彼此牢固地结合。这是由于,第一无机绝缘粒子19a的粒径设定为IlOnm以下而成为超微小,因此,第一无机绝缘粒子19a的原子、尤其是表面的原子活跃地运动,从而,推測出即使为上述低温,也能够使第一无机绝缘粒子19a彼此牢固地接合。另外,通过将该第一无机绝缘粒子19a的粒径设定为更小,能够在更低温度下使第一无机绝缘粒子19a彼此牢固地结合。能够使第一无机绝缘粒子19a彼此牢固结合的温度例如在将上述粒径设定为IlOnm以下时为250°C左右,将该粒径设定为50nm以下时,为150°C左右。另外,第一无机绝缘溶胶的固态部分优选含有5体积%以上的第一无机绝缘粒子19a。其结果是,通过确保夹设在第二无机绝缘粒子19b彼此的接近点处的第一无机绝缘粒 子19a的量,来降低第二无机绝缘粒子19b彼此接触的区域,从而能够提高无机绝缘层17的刚性。如以上那样,能够制作出图3(a)所示的绝缘片20。(4)如图3(b)及(C)所示,制作具有基体14和配置在该基体的两主面上的铜箔15x的层叠板21。具体而言,例如以下这样进行。首先,准备包含未固化的热固化性树脂的第一树脂层前体片18ax。接着,以使第一树脂层前体片18ax的两主面分别与无机绝缘层17 (第一及第ニ无机绝缘层17a、17b)抵接的方式,在第一树脂层前体片18ax的上下分别层叠绝缘片20。接着,通过对该层叠体沿上下方向进行加热加压,从而使第一树脂层前体片18ax的热固化性树脂热固化而形成第一树脂层18a。其结果是,能够形成在两主面配设有铜箔15x的基体14。在此,在形成第一树脂层18a吋,由于使第一树脂层前体片ISax的热固化性树脂热固化,因此,该第一树脂层18a和第一及第ニ无机绝缘层17a、17b被加热而热膨胀。因而,在将第一树脂层18a和第一及第ニ无机绝缘层17a、17b冷却至例如室温等吋,由于第一树脂层18a向平面方向的热膨胀率比第一及第ニ无机绝缘层17a、17b大,因此,第一树脂层18a比第一及第ニ无机绝缘层17a、17b收缩大,从而在第一及第ニ无机绝缘层17a、17b上残留有平面方向上的压缩应力。因此,例如在第一及第ニ无机绝缘层17a、17b上施加有外部应カ或热应カ时,通过残留在第一及第ニ无机绝缘层17a、17b上的压缩应力而能够降低第一及第ニ无机绝缘层17a、17b的裂缝。对于该层叠体的加热加压,优选将温度设定为第一树脂层前体片ISax的固化开始温度以上且小于热分解温度。具体而言,对于该层叠体的加热加压而言,将温度设定为例如170°C以上且230°C以下,将压カ设定为例如2MPa以上且IOMPa以下,将时间设定为例如O. 5小时以上且2小时以下。需要说明的是,固化开始温度是树脂成为以IS0472 :1999为基准的C-级状态的温度。另外,热分解温度是在以IS011358 :1997为基准的热重量測定中树脂的质量減少5%的温度。需要说明的是,在该层叠体加热加压时,第一树脂层前体片ISax软化流动,因此,通过利用例如平坦的金属板进行加热加压,从而能够形成平坦性优良的基体14。
如以上那样,能够制作出图3(c)所示的层叠板21。(5)如图4所示,通过形成沿厚度方向贯通基体14的贯通导体16,并在基体14的两主面形成第一导电层15a及第ニ导电层15b来制作内插件4。具体而言,例如以下这样进行。首先,如图4(a)所示那样,使用氯化铁或氯化铜等蚀刻液,从层叠板21的基体14玻璃配置在该基体14的第二无机绝缘层17b侧的主面上的铜箔15x。接着,如图4(b)所示那样,朝向进行了该剥离的主面照射ニ氧化碳激光或YAG激光等激光,从而形成沿厚度方向贯通基体14的贯通孔P,使在基体14的第二无机绝缘层17b侧的主面配置的铜箔15x的一部分向贯通孔P内露出。接着,如图4(c)所示,使用电镀法向该铜箔15x的露出面上覆盖导电材料,将该导电材料填充在贯通孔P内,从而形成贯通导体16。接着,如图4 (d)所示,使用非电解镀法、电镀法、溅射法或蒸镀法等在剥离了铜箔15x的主面上覆盖导电材料后,使用照相平版印刷影印技术、蚀刻等形成第一导电层15a及第ニ导电层15b。

如以上那样,能够制作出图4(d)所示的内插件4。(电子装置I的制作)(6)经由第二凸块5b在配线基板3安装内插件4,经由第一凸块5a在内插件4上安装电子部件2,从而能够制作出图1(a)所示的电子装置I。需要说明的是,上述的第一实施方式中,举例说明了使用树脂制的组合基板作为配线基板的结构,但配线基板例如可以为陶瓷制的基板或树脂与陶瓷的复合基板,也可以为树脂制的无中心基板或单层的印制板。另外,在上述第一实施方式中,举例说明了配线基板的组合部的绝缘层为ー层的结构,但组合部的绝缘层可以形成为几层。另外,在上述的第一实施方式中,举例说明了内插件的无机绝缘层由以氧化硅为主成分的无机绝缘材料构成的结构,但无机绝缘材料也可以使用其他物质,例如可以使用氧化铝等陶瓷材料,也可以使用表面氧化了的硅。另外,在上述的第一实施方式中,举例说明了内插件的贯通导体填充于贯通孔的结构,但贯通导体只要配设于贯通孔即可,例如也可以覆盖在贯通孔的内壁上而形成为圆筒状。另外,在上述的第一实施方式中,举例说明了内插件的第一树脂层为热固化性树脂的情况的制造方法,但第一树脂层可以为例如热可塑性树脂。另外,在上述的第一实施方式的(5)エ序中,举例说明了使用电镀法将导电材料覆盖于在贯通孔内露出的铜箔上,从而向贯通孔内填充导电材料的制造方法,但也可以在使用例如非电解镀法、溅射法或蒸镀法等而将导电材料覆盖在贯通孔内壁上来形成基底层后,使用电镀法向该基底层覆盖导电材料而将导电材料填充到贯通孔内。另外,在上述第一实施方式的(5)エ序中,举例说明了从层叠板的基体剥离铜箔的制造方法,但也可以不从层叠板的基体剥离铜箔而对该铜箔进行蚀刻来形成导电层。(第二实施方式)接着,基于图5,对包含本发明第二实施方式涉及的内插件的电子装置进行详细说明。需要说明的是,省略与上述的第一实施方式同样的结构的记载。第二实施方式与第一实施方式不同,内插件4未夹设在配线基板与电子部件之间,而夹设在沿厚度方向相互分离的电子部件2彼此之间,通过将电子部件2与内插件4沿厚度方向交替层叠而构成电子装置I。因此,能够实现电子部件2的三维安装,从而能够使电子装置I小型化且提高信号传送特性。该电子装置I经由与位于最下层的内插件4的第二导电层15b下表面连接的第三凸块5c而与母插件等外部电路电连接。另外,在该电子装置I中,沿厚度方向交替层叠的电子部件2及内插件4如以下这样相互电连接。在此,为了方便,将在厚度方向上相邻的内插件4中,配置在上方的内插件作为第一内插件4a,配置在下方的内插件作为第二内插件4b。另外,在电子部件2中,将安装在第一内插件4a上的电子部件作为第一电子部件2a,将安装在第二内插件4b上的电子部件作 为第二电子部件2b。首先,与第一实施方式同样,第一内插件4a的与贯通导体16上端连接的第一导电层15a经由第一凸块5a与第一电子部件2a电连接。另ー方面,与第一实施方式不同,第一内插件4a的与贯通导体16下端连接的第二导电层15b被从贯通导体16的正下方区域拉回到第一电子部件2a搭载区域外,而在第一电子部件2a搭载区域外经由第四凸块5d与第ニ内插件4b的第三导电层15c电连接。并且,第二内插件4b的第三导电层15c被从第二电子部件2b搭载区域外向第二电子部件2b搭载区域内拉回,而在第二电子部件2b搭载区域内,经由第五凸块5e与第二电子部件2b电连接。并且,第二内插件4b的与贯通导体16上端连接的第一导电层15a经由与其上表面连接的第一凸块5a而与第二电子部件2b电连接。如以上那样,在厚度方向上交替层叠的电子部件2及内插件4相互电连接。在上述的电子装置I中,第二导电层15b被从贯通导体16正下方区域拉回到第一电子部件2a搭载区域外,因此,在对电子装置I施加热时,由于贯通导体16的突出而容易在第二导电层15b上施加有拉伸应力,但是,本实施方式的内插件4与第一实施方式同样,基体14的厚度方向上的热膨胀率比平面方向上的热膨胀率大,因此,能够降低贯通导体16的突出,从而降低对第二导电层15b的拉伸应力,进而能够减少第二导电层15b的断线。需要说明的是,第四凸块d及第五凸块5e可以使用由与其他凸块相同的导电材料形成的材料,第三导电层15c可以使用由与其他导电层相同的导电材料形成的材料。另ー方面,第二实施方式与第一实施方式不同,电子部件2优选为存储系的半导体元件。存储系的半导体元件与逻辑系的半导体元件相比,焊盘数少且电路的微细化被缓和,因此,能够在维持电连接可靠性的同时进行三维安装。另ー方面,第二实施方式与第一实施方式不同,内插件4的基体14还包括配置在最外层且与第一无机绝缘层17a抵接的第二树脂层18b ;配置在最外层且与第二无机绝缘层17b抵接的第三树脂层18c。因此,通过将第二树脂层18b夹设在第一无机绝缘层17a与第一导电层15a之间,能够提高第一无机绝缘层17a与第一导电层15a的粘接强度,降低第ー无机绝缘层17a与第一导电层15a的剥离而減少第一导电层15a的断线,进而能够在维持第一导电层15a的电可靠性的同时实现微细化。该第二树脂层18b优选厚度及拉伸弹性模量设定为比第一树脂层18a小。其结果是,由于将厚度小且拉伸弹性模量低的第二树脂层18b夹设在第一无机绝缘层17a与第一导电层15a之间,因此,通过使薄且容易发生弹性变形的第一树脂层18a变形,从而使第一无机绝缘层17a与第一导电层15a的热膨胀量的不同引起的应カ得以缓和。由此,能够降低第一无机绝缘层17a与第一导电层15a的剥离。另外,通过减小第二树脂层18a的厚度,在基体14的主面的向平面方向的热膨胀率中,使第二树脂层18a的贡献减小,从而能够降低基体14的主面的向平面方向的热膨胀率。需要说明的是,第二树脂层18b的厚度及拉伸弹性模量优选设定为比第一无机绝缘层17a及第一导电层15a小。另外,第二树脂层18b包含树脂材料及无机绝缘填料,厚度设定为例如O. 5 μ m以上且3 μ m以下,该厚度设定为第一树脂层18a的例如O. 01倍以上且小于O. I倍,并且该厚度设定为第一无机绝缘层17a的例如O. 01倍以上且O. 3倍以下,向平面方向及厚度方向的热膨胀率设定为20ppm/°C以上且100ppm/°C以下,拉伸弹性模量设定为例如O. 05GPa以上且5GPa以下,该拉伸弹性模量设定为第一树脂层18a的例如O. 01倍以上且O. 7倍以下,该拉伸弹性模量设定为第一无机绝缘层17a的例如O. 005倍以上且O. 5倍以下,并且该拉伸弹性模量设定为第一导电层15a的例如O. 0005倍以上且O. 03倍以下,介质损耗角正切设定为例如O. 001以上且O. 02以下。 包含于第二树脂层18b的树脂材料构成第二树脂层18b的主要部分,可以使用例如环氧树脂、双马来酰亚胺三嗪树脂、氰酸酯树脂、聚酰亚胺树脂等树脂材料。该树脂材料的拉伸弹性模量设定为例如O. 05GPa以上且5GPa以下,向平面方向及厚度方向的热膨胀率设定为例如20ppm/°C以上且100ppm/°C以下。包含于第二树脂层18b的无机绝缘填料具有提高第二树脂层18b的难燃性的功能,包含例如氧化硅等无机绝缘材料。包含于该第二树脂层18b的无机绝缘填料的粒径设定为例如O. 01 μ m以上且O. 5 μ m以下,并且该粒径设定为第一树脂层18a所含有的无机绝缘填料的粒径的O. 01倍以上且O. 3倍以下,树脂材料内的含有量设定为例如O体积%以上且10体积%以下,并且该树脂材料内的含有量设定为第一树脂层18a所含有的无机绝缘填料的O. 001倍以上且O. I倍以下。具有该第二树脂层18b的基体14可以如以下这样形成。首先,如图6(a)所示,准备主面与第二树脂层18b抵接的铜箔15x,通过在第二树脂层18b上形成无机绝缘层17而制作绝缘片20。接着,如图6(b)及(C)所示,以使第一树脂层前体片18ax的两主面分别与无机绝缘层17抵接的方式,在第一树脂层前体片ISax的上下分别层叠绝缘片20,并通过对该层叠体沿上下方向进行加热加压,从而能够形成具有第二树脂层18b的基体14。在此,主面与第二树脂层18b抵接的铜箔15x可以通过棒式涂料器、金属型涂料机、帘式涂料器等在铜箔15x上涂敷树脂漆,并进行干燥而形成。由于这样在铜箔15x上形成第二树脂层18b,因此,能够将第二树脂层18b的厚度薄且均匀地形成。需要说明的是,利用本エ序形成的第二树脂层18b为例如B级或C级,并通过加热而成为所期望的固化状态。另外,向第二树脂层18b上形成无机绝缘层17可以与上述的第一实施方式的(3)エ序同样地进行。其结果是,通过使粒径小的第一无机绝缘粒子结合而形成无机绝缘层17,因此,能够使形成无机绝缘层17时的加热温度小于第二树脂层18b的热分解温度而成为低温,进而能够抑制第二树脂层18b的损伤。该情况下,形成无机绝缘层17时的加热温度设定为例如80°C以上且250°C以下。需要说明的是,第二树脂层18b的热分解温度设定为例如270°C以上。需要说明的是,第三树脂层18c具有与上述的第二树脂层18b同样的结构及作用效果,利用与第二树脂层18b相同的方法形成。另ー方面,第二实施方式与第一实施方式不同,内插件4的第一树脂层18a包括由被树脂材料覆盖的纤维构成的基材22。其结果是,通过提高夹设在厚度方向上分离的电子部件2之间且容易被施加应カ的基体14的刚性,能够提高电子装置I的可靠性。另外,基材22优选设定为平面方向上的热膨胀率比厚度方向上的热膨胀率小。其结果是,在基材14中,能够将两主面的向平面方向的热膨胀率比贯通孔P内壁的向厚度方向的热膨胀率设定得更小。该基材22可以使用例如将纤维纵横编织而成的织布,作为纤维可以使用玻璃纤維、树脂纤維、碳纤维或金属纤维等,其中,优选使用含有非结晶状态的氧化硅的玻璃纤维。 另外,基材22的厚度设定为例如O. Olmm以上且小于O. Imm,向平面方向的热膨胀率设定为例如8ppm/°C以上且20ppm/°C以下,向厚度方向的热膨胀率设定为例如12ppm/°C以上且25ppm/°C以下,拉伸弹性模量设定为例如5GPa以上且35GPa以下。另外,优选包含基材22的第一树脂层18a的厚度设定为比第一无机绝缘层17a及第二无机绝缘层17b的厚度的合计值小。另外,从该厚度的观点出发,第一树脂层18a优选仅具有一层基材22。包含该基材22的第一树脂层18a的厚度设定为例如O. Olmm以上且小于O. Imm,该厚度设定为第一无机绝缘层17a的例如O. I倍以上且小于I倍。需要说明的是,上述的第二实施方式以使用织布作为基材的结构为例进行了说明,但基材例如也可以使用无纺布,还可以使用将纤维单方向排列的织物。(第三实施方式)接着,基于图7,对包含本发明第三实施方式涉及的内插件的电子装置进行详细说明。需要说明的是,省略对与上述的第一及第ニ实施方式相同的结构的记载。第三实施方式与第二实施方式同样,电子部件2与内插件4沿厚度方向交替层叠,从而构成电子装置I,但交替层叠的电子部件2与内插件4的电连接方式与第二实施方式不同。以下,对交替层叠的电子部件2与内插件4的电连接方式进行具体地说明。与第二实施方式同样,第一内插件4a的与贯通导体16上端连接的第一导电层15a经由第一凸块5a与第一电子部件2a电连接。在此,本实施方式的电子装置I与第二实施方式不同,电子部件2具有在厚度方向上贯通的导电性的贯通电极23。由此,第一内插件4a的与贯通导体16下端连接的第二导电层15b经由第一凸块5a与第二电子部件2b的贯通电极23上端电连接。并且,第二内插件4b的与贯通导体16上端连接的第一导电层15a经由第一凸块5a与第二电子部件2b的贯通电极23下端电连接。如以上那样,在厚度方向上交替层叠的电子部件2及内插件4相互电连接,从而,对于内插件4而言,不需要将第二导电层15b从电子部件2搭载区域内向电子部件2搭载区域外拉回,从而能够使内插件4小型化,且通过缩短配线长度提高了信号传送特性。上述的贯通电极23通过将导电材料填充到沿厚度方向贯通电子部件2的贯通孔中而构成,作为该导电材料,可以使用例如铜、银、金、铝、镍等。
(第四实施方式)接着,基于图8及图9,对包含本发明的第四实施方式涉及的内插件的电子装置进行详细说明。需要说明的是,对于与上述的第一、第二及第三实施方式同样的结构,省略记载。如图8所示,第四实施方式具有与第三实施方式同样的结构,但如图9(a)及(b)所示,与第三实施方式不同,基材22包含多个纤维24 ;在相邻的该纤维24彼此的接近部位,分别与该相邻的纤维24连接的无机绝缘构件25 ;经由无机绝缘构件25与纤维24连接的多个粉碎粒子26 ;被纤维24及无机绝缘构件25包围的多个空隙V。该基材22的厚度设定为例如5 μ m以上且100 μ m以下。另外,基材22的厚度设定为第一树脂层18a的例如10%以上且50%以下。纤维24可以使用将E玻璃、S玻璃或T玻璃等玻璃长纤维粉碎而成的微细的短纤维(磨碎光纤),通过例如含有40重量%以上且65重量%以下的非结晶状态的氧化硅的无机绝缘材料构成。该无机绝缘材料除了氧化硅之外,还可以含有例如氧化铝、氧化钛、氧化 镁或氧化锆等无机绝缘材料。该纤维24的宽度设定为例如4 μ m以上且10 μ m以下,且长度设定为例如8 μ m以上且500 μ m以下。并且,纤维24的长度设定为宽度的例如2倍以上且50倍以下。另外,纤维24向各方向的热膨胀率设定为例如2ppm/°C以上且6ppm/°C以下,并且,拉伸弹性模量设定为例如65GPa以上且85GPa以下。对于该纤维24内相邻的纤维24彼此而言,通过使一方的纤维24的端部(特别是端面与侧面之间的角部)与另一方的纤维24的侧面接近而构成接近部位。无机绝缘构件25由与第一及第ニ无机绝缘层17a、17b同样的材料构成,具有与第一及第ニ无机绝缘层17a、17b同样的弹性模量、硬度及热膨胀率。另外,无机绝缘构件25包含多个第三无机绝缘粒子19c和粒径比该第三无机绝缘粒子19c大的多个第四无机绝缘粒子19d。该第三无机绝缘粒子19c由与第一无机绝缘粒子19a相同的材料构成,具有与第ー无机绝缘粒子19a同样的含有量、粒径、弹性模量、硬度及作用效果。另外,第四无机绝缘粒子19d由与第二无机绝缘粒子19b相同的材料构成,具有与第二无机绝缘粒子19b相同的含有量、粒径、弹性模量、硬度及作用效果。粉碎粒子26经由无机绝缘构件25与纤维24连接,且配置在空隙V内。因此,通过将刚性比无机绝缘构件25高的粉碎粒子14配置在纤维24彼此之间,能够提高基材22的刚性。这样的粉碎粒子26可以使用将E玻璃、S玻璃或T玻璃等玻璃长纤维粉碎而成的微细且不定形的粒子(粉末)。该粉碎粒子26的宽度设定为例如I μ m以上且4 μ m以下,且长度设定为例如I μ m以上且4 μ m以下。并且,粉碎粒子26的长度设定为宽度的例如I倍以上且I. 5倍以下。需要说明的是,粉碎粒子26由与纤维24同样的材料构成,具有与纤维24同样的拉伸弹性模量及热膨胀率。空隙V在基材22的沿着厚度方向剖开的截面中被纤维24及无机绝缘构件25包围,且被填充第一树脂层18a的一部分(填充部27)。该空隙V的所述截面处的在基材22的厚度方向上的高度设定为例如O. 3 μ m以上且10 μ m以下,所述截面处的在基材22的平面方向上的宽度设定为例如O. 3 μ m以上且50 μ m以下。另外,空隙V在基材22中的含有量设定为例如5体积%以上且40体积%以下。需要说明的是,空隙V的含有量通过与第一无机绝缘粒子19a至第四无机绝缘粒子19d相同的方法測定。如上所述,空隙V在沿着厚度方向剖开的截面中被纤维24及无机绝缘构件25包围,但在三维形状中,通过一部分沿相对于截面正交的正交方向(Y方向)伸长,并且,另ー部分沿基材22的厚度方向(Z方向)伸长,从而和基材22的与第一树脂层18a相接的一主面上形成的开ロ O连接而成为开气孔。因此,第一树脂层18a的一部分经由开ロ O而填充于空隙V。需要说明的是,填充部27不需要完全填充于空隙V,主要在空隙V中配置有第一树脂层18a的一部分别即可。以下,对第四实施方式的基材22进行详细说明。在本实施方式中,如图9(a)及(b)所示,基材22包含多个纤维24 ;在相邻的该纤维24彼此的接近部位,分别与该相邻的纤维24连接的无机绝缘构件25。其结果是,由于纤维24彼此通过无机绝缘构件25连接,因此,与因編入玻璃纤维而容易产生凹凸的玻璃纤 维布比较,能够平坦地形成基材22,因此,能够使施加在第一及第ニ导电层15a、15b的应カ更均匀地分散,从而能够减少第一及第ニ导电层15a、15b的断线,进而能够获得电可靠性优良的内插件4。另外,这样,通过减少第一及第ニ导电层15a、15b的断线,能够在确保第一及第ニ导电层15a、15b的电可靠性的同时实现微细化。另外,基材22中,通过无机绝缘构件25将纤维24彼此连接,因此,在薄型化的情况下,与纤维彼此容易错动的玻璃纤维布比较,能够降低纤维24彼此的错动而減少裂縫,因此,能够在确保电可靠性的同时使基材22薄型化。并且,由于纤维24彼此经由无机绝缘构件25连接而一体化,因此,与树脂材料中含有未被连接的多个纤维的情况比较,在被施加应カ和热时,通过比树脂材料高刚性且低热膨胀的无机绝缘构件25限制各个纤维24,从而能够降低基材22的变形和热膨胀,从而能够获得高刚性且低热膨胀的基材22。另ー方面,在本实施方式中,纤维24比无机绝缘构件25刚性高且热膨胀低。其结果是,与作为连接构件的无机绝缘构件25,通过容易成为高刚性且低热膨胀的纤维24,从而能够使基材22成为更高刚性且低热膨胀。另外,由于将纤维24形成为如上所述那样的微细程度,因此,能够使基材22更平坦。另外,如本实施方式那样,在基材22中,优选多个纤维24中,第一纤维24a的数目比第二纤维24b的数目多。其结果是,通过使纤维24的长度方向接近基材22的表面方向,从而,在第一树脂层18a的表面产生的裂缝沿厚度方向伸长而到达基材22时,能够通过高刚性的纤维24降低裂缝的伸长,从而能够减少该裂缝引起的第一及第ニ导电层15a、15b的断线。需要说明的是,优选纤维24仅包含第一纤维24a。另ー方面,在本实施方式中,无机绝缘构件25具备覆盖纤维24的表面的覆盖部28 ;与在接近部位相邻的纤维24分别连接的连接部29。其结果是,由于如后所述那样以低温形成,因此,包含与树脂材料的反应性比纤维24高的第三无机绝缘粒子19c的覆盖部28夹设在纤维24与填充部27之间,所以能够提高纤维24与填充部27的连接强度,并且,能够通过连接部29将纤维24彼此连接。
该覆盖部28形成为膜状,厚度设定为例如20nm以上且2μηι以下。另外,连接部29的空隙V侧的表面在将配线基板3沿厚度方向剖开的截面中,为从空隙V侧向连接部29的内部凹陷而成的凹曲线状,通过连接部29连接的纤维24彼此的距离设定为例如20nm以上且2 μ m以下。另ー方面,在本实施方式的配线基板3中,无机绝缘构件25包含比第三无机绝缘粒子19c粒径大的第四无机绝缘粒子19d。从而,与第一及第ニ无机绝缘层17a、17b中的第二无机绝缘粒子1%同样,能够降低无机绝缘构件25中的裂縫。另外,无机绝缘构件25不仅含有粒径大的第四无机绝缘粒子19d,还含有粒径小的第三无机绝缘粒子19c,且第四无机绝缘粒子19d彼此经由配置在该第四无机绝缘粒子19d周围的多个第三无机绝缘粒子19c接合。因此,与相对于第二无机绝缘粒子19b的第一无机绝缘粒子19a同样,通过第三无机绝缘粒子19c能够降低第四无机绝缘粒子19d彼此的剥离。另ー方面,在无机绝缘构件25中,连接部29比覆盖部28含有的第四无机绝缘粒子19d多。其结果是,通过在覆盖部28中减少第四无机绝缘粒子19d,由此增多覆盖部28 中的第三无机绝缘粒子19c,从而提高覆盖部28与填充部27的连接强度,并且通过在连接部29中增多第四无机绝缘粒子19d,从而能够降低连接部29中的裂缝,并且能够提高由该连接部29连接的纤维24彼此的连接强度。另外,如本实施方式那样,覆盖部28的第四无机绝缘粒子19d经由第三无机绝缘粒子19c与纤维24连接,并且朝向填充部27突出。其结果是,通过粒径大的第四无机绝缘粒子19d的锚定效果,能够提高覆盖部28与填充部27的连接强度而降低剥离。该第四无机绝缘粒子19d突出的长度设定为例如O. 2μπι以上且I. 5μπι以下。另ー方面,在本实施方式中,填充部27在基材22的沿厚度方向剖开的截面中配置在由纤维24及无机绝缘构件25包围的空隙V中。其结果是,即使在配线基板3上施加有应カ而在基材22上产生裂縫,也能够通过填充部27阻止该裂缝的伸长或使该裂缝迂回。因此,能够减少该裂缝引起的第一及第ニ导电层15a、15b的断线,从而能够获得电可靠性优良的配线基板3。另外,由于填充部27比基材22更多地含有拉伸弹性模量比无机绝缘材料低的树脂材料,因此,在配线基板3上施加有应カ的情况下,能够利用配置在基材22的空隙中的填充部27缓解施加在基材22上的应力,能够减小该应カ引起的基材22上的裂缝的产生。上述的第四实施方式的基材22可以以下这样形成。(I')准备具有固态部分、溶剂的第二无机绝缘溶胶,该固态部分包含纤维成分(纤维24及粉碎粒子26)及无机绝缘粒子成分(第三及第四无机绝缘粒子19c、19d)。第二无机绝缘溶胶例如含有10%体积以上且50体积%以下的固态部分,含有50%体积以上且90体积%以下的溶剤。由此,能够将第二无机绝缘溶胶的粘度保持得较低,并同时能够较高地维持由第二无机绝缘溶胶形成的基材22的生产率。第二无机绝缘溶胶的固态部分例如含有15体积%以上且60体积%以下的纤维成分,并含有40体积%以上85且体积%以下的无机绝缘粒子成分。由此,能够降低基材22的裂縫。并且,第二无机绝缘溶胶的纤维成分例如含有20体积%以上且90体积%以下的纤维24,并含有10体积%以上且80体积%以下的粉碎粒子26。由此,能够提高基材22的硬度和弹性模量。另外,第二无机绝缘溶胶的无机绝缘粒子成分例如含有20体积%以上且90体积%以下的第三无机绝缘粒子19c,并含有10体积%以上且80体积%以下的第四无机绝缘粒子19d。由此,在后述的(3^ )的エ序中能够有效降低基材22中的裂缝的产生。在此,纤维成分可以利用锤击式粉碎机或球磨机等对玻璃长纤维进行粉碎来制作,该玻璃长纤维通过使熔解的玻璃从例如钼制的模具的孔流出而对其进行拉伸来制作。由此,能够获得硬度及弹性模量高的纤维24。需要说明的是,通过调节粉碎时间或将玻璃长纤维粉碎后利用空气进行分级,从而能够调节纤维成分中的纤维24及粉碎粒子26的比率。需要说明的是,第三无机绝缘粒子19c可以与第一无机绝缘粒子19a同样地形成,第四无机绝缘粒子19d可以与第二无机绝缘粒子19b同样地形成。另外,第二无机绝缘溶胶的溶剂可以使用与第一无机绝缘溶胶的溶剂同样的溶剤。(2')接着,在金属箔或树脂薄膜等支承构件的一主面上涂敷第二无机绝缘溶胶 而呈层状地形成第二无机绝缘溶胶。需要说明的是,第二无机绝缘溶胶的涂敷可以与第一无机绝缘溶胶的涂敷同样地进行。(3')接下来,使第二无机绝缘溶胶干燥而使溶剂蒸发。在此,伴随溶剂的蒸发而第二无机绝缘溶胶收缩,但该溶剂包含于第二无机绝缘溶胶的固态部分的间隙中,而没有包含于该固态部分自身。因此,当第二无机绝缘溶胶包含比无机绝缘粒子成分体积大的纤维成分时,填充溶剂的区域相应地变少,在第二无机绝缘溶胶的溶剂蒸发时,第二无机绝缘溶胶的收缩量变小。即,通过纤维成分限制第二无机绝缘溶胶的收縮。其结果是,能够降低第二无机绝缘溶胶的收缩引起的裂缝的产生。另外,即使产生裂縫,也能够通过体积大的纤维成分、尤其是细长形状的纤维24来阻碍该裂缝的伸长。并且,当第二无机绝缘溶胶的固态部分包含25体积%以上的纤维成分时,纤维成分彼此相互接近,形成多个被该纤维成分包围的区域。在该状态下,使填充在纤维成分之间的间隙的溶剂蒸发时,在该间隙内引起无机绝缘粒子成分的收缩,无机绝缘粒子成分覆盖纤维成分,并同时形成空隙V。其结果是,能够形成由纤维成分及无机绝缘粒子成分包围的空隙V。另外,当含有25体积%以上的纤维成分时,纤维成分彼此容易接近。另ー方面,溶剂容易残留在纤维成分彼此的对置区域,在该残留的溶剂中,含有大量的无机绝缘粒子成分。并且,当使残留的溶剂蒸发时,伴随溶剂的蒸发而使溶剂中所含有的无机绝缘粒子成分在纤维成分的对置区域凝聚。其结果是,能够使无机绝缘粒子成分夹设在纤维成分彼此之间。为了将无机绝缘粒子成分良好地夹设在纤维成分彼此之间,第二无机绝缘溶胶的固态部分优选含有20体积%以上的无机绝缘粒子成分。另外,通过这样在纤维成分彼此接近的间隙中残留无机绝缘粒子成分并同时形成空隙V,从而能够形成具有开ロ O的开气孔的空隙V。其结果是,能够经由开ロ O容易地将第一树脂层18的一部分填充于空隙V中。在此,当伴随溶剂的蒸发而溶剂中含有的无机绝缘粒子成分在纤维成分的对置区域凝聚时,在覆盖纤维成分的区域少量残留有无机绝缘粒子成分,因此,粒径大的第四无机绝缘粒子19d不易残留在覆盖纤维成分的区域,容易较多地凝聚在纤维成分的对置区域。另外,若在覆盖纤维成分的区域残留有第四无机绝缘粒子19d,则在溶剂蒸发而第二无机绝缘溶胶收缩时,粒径大的第四无机绝缘粒子19d容易朝向空隙V突出。并且,纤维成分包含细长形状的纤维24、被粉碎而成为粒子状的粉碎粒子26,因此,通过在细长形状的纤维24彼此的空隙V中配置弹性模量及硬度高的粉碎粒子26,从而能够提高无机绝缘层的弹性模量及硬度。另外,无机绝缘粒子成分包含粒径大的第四无机绝缘粒子19d和粒径小的第三无机绝缘粒子19c,因此纤维成分彼此的间隙中的第二无机绝缘溶胶的收缩被第四无机绝缘粒子19d限制,从而能够进一歩降低纤维成分彼此的间隙中的裂缝的产生。需要说明的是,第二无机绝缘溶胶的干燥可以与第一无机绝缘溶胶的干燥同样地进行。
(4')通过对残留的第二无机绝缘溶胶的固态部分进行加热,使第三无机绝缘粒子19c彼此连接,且使第三无机绝缘粒子19c与纤维24、粉碎粒子26及第四无机绝缘粒子19d连接而形成无机绝缘构件13,从而能够由第二无机绝缘溶胶形成基材22。在此,第三无机绝缘粒子19c与第一无机绝缘粒子19a同样地将粒径设定为IlOnm以下,因此即使加热温度为比较低的温度,也能够使第三无机绝缘粒子19c彼此牢固地结合,并且使第三无机绝缘粒子19c与纤维24、粉碎粒子26及第四无机绝缘粒子19d牢固地
彡ロロ。需要说明的是,第二无机绝缘溶胶的加热可以与第一无机绝缘溶胶的加热同样地进行。如以上那样,能够形成第四实施方式的基材22。本发明没有限定于上述的实施方式,可以在不脱离本发明的主g的范围内进行各种变更、改良和组合等。例如,可以置换各实施方式的内插件,也可以置换各实施方式的第ー树脂层。符号说明I 电子装置2 电子部件3 配线基板4 内插件5a 第一凸块5b 第二凸块5c 第三凸块6 中心基板7 组合部8 树脂基板9 通孔导体10 绝缘体11 绝缘层12 配线层
13穿孔导体14基体15a第一导电层15b第二导电层16贯通导体17a 第一无机绝缘层17b 第二无机绝缘层18a 第一树脂层 18b 第二树脂层19a 第一无机绝缘粒子19b 第二无机绝缘粒子19c 第三无机绝缘粒子19d 第四无机绝缘粒子20 绝缘片21 层叠板22 基材23 贯通电极24 纤维25 无机绝缘构件26 粉碎粒子27 填充部28 覆盖部29 连接部
权利要求
1.一种内插件,其特征在于,具备 具有沿着厚度方向的贯通孔的基体; 配设在该贯通孔中的贯通导体, 所述基体具有沿着厚度方向相互分离的第一及第ニ无机绝缘层;夹设在该第一及第ニ无机绝缘层之间,并与所述第一及第ニ无机绝缘层抵接的第一树脂层, 所述第一树脂层向厚度方向及平面方向的热膨胀率比所述第一及第ニ无机绝缘层向厚度方向及平面方向的热膨胀率大。
2.根据权利要求I所述的内插件,其特征在干, 所述第一及第ニ无机绝缘层包含粒径为3nm以上且IlOnm以下的相互结合的第一无机绝缘粒子。
3.根据权利要求2所述的内插件,其特征在干, 所述第一及第ニ无机绝缘层还包含粒径为O. 5mm以上且5mm以下的经由所述第一无机绝缘粒子而相互粘接的第二无机绝缘粒子。
4.根据权利要求2所述的内插件,其特征在于, 所述第一无机绝缘粒子由非结晶状态的氧化硅构成。
5.根据权利要求I所述的内插件,其特征在干, 所述内插件还具备第一及第ニ导电层,所述第一及第ニ导电层隔着所述基体而沿着厚度方向相互分离,且经由所述贯通导体而相互电连接, 所述第一及第ニ无机绝缘层配置在所述基体的最外层, 所述第一导电层与所述第一无机绝缘层的主面抵接, 所述第二导电层与所述第二无机绝缘层的主面抵接。
6.根据权利要求I所述的内插件,其特征在干, 所述内插件还具备第一导电层,该第一导电层与所述基体的主面抵接,且与所述贯通导体电连接, 所述基体还具有配置在与所述第一导电层抵接的最外层的第二树脂层, 所述第二树脂层与所述第一导电层及所述第一无机绝缘层抵接,且夹设在所述第一导电层与所述第一无机绝缘层之间,所述第二树脂层的厚度及拉伸弹性模量比所述第一树脂层的厚度及拉伸弹性模量小。
7.根据权利要求I所述的内插件,其特征在干, 所述第一树脂层的厚度比所述第一及第ニ无机绝缘层的厚度小。
8.根据权利要求7所述的内插件,其特征在干, 所述内插件夹设在配线基板与电子部件之间,用于将该配线基板及该电子部件电连接。
9.根据权利要求I所述的内插件,其特征在干, 所述第一树脂层包含向平面方向的热膨胀率比向厚度方向的热膨胀率小的基材。
10.根据权利要求9所述的内插件,其特征在干, 所述内插件夹设在沿着厚度方向相互分离的第一电子部件与第二电子部件之间,用于将该第二及第三电子部件电连接。
11.根据权利要求9所述的内插件,其特征在干,所述基材具有多个纤维、在相邻的该纤维彼此的接近部位分别与该相邻的纤维连接的无机绝缘构件。
12.根据权利要求I所述的内插件,其特征在干, 所述贯通导体填充在所述贯通孔中。
13.一种电子装置,其特征在于,具备 配线基板; 安装在该配线基板上的电子部件; 夹设在所述配线基板与所述电子部件之间,将所述配线基板与所述电子部件电连接的权利要求I所述的内插件。
14.根据权利要求13所述的电子装置,其特征在干, 所述内插件的厚度比所述配线基板及所述电子部件的厚度小。
15.一种电子装置,其特征在于,具备 沿厚度方向分离的第一及第ニ电子部件; 夹设在所述第一及第ニ电子部件之间,将所述第一及第ニ电子部件电连接的权利要求I所述的内插件。
16.根据权利要求15所述的电子装置,其特征在干, 所述内插件的厚度比所述第一及第ニ电子部件的厚度小。
全文摘要
本发明提供一种与提高电子装置的电可靠性要求对应的内插件。本发明的一方式涉及的内插件(4)具备具有沿着厚度方向的贯通孔(P)的基体(14);配置在该贯通孔(P)内的贯通导体(16),其中,基体(14)具有沿着厚度方向相互分离的第一无机绝缘层(17a)及第二无机绝缘层(17b)、夹设在该第一无机绝缘层(17a)及第二无机绝缘层(17b)之间且与第一无机绝缘层(17a)及第二无机绝缘层(17b)抵接的第一树脂层(18a),第一树脂层(18a)向厚度方向及平面方向的热膨胀率比第一无机绝缘层(17a)及第二无机绝缘层(17b)向厚度方向及平面方向的热膨胀率大。
文档编号H01L23/32GK102822962SQ201180016160
公开日2012年12月12日 申请日期2011年3月25日 优先权日2010年3月31日
发明者林桂 申请人:京瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1