用于蚀刻低k及其它介电质膜的制程腔室的制作方法

文档序号:7252573阅读:311来源:国知局
用于蚀刻低k及其它介电质膜的制程腔室的制作方法
【专利摘要】本发明描述用于蚀刻低k及其它介电质膜的方法及制程腔室。举例而言,方法包括以等离子体制程修改低k介电层的部分。在掩模层及低k介电层的未经修改的部分上有选择地蚀刻低k介电层的经修改的部分。描述具有用于交替地产生不同等离子体的多个腔室区域的蚀刻腔室。在实施例中,在一个操作模式中提供第一电荷耦合的等离子体源以产生至工作件的离子流,而在另一操作模式中提供第二等离子体源以提供反应性物质流而无至工作件的显著离子流。控制器操作以随时间重复循环操作模式以移除期望的介电材料的累积量。
【专利说明】用于蚀刻低K及其它介电质膜的制程腔室
[0001]相关申请案的交叉引用
[0002]本申请案主张于2011年10月27日提出申请的标题为“Process Chamber forEtching Low K and Other Dielectric Films” 的美国临时申请案第 61/552, 183 号的权益,该申请案的内容在此为所有目的以引用的方式整体并入本文。
【技术领域】
[0003]本发明的实施例涉及微电子元件处理领域,且尤其涉及低k介电质膜的等离子体蚀刻。
【背景技术】
[0004]在半导体制造业中,低k介电质系相对于二氧化硅具有小介电常数的材料。低k介电材料实施系用于允许微电子元件的持续规模化的若干策略中的一者。在数字电路中,绝缘介电质使导电部分(例如,互连电线及晶体管)彼此分隔。随着组件的规模化且晶体管更加靠近在一起,绝缘介电质已薄化至电荷积聚并且串扰不利地影响元件效能的程度。用相同厚度的低k介电质替换二氧化硅降低寄生电容,允许更快的切换速度及更低的热耗散。
[0005]然而,因为已经发现此等膜的处理(特别是此等膜的蚀刻)会损坏材料及/或致使材料不稳定或不适于元件制造,所以在低k介电质处理技术的发展中需要显著改良。
【专利附图】

【附图说明】
[0006]本发明的实施例系以举例方式而非限制地图示于随附图式的诸图中,其中:
[0007]图1系图示根据本发明的实施例的用于以单个等离子体蚀刻腔室来蚀刻低k介电质膜的多操作模式蚀刻制程的流程图;
[0008]图2系根据一实施例的流程图,进一步说明蚀刻腔室如何在由图1所图示的蚀刻制程所使用的多个模式中操作;
[0009]图3A、图3B、图3C、图3D、图3E及图3F图示根据本发明实施例的横截面图,说明多操作模式蚀刻制程100的方法对暴露于制程的示例性工作件的效果;
[0010]图4系根据实施例的多腔室处理平台的平面图,该多腔室处理平台可经配置以包括一或多个蚀刻腔室以执行图1所图示的多操作模式蚀刻制程;
[0011]图5A图示根据实施例的双区喷淋头的切口透视图,该双区喷淋头可用于蚀刻腔室中以执行图1所图示的多操作模式蚀刻制程;
[0012]图5B图示根据本发明实施例的图5A的切口透视图的放大部分;
[0013]图6A图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的修改操作;
[0014]图6B图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的蚀刻操作;
[0015]图6C图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的沉积操作;
[0016]图7图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的修改操作;
[0017]图8A图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的修改操作;
[0018]图SB图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的蚀刻操作;
[0019]图SC图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的沉积操作;
[0020]图9A图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的修改操作;
[0021]图9B图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的蚀刻操作;
[0022]图9C图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的蚀刻制程的沉积操作;及
[0023]图10图示根据实施例的蚀刻腔室的横截面图,该蚀刻腔室经配置以执行图1所图示的各个操作。
【具体实施方式】
[0024]总体而言,此处描述的等离子体蚀刻方法的实施例使用破坏机制来蚀刻低k(及其它介电质)材料并留下状况良好的剩余的经蚀刻膜。此处描述的等离子体蚀刻方法的实施例循环地真空(亦即,不破坏真空)执行至少二次单独的基于等离子体的操作,并优选地系在相同腔室中执行以获得最大产量优势。在此等操作的一个操作中,各向异性(定向的)等离子体将介电质膜的正被蚀刻的一部分的块状结构及/或组成修改成更似二氧化硅(SiO2)或子氧化娃(silicon sub-oxide; SiOx)。此膜修改操作可概念化为可控制地及有选择地用第一等离子体条件破坏一部分介电质膜。在此等操作的第二个操作中,各向同性(不定向的)条件有选择地移除在具有块状性质的下层介电质膜上方的经修改膜部分(具有经修改的结构或组成)。可顺序地且重复地执行此等操作以实现膜移除的任一期望的累积量(亦即,实现期望的蚀刻深度)。通过将块状膜蚀刻分隔成两个不同操作或操作模式,等离子体条件的设计以及提供那些条件的蚀刻腔室的设计具有明显更高的自由度及/或更大的制程窗。
[0025]介电质膜蚀刻制程区分成至少这两个独立操作模式亦提供对蚀刻参数的控制程度,此控制程度允许将各向异性剖面(profile)蚀刻成低k或其它介电质膜,并有利地极小修改在邻近于蚀刻特征结构的区域中的介电质膜组成(例如,暴露于等离子体蚀刻并不负面影响侧壁)。此精确控制的重要来源来自本质上具高化学性质的各向同性蚀刻条件,且因而在具有偏离SiO2性质的块状性质(例如,在一定程度上结合碳)的下层介电质之间提供非常高的选择性。尽管在两种材料组成物之间的高选择性系经常用于在消耗第一材料层后停止蚀刻(例如,在多材料沉积膜堆迭中作为一种终止对层的蚀刻的方式,该层具有可蚀刻的组成,该层下有下层蚀刻停止层,该下层蚀刻停止层具有不可蚀刻的组成),此处的技术采用对块状膜本身为高选择性的蚀刻制程来渐进地蚀刻穿过块状膜。
[0026]在实施例中,多操作模式蚀刻制程完全不含碳氟化合物。尽管习知介电质蚀刻依赖沉积在经蚀刻的介电层的侧壁上的CF聚合物来实现蚀刻各向异性,但此处的方法经由膜修改制程(模式)的各向异性结合膜蚀刻制程(模式)的高选择性来实现蚀刻各向异性。避免通常基于碳氟化合物(基于CxFy)的蚀刻制程以及伴随的CF聚合物致使任一钝化聚合物的经蚀刻介电质表面相对较清洁。因而,可避免通过等离子体或可破坏介电质(例如,经由膜中的碳物质的氧化)的其它构件进行的后蚀刻处理(post-etch treatment;PET)。
[0027]现提供蚀刻方法、如何可在单个腔室中执行此方法以及适于执行此蚀刻方法的实施例的腔室硬件的更详细描述。首先描述蚀刻方法,图1系图示根据本发明的实施例的以单个等离子体蚀刻腔室来蚀刻低k介电质膜的多操作模式蚀刻制程100的流程图。图3A至图3F图示表示根据本发明的实施例的多操作模式蚀刻制程100的方法对暴露于制程的示例性工作件的效果的横截面图。
[0028]从操作105开始,将工作件载入等离子体处理腔室中。尽管工作件大体可采取任何形式,但在第2A图提供的说明性实施例中,工作件包括基板302,将要蚀刻的介电质设置在该基板302上。基板302可具有适于承受制造制程的任一材料且作为可设置及/或形成微电子元件(诸如,针对积体电路、光学、太阳能、微机电系统,或类似的微/毫微制造元件)层的基础。根据本发明的实施例,基板302由基于第IV族的材料组成,该等材料诸如(但不限于)结晶娃、错或娃/错。在具体实施例中,基板302是单晶娃基板。在另一实施例中,基板302由II1- V族材料组成。在另一实施例中,多个有源元件设置在标定为基板302的区域内。
[0029]工作件进一步包括待蚀刻的暴露的介电质。在图1及图3A至图3F所图示的示例性实施例中,暴露的介电质为低k材料,但更大体而言可为非二氧化硅但通过此处描述的机制可修改为更似氧化硅(SiOx)的材料的任一材料。在图3A所图示的示例性实施例中,低k介电层304具有小于二氧化硅的介电系数(例如,小于约3.9)的介电系数。在进一步实施例中,低k介电层304系诸如(但不限于)以下的材料:氟掺杂二氧化硅、碳掺杂二氧化硅、多孔二氧化硅、多孔碳掺杂二氧化硅、基于旋涂式硅氧烷(silicone)的聚合介电质,或旋涂式有机聚合介电质。根据一个说明性实施例,低k介电层304为具有小于2.7的块状介电常数的多孔SiCOH层。
[0030]尽管多操作模式蚀刻制程100适用于无掩模蚀刻,例如在底下的拓扑结构用于形成低k介电层中的特征的蚀刻中(例如,低k间隔物蚀刻),但在说明性实施例中,遮住(mask)低k介电层304 (例如,针对通孔或渠沟蚀刻)。如图3A所图示,掩模层306是设置在低k介电层304的一部分上的光刻胶层或硬掩模层。光刻胶可为本领域中已知的任何光刻胶(例如,193,EUV等)。类似地,在掩模层306为硬掩模时,可使用本领域中已知的能够向SiOx蚀刻制程提供期望的选择性的任何材料。示例性材料包括:无定形碳(例如,APF?)、硅或金属(例如,钛或钽)的氮化物、硅或金属的碳化物等。
[0031]回到图1,在操作110处,用离子流(ion flux)轰击工作件的暴露部分以改变暴露材料层的性质,且更特定而言降低低k膜的顶部厚度中的碳含量。离子流优选地为各向异性的以使掩模下方的区域不暴露于该离子流。离子流可具有具低离子能量的一或多个类型的原子物质或分子物质。因而,在一个有利的实施例中,该等物质将机械地研磨低k材料中的组分(例如,去除甲基)而非与低k材料中的该等组分进行化学性地反应,由此离子流将来源于与目标组分具有相对低的化学反应性的源气体。示例性离子物质包括:氦离子、氖离子、氣离子、氮离子,或IS离子(该IS离子优选地具有Ar+,因为Ar+具有低游离电位(例如,2-4eV)),以可提供极低等离子体直流偏压来降低离子流的能级。正电性稀释剂(如氖及氦)亦可添加至氩环境以进一步调和离子流能量。制程压力有利地低于IOmTorr以获得多定向性,且更有利地低于5mTorr。已发现约为50W至IOOW (取决于馈送气体的游离电位)的低射频功率对于通过自氧化硅基质击出碳物质来修改低k介电质膜是有利的。
[0032]图3B图示操作110对工作件的效果。如图所示,离子流307形成低k介电层304的经修改的部分308。在实施例中,经修改的部分308耗尽了碳,由此相对于低k介电层304的未经修改的块状部分富集SiOx。亦可改变与低k介电层304有关的经修改的部分308的膜密度及形态。举例而言,可在操作110期间致密化或通过离子轰击来机械地破坏(例如,粗糙化)经修改的部分308。取决于离子流,经修改的部分308的深度可总计为50 A或更小。
[0033]回到图1,在操作120处,干式蚀刻制程用于在下层块体上方有选择地移除低k介电层的SiOx富集的经修改的部分(或图3C中的低k介电层304的未经修改的部分304B)。因为已移除的经修改的部分约为低k介电质膜中的分子组分的尺寸,所以应将蚀刻操作120视为原子层蚀刻或分子级别蚀刻(molecular level etching;MLE)。在一个实施例中,操作120必需自至少三氟化氮(NF3)及氢气源(诸如氨(NH3)或水汽(H2O))产生的等离子体以产生反应性蚀刻物质NH4F及/或NH4F *HF。在进一步实施例中,在操作120处伴随NF3及NH3提供水汽(H2O)以进一步提高SiOx蚀刻速率。亦可在操作120期间使用非反应性气体(例如,He)。
[0034]在另一实施例中,蚀刻制程100使用siconi类型的蚀刻技术,需要将在操作120期间执行的二步骤机制,在共同让渡的美国专利申请案第12/620,806号中更详细地进一步描述该siconi类型的蚀刻技术。在此实施例中,在较低的第一工作件温度(例如,30°C)下形成水汽(H2O)及薄固体硅酸盐蚀刻副产物(例如,(NH4)2SiF6)且然后在较高的第二工作件温度(例如,100°C)下自工作件升华硅酸盐。然而在某些实施例中,例如在需要较高的蚀刻速率时,在固定的升高的工作件温度下执行siconi蚀刻。在无循环基质温度的其它额外负担的情况下,为了获得更高的蚀刻速率可更快速地循环蚀刻制程100。优选地,操作120处的固定工作件温度系在约80°C与100°C之间。尽管用于方法100的硬掩模及无掩模实施例的较高温度是可能的,但在操作120处用于使用光刻胶的实施例的最大固定工作件温度低于约120°C以避免网状结构。在某些实施例中,在固定高温下执行操作110及操作120两者以避免关于循环工作件温度的任何额外负担。
[0035]回到图1,蚀刻制程控制器决定在完成操作120后是否满足蚀刻制程终止标准。蚀刻制程终止标准可基于制程持续时间、端点讯号(光学或其它)等。若满足了蚀刻制程终止标准,则制程100完成并自腔室150卸载工作件。若还未满足蚀刻制程终止标准,则通过回到操作110启动后续迭代(iteration)。
[0036]对于进一步实施例,在操作130处将低温保形硅基介电层沉积在工作件上。可在蚀刻制程100期间周期性地执行沉积操作130,例如以抵消由修改操作110引起的任一剖面底切或弓形,该修改操作110由于离子流的非理想的无碰撞传送模式而具不完美的各向异性。如图1所图示,沉积操作130仅在一条件下执行,此条件即在每一蚀刻循环必需单次执行操作110及操作120两者的情况下已满足蚀刻循环计数临限值。因而,对于以预定比率或工作循环将蚀刻操作与沉积操作交错在一起的”多X”循环过程,可以每个蚀刻循环(蚀刻循环计数临限值为I)或以某一较低的速率(蚀刻循环计数临限值大于I)执行沉积操作130。
[0037]如在图3D中进一步图示,沉积操作130形成保护层312,保护层312至少形成在由蚀刻操作120暴露的块状低k介电质304B的侧壁上。保护层312的厚度取决于相对于蚀刻操作120执行操作130的频率而可变化很大。一般而言,沉积操作130需要保形沉积制程以确保侧壁覆盖。在实施例中,保形沉积制程为低温制程(例如,低于130°C)以保存覆盖的掩模材料(例如,光刻胶)。在实施例中,保护层312为二氧化娃层。然而,在一个有利的实施例中,保护层312为碳掺杂的氧化硅层。碳掺杂层的沉积可有利地增大保护层130对蚀刻操作120的阻力,以使经由蚀刻操作120的后续迭代不会完全移除保护层130,特别是不会从渠沟310的侧壁完全移除保护层130。在又一实施例中,保护层312为氮化硅层。对于保护层130提供对蚀刻操作120的选择性的碳掺杂实施例及氮化物实施例,可使蚀刻循环计数临限值更大以得到较大部分消耗在蚀刻上的制程100,并增大总低k介电质蚀刻速率。
[0038]取决于实施例,可在操作130处使用任何普遍已知的硅前驱物,该等硅前驱物诸如,但不限于:四氟化硅(SiF4)、四氯化硅(SiCl4)、硅烷(SiH4),或任何普遍已知的含硅碳化前驱物,诸如,但不限于:八甲基环四娃氧烧(octamethyIcyclotetrasiloxane; OMCTS)、四甲基二娃氧烧(tetramethyl-disi1xane; TMDSO)、四甲基环四娃氧烧(tetramethylcyclotetrasi 1xane; TMCTS)、四甲基二乙氧基二娃氧烧(tetramethyl-diethoxyl-disiloxane;TMDDS0)、二甲基二甲氧基娃烧(dimethyl-dimethoxyl-silane;DMDMS)。在进一步实施例中,在保护层为氮化物时,可使用诸如,但不限于,三硅胺烷(trisillylamine;TSA)及二硅胺烷(disiIlylamine; DSA)的前驱物。在PECVD制程中,此等源的任何源可与氧自由基源,诸如,但不限于:氧(02)、臭氧(03)、二氧化碳(CO2),或水(H2O)反应。
[0039]在操作130之后,通过回到操作110来执行后续迭代。以此方式,穿过目标膜渐进地推进蚀刻前部(如在图3E及图3F所进一步图示)以形成逐步加深的渠沟210B。
[0040]图为为一流程图,进一步说明蚀刻腔室如何在蚀刻制程100的多个模式中操作。方法200自操作205处于腔室中接收工作件开始。在设置于距工作件最近的喷淋头下方的腔室的第一区域中激发离子研磨等离子体。射频源在工作件上提供直流偏压电位以产生本文其它处描述的离子流以用于修改操作110。在实施例中,经由基座或夹盘电容耦合射频源以在直接位于工作件上的第一腔室区域中产生等离子体,该基座或夹盘支撑该工作件。在一个此类实施例中,自夹盘(亦即,夹盘系射频驱动的)发起电容耦合的等离子体(capacitively coupled plasma;CCP)且距工作件最近的喷淋头提供射频返回路径(亦即,作为阳极)。
[0041]在操作320期间,在腔室的第二区域中激发SiO蚀刻等离子体,以诱导离子流至工作件的方式来最小化或避免对工作件偏压。在一个实施例中,为了致使蚀刻操作320具高化学性质,将第二腔室区域设置在距工作件最近的喷淋头上方,因此第二腔室距工作件比距在操作310期间产生的离子研磨等离子体相对更远。在实施例中,在操作320期间,基座或夹盘未经射频供电,以最小化工作件偏压电位。在操作320处使用远端及/或软游离技术以形成用于本文其它处描述的蚀刻操作120的反应性物质而不在工作件上形成显著的偏压电位。在一个此类实施例中,从设置在自晶圆与喷淋头相对的侧上的电极到距工作件最近的喷淋头或从该喷淋头到该电极(例如,从或到距工作件最近的喷淋头上方的电极)开始第二 CCP。在另一实施例中,在蚀刻操作120期间使用直流放电作为用于软游离的电子源。在替代性实施例中,在腔室的第二区域中使用远端等离子体源(RPS)形成等离子体。在又一实施例中,在腔室的第二区域中使用感应耦合的等离子体(ICP)形成等离子体。在本文其它处进一步描述用于此等实施例的每一实施例的蚀刻腔室硬体配置。
[0042]对于沉积保护层(例如,在图1中的操作130)的实施例,在腔室的远端第二区域中产生氧化等离子体并将含硅(及碳)前驱物引入至腔室中(例如引入至第一腔室区域中)以与传送到工作件的氧化物质反应。因而,可使用等离子体蚀刻腔室的第一区域及第一操作模式用于修改低k介电质膜的部分厚度,且可使用等离子体蚀刻腔室的第二区域及第二操作模式用于蚀刻低k介电质膜的经修改的厚度。可以第三操作模式进一步操作第二区域以沉积保护层。
[0043]对于使用siconi类型的制程的实施例,siconi类型的蚀刻的两个阶段可进一步需要在蚀刻腔室的不同区域中发起并产生的两种不同的等离子体。举例而言,可使用第一腔室区域及第二腔室区域两者执行siconi类型的制程,或可使用第二腔室区域及第三腔室区域执行siconi类型的制程。
[0044]如图4中所图示,按在本文其它处所描述而配置的一或多个低k蚀刻腔室405耦接至整合平台以形成多腔室处理系统。可通过在图4中图示的多腔室系统中的低k蚀刻腔室405的每一低k蚀刻腔室405执行描述用于多操作模式蚀刻制程100的实施例的一或多个实施例。参照图4,多腔室处理平台400可为本领域中已知的能够适应性地同时控制多个制程模块的任何平台。示例性实施例包括Opus?AdvantEdge?系统、Producer?系统或Centura?系统,所有该等系统全部可购自美国加州圣克拉拉市的应用材料公司。
[0045]处理平台400可进一步包括整合测量(頂)腔室425以提供控制信号来允许对此处描述的任何蚀刻制程进行适应性控制。頂腔室425可包括本领域中普遍已知的测量各个膜性质(诸如,厚度、粗糙度、组成)的任何测量法,且IM腔室425可进一步能够以自动化方式在真空下特征化光栅参数(诸如,临界尺寸(CD)、侧壁角度(SWA)、特征结构高度(HO)。如在图4中所进一步图示,多腔室处理平台400进一步包括固持前开式统集盒(frontopening unified pod; FOUP) 435及445的负载锁定腔室430,负载锁定腔室430耦接至具有机器人机械手450的移送腔室401。
[0046]随着在低k蚀刻腔室405中执行的蚀刻制程与制程100的每一循环迭代地进行,低k蚀刻腔室405可自动地循环通过制程200,致动中继器以将射频源耦接至不同电极及/或操作单独地耦接至不同电极的不同射频源以在操作模式之间调变。可通过一或多个控制器470提供对低k蚀刻腔室405的此控制。控制器470可为任一形式的通用数据处理系统的一个通用数据处理系统,该通用数据处理系统可用于控制各个子处理器及子控制器的工业环境中的。一般而言,控制器470包括与存储器473及输入/输出(1/0)电路系统474通讯的中央处理单元(CPU) 472,亦包括其它常见组件。由CPU472执行的软件指令使多腔室处理平台400 (例如)将基板载入到低k蚀刻腔室405中、执行多操作模式蚀刻制程200,并自低k蚀刻腔室405卸载基板。如本领域所知,提供机器人的机械手450或负载锁定腔室430的额外控制器来管理多个低k蚀刻腔室405的整合。
[0047]本文其它处详细描述的蚀刻制程腔室的一或多个蚀刻制程腔室可使用用于分配及输送流体(反应性物质、气体等)至工作件的习知喷淋头或“双区”喷淋头(“dualzone^showerheadjDZSH)ο尽管DZSH的详细描述可见于共同转让的美国专利第12/836,726号,但图5A及图5B图示可有利地用于多操作模式等离子体蚀刻腔室的特定实施例中的DZSH500的一些特征结构。图5A图示DZSH的切口透视图且图5B图示图5A的切口透视图的放大部分。如图所示,DZSH500包括具有多个第一孔514的上歧管510及具有多个第二孔524的下歧管530。第一流体流F3在进入设置在DZSH500下方的处理区域之前经由孔514、中心歧管中的第二开口 524及底歧管530中的第二开口 534穿过喷淋头。第二流体流F4穿过通道网络至第二气体通道538的一或多个第二气体通道538并经由孔542传送至处理区域。第一流体及第二流体在DZSH中彼此隔离直到该第一流体及该第二流体分别传送进处理区域。因而,可以激发状态提供第一流体(例如,作为自由基物质或离子物质)而第二流体可以未反应状态及/或未激发状态来提供。
[0048]在实施例中,等离子体蚀刻腔室包括耦接至DZSH的等离子体源。在一个实施例中,“Siconi蚀刻”源可自Siconi蚀刻/预清洗腔室(可购自应用材料公司)进行适应性改变,以提供用于此处描述的多个操作模式腔室的至少一种等离子体。举例而言,Siconi蚀刻源可提供以下等离子体中的至少一个:实施离子研磨操作(例如,图1的110)的第一电容性等离子体源,以及实施本文描述的蚀刻操作(例如,图1的120)及/或可选的沉积操作(例如,图1的130)的第二电容耦合的等离子体源。
[0049]图6A、图6B及图6C图示根据实施例的蚀刻腔室的横剖面图,该蚀刻腔室被配置为多个操作模式(状 态)以执行蚀刻制程100中的操作的每一操作。一般而言,蚀刻腔室601包括实施离子研磨操作的第一电容耦合的等离子体源、实施蚀刻操作及实施可选的沉积操作的第二电容耦合的等离子体源。图6A图示根据实施例的蚀刻腔室601的横截面图,该蚀刻腔室601经配置以执行(图1)修改操作110。蚀刻腔室601具有环绕夹盘650的接地的腔室壁640。在实施例中,夹盘650为在处理期间夹持工作件302至夹盘650的顶表面的静电夹盘(ESC),不过亦可使用本领域中已知的其它夹持机构。
[0050]夹盘650包括嵌入的热交换器线圈617。在示例性实施例中,热交换器线圈617包括一或多个传热流道,传热流体(诸如乙二醇/水混合物、Galden?.或Fluorinert?等)可通过该等一或多个传热流道以控制夹盘650的温度并最终控制工作件302的温度。
[0051]夹盘650包括耦接至高压直流电源648的网格649以使网格649可携有直流偏压电位以实施工作件302的静电夹紧。夹盘650耦接至第一射频功率源且在一个此类实施例中,网格649耦接至第一射频功率源以使直流电压偏移及射频电压电位两者耦接在夹盘650顶表面上的薄介电层上。在说明性实施例中,第一射频功率源包括第一射频产生器652及第二射频产生器653。射频产生器652、653可以本领域中已知的任一工业频率操作,然而在示例性实施例中射频产生器652以60MHz操作以提供有利的定向性。在亦提供第二射频产生器653时,示例性频率为2MHz。
[0052]在夹盘650经射频供电的情况下,通过第一喷淋头625提供射频返回路径。第一喷淋头625设置在夹盘上方以分配第一馈送气体进入由第一喷淋头625及腔室壁640界定的第一腔室区域684。因而,夹盘650及第一喷淋头625形成第一射频耦合电极对以电容激发第一腔室区域684内的第一馈送气体的第一等离子体670。由射频功率夹盘的电容耦合引起的直流等离子体偏压(亦即,射频偏压)产生从第一等离子体670至工作件302的离子流(例如,在第一馈送气体系Ar时为Ar离子)以提供离子研磨等离子体(例如,在图2中的操作220)。第一喷淋头625可为接地的或耦接至射频源628,射频源628具有可以不同于夹盘650的频率的一频率(例如,13.56MHz或60MH)操作的一或多个产生器。在所图示的实施方式中,第一喷淋头625经由中继器627可选择地耦接至接地或耦接至射频源628,在蚀刻制程期间可(例如)由控制器420自动地控制中继器627。
[0053]如在图6A中进一步图示,蚀刻腔室601包括能够在低制程压力下具有高产量的泵堆。在实施例中,至少一个涡轮分子泵665、666经由闸阀660耦接至第一腔室区域684并设置在夹盘650下方,与第一喷淋头625相对。一或多个润轮分子泵665、666可为具有适合的产量的任何可购得的涡轮分子泵且更特定而言系经适当地调整尺寸以在第一馈送气体的期望的流动速率下(例如,Ar的50sccm至500sccm)维持低于IOmTorr且优选地低于5mTorr的制程压力。在图6A图示的实施例中,夹盘650形成在两个涡轮泵665及666之间中心处的基座的一部分,然而在替代性配置中,夹盘650可在基座上,该基座通过具有中心与夹盘650的中心对准的单个涡轮分子泵自腔室壁640悬臂支撑。
[0054]设置在第一喷淋头625上方的为第二喷淋头610。在一个实施例中,在处理期间,第一馈送气体源(例如氩瓶690)耦接至气体入口 676,且第一馈送气体流经延伸穿过第二喷淋头610的多个孔680,进入第二腔室区域681,并经由延伸穿过第一喷淋头625的多个孔682进入第一腔室区域684。具有孔678的额外流分配器615可进一步分配第一馈送气体流616遍及蚀刻腔室601的直径。在替代实施例中,第一馈送气体经由与第二腔室区域681隔离的孔683直接流动进入第一腔室区域684 (由虚线623指示)。举例而言,在第一喷淋头系DZSH时,孔683对应于图5B中的孔542。
[0055]图6B图示根据实施例自图6A中图示的状态经重新配置以执行图1的蚀刻操作120的蚀刻腔室601的横截面图。如图所不,第二电极605设置在第一喷淋头625上方,在第一喷淋头625与第二电极605之间具第二腔室区域681。第二电极605可进一步形成蚀刻腔室601的盖。第二电极605与第一喷淋头625通过介电质环620电绝缘并形成第二射频耦合电极对以使第二腔室区域681内的第二馈送气体的第二等离子体691电容放电。有利地,第二等离子体691不在夹盘650上提供显著的射频偏压电位。如图6B所图示,第二射频耦合电极对的至少一个电极耦接至射频源用于激发图2中的操作220处的蚀刻等离子体(在图1中的蚀刻操作120期间)。第二电极605电耦合至第二喷淋头610。在优选实施例中,第一喷淋头625耦接至接地平面或为浮动的(floating)并可经由中继器627耦接至接地,中继器627允许第一喷淋头625在离子研磨操作模式期间亦由射频电源628供电。在第一喷淋头625为接地的情况下,尽管若第一喷淋头625被供电,亦可使第二电极605为浮动的,但具有以例如13.56MHz或60MHz操作的一或多个射频产生器的射频电源608经由中继器607耦接至第二电极605,中继器607将允许第二电极605在其它操作模式期间(例如,在离子研磨操作110期间)亦为接地的。
[0056]第二馈送气体源(诸如NF3瓶691)及氢气源(诸如NH3瓶692)耦接至气体入口 676。在此模式中,第二馈送气体流经第二喷淋头610并在第二腔室区域681中受激发。反应性物质(例如,NH4F)随后进入第一腔室区域684以与工作件302反应。如进一步图示,对于第一喷淋头625系DZSH的实施例,可提供一或多种馈送气体以与由第二等离子体691产生的反应性物质反应。在一个此类实施例中,水源693可耦接至多个孔683。
[0057]在实施例中,夹盘650在与第一喷淋头625垂直的方向上可移动距离ΛΗ2。夹盘650在由诸如波纹管655等环绕的致动机构上,以允许夹盘650移动更靠近或更远离第一喷淋头625作为控制夹盘650与第一喷淋头625之间的传热(处于80°C _150°C或以上的经提升的温度)的方式。因而,可通过在相对于第一喷淋头625的第一预定位置与第二预定位置之间移动夹盘650来实施siconi蚀刻制程。或者,夹盘650包括升降机以提升工作件302离开夹盘650的顶表面一距离AH1以在蚀刻制程期间控制第一喷淋头325的加热。在其它实施例中,在以固定温度(例如,约90°C -110°C)执行蚀刻制程时,可避免夹盘位移机构。
[0058]控制器420在蚀刻制程期间通过交替地自动供电第一及第二射频耦合电极对来交替地激发第一等离子体690及第二等离子体691。
[0059]图6C图示根据实施例经重新配置以执行图1所图示的沉积操作130的蚀刻腔室601的横截面图。如图所示,在第二腔室区域681中由射频放电产生第三等离子体692,可以描述用于第二等离子体691的方式中的任一方式实施该射频放电。在第一喷淋头625在沉积期间被供电以产生第三等离子体692时,第一喷淋头625经由介电隔片630与接地的腔室壁640绝缘以使第一喷淋头625相对于腔室壁为电气浮动的。在不例性实施例中,氧化剂(O2)馈送气体源694耦接至气体入口 676。在第一喷淋头625系DZSH的实施例中,本文其它处描述的含硅前驱物中的任一含硅前驱物(例如,OMCTS源695)可耦接进入第一腔室区域684以与自第二等离子体692通过第一喷淋头625的反应性物质反应。或者,含硅前驱物亦伴随氧化剂流动通过气体入口 676。
[0060]图7图示根据实施例的蚀刻腔室701的横截面图,该蚀刻腔室701经配置以执行修改操作110。如图所示,蚀刻腔室701具有悬臂式夹盘660及中心与夹盘660的中心对准的单个涡轮泵665。如进一步图示,第一喷淋头625系接地的而夹盘660及第二电极605两者经由中继器607耦接至相同的射频源以在离子研磨210与蚀刻操作220之间交替夹盘660与第二电极605之间的驱动电极以分别实施修改操作110与蚀刻操作120,其中等离子体的位置以描述在腔室601内容中的方式于第一腔室区域684与第二区域681之间变化。或者,射频源608可独立于供电夹盘660的射频源(例如,产生器652及653的一或多个产生器)而供电第二电极,其中等离子体的位置以描述在腔室601内容中的方式于第一腔室区域684与第二区域681之间变化。
[0061]图8A图示根据实施例的蚀刻腔室801的横截面图,该蚀刻腔室801经配置以执行图1所图示的蚀刻制程的修改操作110。一般而言,蚀刻腔室801包含实施离子研磨操作的第一电容耦合的等离子体源、实施蚀刻操作的远端等离子体源,以及实施沉积操作的可选第二电容耦合的等离子体源。
[0062]蚀刻腔室801包括设置在第一喷淋头625上方与夹盘660相对的远端射频等离子体源823。在离子研磨操作模式中,蚀刻腔室801提供实质上如描述用于蚀刻腔室601的第一腔室区域684内的电容耦合的第一等离子体670。在图示的实施方式中,夹盘660耦接至第一射频电源(射频产生器652及653),且第一喷淋头625经由中继器607B可选择地耦接至接地或第二射频电源,该第二射频电源包含一或多个射频产生器608,该一或多个射频产生器608可在不同于第一射频电源652、653的频率的一频率下操作。在供电第一喷淋头625时,第一喷淋头625经由介电隔片630与接地的腔室壁640绝缘以使第一喷淋头625相对于腔室壁640为电气浮动的。对于供电第一喷淋头625的实施例,第二喷淋头610与第二电极605可电连接至与第一喷淋头625相同的电位。
[0063]图8B图示根据实施例的蚀刻腔室801的横截面图,该蚀刻腔室801自图8A图示的蚀刻腔室经重新配置以执行图1所图示的蚀刻操作120。如图SB中图示,在蚀刻操作模式中,远端射频等离子体源823将使经由气体入口 824提供的第二馈送气体的第二等离子体693放电。在一个示例性实施例中,远端射频等离子体源823与第一喷淋头625两者经由可由控制器控制的中继器607A耦接至相同的射频电源821以交替地供电第一等离子体670与远端等离子体693。将在不于夹盘660上置放显著的射频偏压电位的情况下产生远端等离子体693。在优选实施例中,第一喷淋头625系接地的或浮动的。第二馈送气体源691,692 (NF3、NH3)耦接至气体入口 824,伴随反应性物质(例如,NH4F)随后流动穿过第一喷淋头625。如本文其它处描述,额外流体分配可具备第二喷淋头610及/或流体分配器615。在第一喷淋头625包括DZSH的实施例中,可经由孔693提供水蒸气693以使水蒸气693与经由孔682进入第一腔室区域684的反应性物质反应。
[0064]图8C图示根据实施例的蚀刻腔室801的横截面图,该蚀刻腔室自图8A及图8B图示的状态经重新配置以执行图1所图示的沉积操作130。如图SC中图示,尽管在沉积操作模式中,但夹盘660仍耦接至第一射频电源,该第一射频电源包含可为无供电(例如,浮动的)的一或多个射频产生器652、653。第一喷淋头625耦接至包含一或多个射频产生器608的第二射频电源,该一或多个射频产生器608可处于不同于射频产生器652的频率的频率下(例如,13.56MHz)。在第一喷淋头625经由介电隔片630与接地的腔室壁640绝缘并经由介电隔片620进一步与第二喷淋头601绝缘的情况下,到第一喷淋头625的射频电源将在第二腔室区域681中产生(例如,诸如02694的氧化源气体的)第三等离子体692。在一个示例性实施例中,第一喷淋头625与远端射频等离子体源823两者经由可由控制器470控制的中继器607A耦接至相同的射频电源821以交替地供电蚀刻与沉积(例如,分别为图1中的操作120及操作130)之间的第三等离子体692与远端等离子体693。
[0065]控制器420将在蚀刻制程期间通过交替地自动供电两个源来交替地激发第一等离子体670与远端等离子体693。控制器420可类似地使腔室801进入沉积模式。
[0066]图9A图示根据实施例的蚀刻腔室901的横截面图,该蚀刻腔室901经配置以执行图1所图示的修改操作110。一般而言,蚀刻腔室901包含实施离子研磨操作的电容耦合的等离子体源,以及实施蚀刻操作及实施可选的沉积操作的电子束源。如图9A中所图示,在第一喷淋头625设置在夹盘650上方的情况下提供实质上如本文其它处描述的电容性放电以分配第一馈送气体690进入第一腔室区域684。夹盘660与第一喷淋头625形成第一射频率禹合电极对以使第一馈送气体(例如,Ar)的射频等离子体670电容放电。
[0067]图9B图示根据实施例经重新配置以执行图1所图示的蚀刻操作120的蚀刻腔室901的横截面图。如图所示,高压直流电源943耦接至第二电极605与第二喷淋头610以形成设置在第一喷淋头625上方的直流电极对以在直流电极之间的腔室区域中产生直流辉光(glow)放电618。直流电极对经由介电隔片620与第一喷淋头625电绝缘。第一喷淋头625经由介电隔片630进一步与腔室壁640绝缘以允许对第一喷淋头625的控制。
[0068]在操作期间,以阴极直流电位(例如4_8kV)偏压第二电极605而以阳极电位(例如,-1OOV至-200V)偏压第二喷淋头610。来自产生自第一馈送气体(例如,Ar瓶690)的直流辉光放电618的电子通过孔680进入第二腔室区域681。第一喷淋头625亦经由中继器耦接至直流电源(例如耦接至第二喷淋头610),以使第一喷淋头625相对于第二电极605的阴极电位负偏压至阳极电位。第一喷淋头625上的负偏压允许电子通过第一喷淋头625并进入第一腔室区域684。为了进一步推进此目的,第一喷淋头625可具有大洞。以此方式,“电子束”源系软游离第一腔室区域684中的馈送气体(例如,在DZSH实施例中由孔683提供的NF3及NH3)以提供反应性蚀刻物质(例如,NH4F等)而在工作件302上无显著偏压的构件。
[0069]如在图9B进一步图示,尽管夹盘660在离子研磨模式期间耦接至射频源(产生器652及653),但夹盘660亦可在蚀刻操作及沉积操作的一者或两者期间维持在接地电位或阴极电位。提供于接地电位与正偏压之间的可控制的可变夹盘电位963将控制从直流辉光放电618到工作件302的电子通量(electron flux)。在进一步实施例中,蚀刻腔室901包括设置在第一喷淋头625与夹盘660之间的分流电极(thief electrode) 9470分流电极625经由可变电容器964耦接至接地以进一步控制至工作件305的电子通量。如图所示,分流电极947经由第一介电隔片630与第一喷淋头625绝缘并经由第二介电隔片937与接地的腔室壁640绝缘的导电环。
[0070]图9C图示根据实施例的蚀刻腔室901的横截面图,该蚀刻腔室901经重新配置以执行图1所图示的沉积操作130。使用实质上如本文其它处描述的用于蚀刻操作120的直流电源或在第二腔室区域681中产生的第二射频等离子体,以执行保护层的PECVD沉积。在使用直流电源时,来自第二喷淋头610的电子通过第一喷淋头625并经由孔683提供含硅前驱物(诸如,0MCTS695)。亦可通过孔683供应氧以通过电子通量来游离氧。
[0071]控制器420将在蚀刻制程期间通过交替地自动供电两个源来交替地激发第一等离子体670与直流辉光放电618。控制器420可类似地使腔室901进入沉积模式。
[0072]在进一步实施例中,可用电子通量执行沉积的保护层的原位固化,本质上执行电子束硬化类型的制程。提供于接地电位与正偏压之间的可控制的可变夹盘电位963亦为此目的可控制从直流辉光放电618到工作件302的电子通量。具体而言,在需要固化时,工作件302将处在接地电位处;在不需要固化时,工作件302处于阴极电位处。
[0073]图10图示根据实施例的蚀刻腔室1001的横截面图,该蚀刻腔室1001经配置以执行图1所图示的蚀刻制程100的各个模式。一般而言,蚀刻腔室1001包含实施离子研磨操作的CCP,以及实施蚀刻操作及实施可选的沉积操作的感应耦合的等离子体源(inductively coupled plasma source; IPS)。
[0074]如图10中所图示,提供了上文在用于第一腔室区域684中的修改操作110 (图1)的CCP等离子体的情境中描述的所有腔室组件,夹盘660及第一喷淋头625再次形成射频电极对。在实施例中,第一喷淋头625为实质上如本文其它处描述的可被供电的、电气浮动的或接地的DZSH。对于蚀刻操作(例如,图1中的120),导电线圈组1052耦接至包括产生器608的射频源,以用本领域中已知的任一方式产生感应耦合的等离子体692。在第一喷淋头的DZSH实施例中结合大尺寸洞的ICP源能够有效地游离经由介电质盖1006所引入的诸如NF3691及NH369 2的馈送气体。
[0075]控制器420将在蚀刻制程期间通过交替地自动供电两个源来交替地激发第一等离子体670与ICP等离子体692。控制器420可类似地使腔室1001进入沉积模式。
[0076]应了解上文的描述旨在说明而非限制。此外,本领域技术人员在阅读及理解以上描述后将明白除了详细描述的实施例的外的许多其它实施例。虽然已参考具体的示例性实施例描述了本发明,但将认识到本发明不局限于描述的实施例,而是可用在随附权利要求的精神及范围内的修改及变更来实践本发明。因此应参考随附权利要求及此权利要求允许的全部等效物决定本发明的范畴。
【权利要求】
1.一种等离子体蚀刻腔室,包含: 夹盘,所述夹盘在蚀刻制程期间支撑工作件; 第一喷淋头,所述第一喷淋头设置在所述夹盘上方以分配第一馈送气体进入第一腔室区域,其中所述夹盘及所述第一喷淋头形成第一射频耦合电极对以电容激发所述第一喷淋头与所述夹盘之间的第一腔室区域内的所述第一馈送气体的第一等离子体; 第二电极,所述第二电极设置在所述第一喷淋头上方,与所述夹盘相对,其中所述第二电极及所述第一喷淋头形成第二射频耦合电极对以使所述第一喷淋头与所述第二电极之间的第二腔室区域内的第二馈送气体的第二等离子体进行电容放电;以及 控制器,所述控制器在所述蚀刻制程期间通过交替地自动供电所述第一射频耦合电极对与所述第二射频耦合电极对来交替地激发所述第一等离子体与所述第二等离子体。
2.如权利要求1所述的等离子体蚀刻腔室,其特征在于,所述第二电极是分配所述第一馈送气体及所述第二馈送气体进入所述第二腔室区域的第二喷淋头,且其中所述第一喷淋头进一步将所述第一馈送气体或反应性物质从所述第二等离子体输送到所述第一腔室区域。
3.如权利要求1所述的等离子体蚀刻腔室,其特征在于,所述夹盘与所述第二电极两者经由可由所述控制器切换的中继器耦接至相同的射频电源。
4.如权利要求1所述的等离子体蚀刻腔室,其特征在于,所述夹盘耦接至包含一或多个射频产生器的第一射频电源,且所述第一喷淋头经由中继器可选择地耦接至接地平面与第二射频电源两者,所述第二射频电源包含一或多个射频产生器,所述一或多个射频产生器可在不同于所述第一射频电源的频率的频率下操作,所述中继器可由所述控制器控制。
5.如权利要求1所述的等离子体蚀刻腔室,其特征在于,所述夹盘可在垂直于所述第一喷淋头的方向上移动,或所述夹盘包括升降机,以提升所述工作件离开所述夹盘,以控制在所述蚀刻制程期间通过所述第一喷淋头对所述工作件的加热。
6.如权利要求1所述的等离子体蚀刻腔室,其特征在于,所述第一喷淋头是双区喷淋头,所述双区喷淋头具有第一复数个孔与第二复数个孔,所述第一复数个孔流体地耦接所述第一腔室区域及所述第二腔室区域,以及所述第二复数个孔将所述第一腔室区域流体地耦接至与所述第二腔室区域绝缘的流体源。
7.一种等离子体蚀刻腔室,包含: 夹盘,所述夹盘在蚀刻制程期间支撑工作件; 第一喷淋头,所述第一喷淋头设置在所述夹盘上方以分配第一馈送气体进入第一腔室区域,其中所述夹盘与所述第一喷淋头形成第一射频耦合电极对以使所述第一喷淋头与所述夹盘之间的第一腔室区域内的所述第一馈送气体的第一等离子体进行电容放电并提供射频偏压电位于所述夹盘上; 远端射频等离子体源,所述远端射频等离子体源设置在所述第一喷淋头上方,与所述夹盘相对,其中所述远端射频等离子体源将使所述远端等离子体源内的第二馈送气体的第二等离子体放电而不提供射频偏压电位于所述夹盘上;以及 控制器,所述控制器在该蚀刻制程期间通过交替地自动供电所述第一射频耦合电极对与所述远端射频等离子体源来交替地激发所述第一等离子体与所述第二等离子体。
8.如权利要求7所述的等离子体蚀刻腔室,其特征在于,所述夹盘耦接至包含一或多个射频产生器的第一射频电源,且所述第一喷淋头耦接至第二射频电源,所述第二射频电源包含可在不同于所述第一射频电源的频率的频率下操作的一或多个射频产生器,所述第一喷淋头经由介电隔片与接地的腔室壁绝缘,以使所述第一喷淋头相对于所述腔室壁为电气浮动的(electrically floating)。
9.如权利要求7所述的等离子体蚀刻腔室,其特征在于,所述等离子体蚀刻腔室进一步包含设置在所述远端射频等离子体源与所述第一喷淋头之间的第二喷淋头,所述第二喷淋头分配由所述射频等离子体源产生的蚀刻物质。
10.如权利要求7所述的等离子体蚀刻腔室,其特征在于,所述第一喷淋头是双区喷淋头,所述双区喷淋头具有第一复数个孔与第二复数个孔,所述第一复数个孔流体地耦接所述第一腔室区域及所述远端等离子体源,以及所述第二复数个孔将所述第一腔室区域流体地耦接至与所述远端等离子体源绝缘的流体源。
11.一种等离子体蚀刻腔室,包含: 夹盘,所述夹盘在蚀刻制程期间支撑工作件; 第一喷淋头,所述第一喷淋头设置在所述夹盘上方以分配第一馈送气体进入第一腔室区域,其中所述夹盘与所述第一喷淋头形成第一射频耦合电极对,以使所述第一喷淋头与所述夹盘之间的第一腔室区域内的所述第一馈送气体的射频等离子体进行电容放电并提供射频偏压电位于所述夹盘上; 高压直流电源,所述高压直流电源耦接至设置在所述第一喷淋头上方的电极对以产生直流等离子体放电, 所述电极对经由介电隔片与所述第一喷淋头电绝缘,其中所述第一喷淋头负偏压至阳极电位,所述阳极电位相对所述直流电源耦合电极的阴极;以及 控制器,所述控制器在所述蚀刻制程期间通过交替地自动供电所述第一射频耦合电极对与所述直流电源耦合电极对来交替地激发所述射频等离子体与所述直流等离子体。
12.如权利要求11所述的等离子体蚀刻腔室,其特征在于,所述直流电源耦合电极的阳极为第二喷淋头,所述第二喷淋头具有传递来自所述直流等离子体放电的电子的孔,且所述第一喷淋头进一步输送所述第一馈送气体或传递电子到所述第一腔室区域。
13.如权利要求11所述的等离子体蚀刻腔室,其特征在于,所述夹盘在接地电位与正偏压之间具有可控制的直流电位,以控制从所述直流等离子体到所述工作件的电子通量(electron flux)。
14.如权利要求13所述的等离子体蚀刻腔室,其特征在于,所述等离子体蚀刻腔室进一步包含设置在所述第一喷淋头与所述夹盘之间的分流电极(thief electrode),其中所述分流电极经由可变电容器接地,以控制从所述直流等离子体到所述工作件的电子通量。
15.—种等离子体蚀刻腔室,包含: 夹盘,所述夹盘在蚀刻制程期间支撑工作件; 第一喷淋头,所述第一喷淋头设置在所述夹盘上方以分配第一馈送气体进入第一腔室区域,其中所述夹盘及所述第一喷淋头形成第一射频耦合电极对以使所述第一喷淋头与所述夹盘之间的第一腔室区域内的所述第一馈送气体的射频等离子体进行电容放电并提供射频偏压电位于所述夹盘上; 导电线圈,所述导电线圈设置在所述蚀刻腔室的介电腔室盖上方并耦接至射频源以在设置于所述介电腔室盖与所述第一喷淋头之间的第二腔室区域中产生感应耦合的等离子体放电;以及 控制器,所述控制器在所述蚀刻制程期间通过交替地自动供电所述第一射频耦合电极对及所述导电线圈 来交替地激发所述电容耦合的等离子体及所述感应耦合的等离子体。
【文档编号】H01L21/311GK104011837SQ201280048477
【公开日】2014年8月27日 申请日期:2012年10月17日 优先权日:2011年10月27日
【发明者】D·卢博米尔斯基, S·耐马尼, E·叶, S·G·别洛斯托茨基 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1