化合物太阳能电池的制造方法

文档序号:7036833阅读:165来源:国知局
化合物太阳能电池的制造方法
【专利摘要】为了提供能够以低成本制造高转换效率的化合物太阳能电池的方法,假定相对于基板(1)的层形成面垂直状延伸的假想中心轴X时,在该假想中心轴X的两侧,以相对的状态配置2张溅射用阴极靶材(6)、(6’),并通过使用高频(RF)电源、或组合使用直流(DC)电源和高频(RF)电源的溅射法来进行缓冲层的形成。
【专利说明】化合物太阳能电池的制造方法

【技术领域】
[0001]本发明涉及效率良好地制造化合物太阳能电池的方法,所述化合物太阳能电池具有高的光转换效率(以下称为“转换效率”),且将由Ib族、IIIb族及Vib族元素形成的CuInSe2(CIS)或者在其中固溶了 Ga而得的Cu (In,Ga) Se2 (CIGS)化合物半导体(1-1I1-VI族化合物半导体)用于光吸收层。

【背景技术】
[0002]已知在太阳能电池中,将CIS或CIGS(以下称为“CIGS系”)化合物半导体用于光吸收层的化合物太阳能电池具有如下优点:具有高转换效率且能够形成为薄膜,并且光照射等导致的转换效率的劣化少。
[0003]这种将CIGS系化合物半导体用于光吸收层的太阳能电池的缓冲层通常使用由化学沉积法形成的CdS、Zn (O, S)等(例如,参照专利文献I)。但是,由化学沉积法形成缓冲层时,在真空下形成CIGS系化合物半导体层后,需要取出到大气下形成缓冲层,并再次在真空下形成透明电极层,存在生产率差之类的问题。
[0004]因此,为了解决该问题,提出了不取出到大气下,而是在真空下利用溅射法来连续进行上述化合物太阳能电池中的缓冲层的形成(例如,参照专利文献2)。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献1:日本特开2002-343987号公报
[0008]专利文献2:日本特开2002-124688号公报


【发明内容】

_9] 发明要解决的问题
[0010]然而,如专利文献2所述,使用通用的磁控溅射装置作为溅射装置在真空下连续形成缓冲层时,虽然生产效率得以改善,但已判明,由于在溅射中产生的等离子体中的负离子、高能量电子,在缓冲层和光吸收层中出现损伤,会出现化合物太阳能电池的特性下降之类的新问题。这种情况在为了提高生产率而增大对阴极靶材施加的电力时特别明显地显现,因此强烈期望其改善。
[0011]本发明是鉴于上述问题而作出的,其目的在于提供制造能够在真空下连续进行缓冲层的形成而不取出到大气下、而且具有高转换效率的化合物太阳能电池的方法。
[0012]用于解决问题的方案
[0013]为了实现上述目的,本发明的要旨在于一种化合物太阳能电池的制造方法,其特征在于,所述化合物太阳能电池在基板上至少依次具备1-1I1-VI族化合物半导体层、缓冲层和透明电极层,该方法中,假定在相对于上述基板的层形成面垂直状延伸的假想中心轴时,在该假想中心轴的两侧,以相对的状态配置2张溅射用阴极靶材,并通过使用高频(RF)电源、或组合使用直流(DC)电源和高频(RF)电源的溅射法来进行上述缓冲层的形成。
[0014]发明的效果
[0015]本发明的化合物太阳能电池的制造方法是至少依次具备1-1I1-VI族化合物半导体层、缓冲层和透明电极层的化合物太阳能电池的制造方法,且通过特殊的溅射法形成上述缓冲层。因此,能够继1-1I1-VI族化合物半导体层的形成后在真空下连续进行缓冲层的形成,能够提高化合物太阳能电池的生产效率。而且,假定相对于基板的层形成面垂直状延伸的假想中心轴时,在该假想中心轴的两侧,以相对的状态配置2张溅射用阴极靶材,并且利用使用高频(RF)电源、或组合使用直流(DC)电源和高频(RF)电源的溅射法来进行上述缓冲层的形成,因此能够将产生的电子等关闭在上述两阴极靶材之间,能够实现兼顾高速形成缓冲层和降低对1-1I1-VI族化合物半导体层造成的损害。因此,通过本发明的制造方法获得的化合物太阳能电池可以低成本制造,且具有高转换效率。
[0016]另外,上述2张相对的阴极靶材配置成朝向基板侧而张开为大致V字状时,能够更高速地形成缓冲层,能够谋求化合物太阳能电池的进一步低成本化。
[0017]而且,上述2张相对的阴极靶材平行配置时,能够将更多产生的电子关闭在上述两阴极之间,能够谋求进一步降低对1-1I1-VI族化合物半导体层造成的损害。

【专利附图】

【附图说明】
[0018]图1是通过本发明的一个实施方式获得的CIGS太阳能电池的截面图。
[0019]图2是用于形成上述CIGS太阳能电池的缓冲层的溅射装置中的阴极靶材与基板的位置关系的说明图。
[0020]图3是示出上述溅射装置中的阴极靶材与基板的位置关系的其它例的说明图。
[0021]图4是示出上述溅射装置中的阴极靶材与基板的位置关系的其它例的说明图。

【具体实施方式】
[0022]接着,对用于实施本发明的方式进行说明。
[0023]图1是通过本发明的一个实施方式获得的CIGS太阳能电池的截面图。该CIGS太阳能电池为宽度20mmX长度20mmX厚度53 μ m的大小,且依次具备基板1、背面电极层
2(厚度800nm)、由黄铜矿化合物形成的CIGS光吸收层(化合物半导体层)3 (厚度2 μ m)、缓冲层4 (厚度70nm)和由ITO形成的透明电极层5 (厚度200nm),上述缓冲层4通过特殊的溅射法来形成。以下,详细说明该CIGS太阳能电池及其制造方法。需要说明的是,图1中示意性地示出各层的厚度、大小、外观等,与实际有差别(以下图中也同样)。
[0024]上述基板I使用经脱脂的SUS430 (宽度20mm X长度20mm X厚度50 μ m)。而且,形成于上述基板I上的背面电极层2由钥(Mo)形成,这种背面电极层2可以通过溅射法、蒸镀法、喷墨法来形成。在该实施方式中,使用溅射法来形成。
[0025]进而,形成于背面电极层2上的CIGS光吸收层(化合物半导体层)3由含有铜(Cu)、铟(In)、镓(Ga)、硒(Se) 4种元素的化合物半导体形成。作为形成这种CIGS光吸收层3的方法,可列举出真空蒸镀法、硒化/硫化法、溅射法等。在该实施方式中,使用多源蒸锻法。
[0026]而且,该实施方式中,在形成CIGS光吸收层3之前,在背面电极层2上蒸镀NaF并使其为40nm厚度,由此进行Na的微量添加,其后如下所述地形成CIGS光吸收层3。S卩,首先,在真空蒸镀装置的腔室内分别配置Ga、In、Cu、Se作为蒸镀源。接着,使上述腔室内为真空度lX10_4Pa,以550°C /h的升温速度加热基板I以达到550°C。然后,加热上述各蒸镀源即CudlOO0C )> In (7800C )> Ga (9500C )> Se (140。。)以达到各自括号内的温度,使各蒸镀源同时蒸发,由此形成上述CIGS光吸收层3。
[0027]需要说明的是,上述CIGS光吸收层3中的Cu、In、Ga的组成比优选满足0.7<Cu/(Ga+In)〈0.95 (摩尔比)的式子。这是因为满足该式时,能够阻止Cu(2_x)Se被过量吸收到上述CIGS光吸收层3内,且层整体可呈Cu略微不足的状态。另外,同族元素即Ga与In之比优选处于0.10〈Ga/(Ga+In)〈0.40(摩尔比)的范围。在该实施方式中,关于上述CIGS光吸收层3的组成,Cu/III族为0.89、Ga/III族为0.31 (摩尔比)。
[0028]而且,在上述CIGS光吸收层3上形成缓冲层4,对于该缓冲层4的形成,假定相对于基板I的层形成面垂直状延伸的假想中心轴X时,在该假想中心轴X的两侧,以相对的状态配置2张溅射用阴极靶材6、6’,并通过使用高频(RF)电源、或组合使用直流(DC)电源和高频(RF)电源的溅射法来形成。这是本发明的最大特征。
[0029]对上述缓冲层4的形成进行更详细的说明,首先,准备2张包含Zna85Mgai5O的组成的溅射用阴极靶材,如图2所示,假定由基板I的层形成面垂直状延伸的假想中心轴X,在夹着该假想中心轴X的两侧,以相对的状态配置2张溅射用阴极靶材6、6’。在该实施方式中,将上述两阴极靶材6、6’配置成朝向基板I的层形成面侧(以下称为“基板I侧”)张开的大致V字状,其两阴极靶材6、6’的大致V字状的程度设为使上述假想中心轴X与阴极靶材6的相对面7之间形成的角度Θ为10°。另外,使用高频(RF)电源对上述两阴极靶材6、6’施加电力。需要说明的是,图2中省略了形成于基板I的背面电极层2及CIGS光吸收层3的图示(以下图中也同样)。
[0030]接着,在上述缓冲层4上形成的透明电极层5由厚度200nm的ITO构成、通过使用ITO靶材(In203、90〔原子数%〕,SnO2UO〔原子数%〕)及高频(RF)电源的溅射法,在溅射速度20nm/min的条件下形成。这种透明电极层5除了上述溅射法之外,还可以使用蒸镀法,有机金属气相沉积法(M0CVD法)等来形成,另外,透明电极层5的透光率优选在550nm波长下超过80%,该实施方式中,透明电极层5的透光率在550nm波长下为90%。
[0031]通过经由这种工序,能够得到在基板I上形成了背面电极层2、CIGS光吸收层3、缓冲层4、透明电极层5的CIGS太阳能电池。
[0032]根据该制造方法,由于通过特殊的溅射法形成缓冲层4,因此能够继CIGS光吸收层3的形成后在真空下连续形成缓冲层4,能够提高CIGS太阳能电池的生产效率。另外,利用如下的溅射法进行上述缓冲层4的形成:准备2张溅射用阴极靶材6、6’,相对于从基板I的层形成面垂直状延伸的假想中心轴X,在夹持该假想中心轴X的两侧对向配置这2张靶材
6、6’,并且使用高频(RF)电源,因此能够实现兼顾高速形成缓冲层4以及减少对CIGS光吸收层3造成的损害。而且,上述2张相对的阴极靶材6、6’配置成朝向基板I侧张开的大致V字状,因此能够更高速地形成缓冲层4,能够谋求CIGS太阳能电池的进一步低成本化。
[0033]需要说明的是,上述实施方式中,使用经脱脂的SUS430作为基板1,除此之外,也可以使用玻璃基板、金属基板、树脂基板等。作为上述玻璃基板,可列举出碱金属元素含量极少的低碱玻璃、不含碱金属元素的无碱玻璃、青板玻璃等。其中,使用低碱玻璃、无碱玻璃、金属基板、树脂基板时,理想的是如上述实施方式所示,在CIGS光吸收层3的形成中或形成后微量添加Na。
[0034]另外,上述实施方式中,将基板I的厚度设为50μπι,但不限于此,可以设为任意厚度。其中,优选使基板I的厚度处于5?200 μ m的范围内,更优选处于10?10ym的范围内。即,这是因为:厚度过厚时,会损害CIGS太阳能电池的弯曲性,使其弯曲时所施加的应力变大,会有对CIGS光吸收层3等的层叠结构造成破坏之虞;反之过薄时,在制造CIGS太阳能电池时,基板I发生纵曲,会有CIGS太阳能电池的成品不良率变高的倾向。
[0035]进而,上述实施方式中,作为基板I可以使用单片型,但不限于此,也可以使用其它形状。其中,使用长条状基板时,可以使用辊对辊方式或步进辊方式来制造CIGS太阳能电池,能够进一步提高生产率。需要说明的是,上述“长条状”是指长度方向为宽度方向的10倍以上的形状,更优选使用30倍以上的形状。
[0036]而且,上述实施方式中,背面电极层2可以用由Mo构成的单层来形成,除此之外,也可以将钨、T1、Cr等形成为单层或多层。另外,其厚度(多层时为各层厚度的总和)也可以任意设定,但特别优选处于10?1000 μ m的范围。
[0037]进而,在基板I具有背面电极层2的功能(具有导电性时等)时,也可以不设置该背面电极层2。而且,若来自基板I的杂质发生热扩散,则CIGS太阳能电池的性能下降,因此出于防止这种情况的目的,也可以在基板I与CIGS光吸收层3之间(基板I或背面电极层2上)设置金属扩散防止层(未图示)。这种金属扩散防止层例如可以使用Cr、N1、NiCr、Co等通过溅射法、蒸镀法、CVD法、溶胶.凝胶法、液相沉积法等来形成。
[0038]另外,上述实施方式中,将CIGS光吸收层3的厚度设为2 μ m,但不限于此,也可以设为任意厚度。其中,该厚度优选设为1.0?3.0 μ m的范围,进一步优选设为1.5?2.5 μ m的范围。这是因为=CIGS光吸收层3的厚度过薄时,吸收的光量变少,会有CIGS太阳能电池的性能下降的倾向;反之过厚时,CIGS光吸收层3的形成所消耗的时间增加,会有生产率变差的倾向。
[0039]而且,上述实施方式中,使用包含Zna85Mgai5O的组成的溅射用阴极靶材6、6’来形成缓冲层 4,除此之外,也可以将 CdS、ZnMgO, ZnMgCaO, ZnMgSrO, ZnSrO, ZnO、ZnS, Zn (OH)2,ln203、In2S3、以及它们的混晶即Zn (0,S,0H)、Zn (0,S)等用作阴极靶材6、6’。另外,阴极靶材6、6’与获得的层(缓冲层4)的组成不同时,也可以预先使用大量包含不足元素的组成的阴极靶材6、6’。进而,上述实施方式中,缓冲层4可以形成为单层,也可以形成为多层。
[0040]另外,上述实施方式中,在用于形成缓冲层4的溅射时,如图2所示,阴极靶材6、6’配置成朝向基板I侧张开的大致V字状,该大致V字状的程度设为使上述假想中心轴X与阴极靶材6、6’之间形成的角度Θ分别为10°,但上述角度Θ不限于此例。但是,上述角度Θ处于5?10°的范围内时,能够以更少的电力来形成缓冲层4,故为优选。
[0041]进而,根据阴极靶材6、6’的组成、溅射的条件,也可以不将上述阴极靶材6、6’配置成朝向基板I侧张开的大致V字状,而是如图3所示地将两阴极靶材6、6’平行配置。另夕卜,还可以如图4所示地仅将一张阴极靶材(此例中为阴极靶材6)配置为相对于假想中心轴X仅倾斜角度Θ的形状。
[0042]而且,上述实施方式中,在形成缓冲层4的溅射时,使用高频(RF)电源对上述两阴极靶材6、6’施加电力,也可以代替其而组合使用直流(DC)电源和高频(RF)电源。若组合使用高频(RF)电源和直流电源(DC),则与仅使用高频(RF)电源施加电力的情况相比,能够以较少的投入电力(消耗电力)加快溅射速度,并且能够进一步抑制CIGS光吸收层3表面的变质及缓冲层4的结晶性下降等等离子体损伤。
[0043]与此相对,若单独使用直流电源(DC)对上述两阴极靶材6、6’施加电力,则放电电压变高,且伴随于此,向基板I及形成中的缓冲层4内入射的颗粒以及离子的动能变大。因此,颗粒以及离子会打入CIGS光吸收层3表面,有CIGS光吸收层3表面发生再溅射、CIGS光吸收层3表面状态发生变质之虞,是不优选的。另外,可认为在形成中的缓冲层4内,由于高能颗粒及离子而使产生晶核的概率增大,难以出现均匀的取向生长,结晶取向容易变得不规律。
[0044]另外,上述实施方式中,使用ITO作为透明电极层5,除此之外,也可以使用ΙΖ0、氧化锌铝(Al:ZnO)等。另外,其厚度也可以任意设定,但特别优选设为50?300nm的范围。
[0045]实施例
[0046]接着,对实施例与比较例一并进行说明。但是,本发明不受以下实施例的限定。
[0047]〔实施例1〕
[0048](背面电极层的形成)
[0049]首先,在由经脱脂的SUS430(宽度20mmX长度20mmX厚度50 μ m)形成的基板表面上,使用磁控溅射装置(ULVAC,Inc.制造、型号SH-450),且放电气体使用氩,以溅射压力达到IPa的方式使用直流(DC)电源,并在派射速度60nm/min下,形成厚度0.8 μ m的由Mo构成的背面电极层。
[0050](CIGS光吸收层的形成)
[0051]接着,在上述形成的背面电极层上形成CIGS光吸收层。即,在真空蒸镀装置的腔室内分别配置Ga(950°C )、In(780°C )> CudlOO0C )> Se (140°C )作为蒸镀源,将腔室内设为真空度lX10_4Pa,以升温速度550°C /h将基板加热至550°C。此时,加热上述蒸镀源以使其达到各自括号内的温度,使这些元素同时蒸发,由此在上述背面电极层上形成由黄铜矿化合物形成的CIGS光吸收层。获得的CIGS光吸收层的组成(原子数% )为Cu/III族=0.89, Ga/III 族=0.31,其厚度为 2.1 μ m。
[0052](缓冲层的形成)
[0053]继而,在上述形成的CIGS光吸收层上形成厚度70mm的缓冲层。使用图2所示的、2张阴极靶材配置为大致V字状的对向靶材溅射装置(角度Θ =10° ),按照以下条件形成缓冲层。即,使用包含Zna85Mgai5O的组成的靶材作为阴极靶材,溅射时的放电气体使用Ar,在派射压力0.3Pa、#i射速度15nm/min的条件下,使用高频(RF)电源来进行。需要说明的是,对上述阴极靶材进行组成分析的结果,相对于Mg,混杂了约3% (原子数%)的Ca。
[0054](透明电极层的形成)
[0055]进而,在上述形成的缓冲层上形成透明电极层。透明电极层使用磁控溅射装置(ULVAC, Inc.制造、型号SH-450)、按照下述条件来形成。即,使用ΙΤ0(Ιη203:90〔原子数%〕SnO2=1〔原子数%〕)构成组成的靶材作为阴极靶材,溅射时的放电气体组合使用Ar和Ar流量1/10的O2气体。而且,功率密度为1.6W/cm2、溅射压力为0.3Pa、溅射速度为20nm/min、使用高频(RF)电源来形成厚度200nm的透明电极层,得到实施例1的CIGS太阳能电池。
[0056]〔实施例2及3〕
[0057]将缓冲层的形成中的溅射速度变更为如下述表I所示,除此之外,与实施例1同样操作,得到实施例2及3的CIGS太阳能电池。
[0058]〔实施例4?6〕
[0059]将缓冲层的形成变更为组合使用直流(DC)电源和高频(RF)电源,并将其溅射速度变更为如下述表I所示,除此之外,与实施例1同样操作,得到实施例4?6的CIGS太阳能电池。
[0060]〔实施例7及8〕
[0061]缓冲层的形成中,将图2所示的2张阴极靶材的大致V字的程度(角度Θ)变更为如下述表I所示,除此之外,与实施例1同样操作,得到实施例7及8的CIGS太阳能电池。
[0062]〔实施例9〕
[0063]将缓冲层的形成变更为使用图3所示的、2张阴极靶材平行配置的对向靶材溅射装置,除此之外,与实施例1同样进行,得到实施例9的CIGS太阳能电池。
[0064]〔比较例I?6〕
[0065]将缓冲层的形成变更为使用通用的磁控溅射装置(ULVAC,Inc.制造、型号SH-450:以与基板的层形成面平行的方式设置I张阴极靶材),并将电源及溅射速度变更为如下述表I所示,除此之外,与实施例1同样操作,得到比较例I?6的CIGS太阳能电池。
[0066]〔比较例7?9〕
[0067]将缓冲层的形成变更为使用直流(DC)电源,并将溅射速度变更为如下述表I所示,除此之外,与实施例1同样操作,得到比较例7?9的CIGS太阳能电池。
[0068]<转换效率的测定以及转换效率比的计算>
[0069]分别准备20个上述实施例1?9、比较例I?9的CIGS太阳能电池,对它们照射模拟太阳光(AM1.5),使用IV测量系统(山下电装株式会社制造、YSS-150),测定各自的转换效率。分别计算获得的转换效率的平均值和以比较例4为基准(100)时的转换效率比,一并示于下述表I。
[0070][表 I]
[0071]

【权利要求】
1.一种化合物太阳能电池的制造方法,其特征在于,所述化合物太阳能电池在基板上至少依次具备1-1I1-VI族化合物半导体层、缓冲层和透明电极层,该方法中,在相对于所述基板的层形成面垂直状延伸的假想中心轴的两侧,以相对的状态配置2张溅射用阴极靶材,并通过使用高频(RF)电源、或者组合使用直流(DC)电源和高频(RF)电源的溅射法来进行所述缓冲层的形成。
2.根据权利要求1所述的化合物太阳能电池的制造方法,其中,所述2张相对的阴极靶材配置成朝向基板侧张开的大致V字状。
3.根据权利要求1所述的化合物太阳能电池的制造方法,其中,所述2张相对的阴极靶材平行配置。
【文档编号】H01L31/04GK104137273SQ201380010237
【公开日】2014年11月5日 申请日期:2013年2月25日 优先权日:2012年2月27日
【发明者】寺地诚喜, 河村和典, 西井洸人, 渡边太一 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1