一种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用的制作方法

文档序号:7044541阅读:315来源:国知局
一种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用的制作方法
【专利摘要】本发明提供一种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用,属于锂电池应用【技术领域】。解决现有富锂锰材料首次充放电库仑效率小于100%的问题。该方法将富锂锰材料和钼的化合物研磨,得到化合物粉末,将化合物粉末在空气中以1-10℃/min升温速率加热,在100-500℃条件下煅烧0.5-5h,以1-10℃/min降温速率冷却至室温,即得到表面改性的的富锂锰材料。实验结果表明:由该表面改性的富锂锰材料作为锂离子二次电池正极材料在首次放电容量可达250mAh/g,库伦效率为100%,大大的提高了富锂锰材料作为锂离子电池正极材料在全电池应用中的安全性。
【专利说明】—种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用
【技术领域】
[0001]本发明属于锂电池应用【技术领域】,具体涉及一种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用。
【背景技术】
[0002]富锂猛,英文名为L1-richlayeredmaterials,分子式为 XLi2MnO3-(l_x)LiMO2(M=Mn, Ni, Co)。富锂锰材料是重要的锂离子电池正极材料。
[0003]传统的富锂锰正极材料在首次充放电时其首次库仑效率为70%_80%,首次库仑效率小于100%,会伴随氧气的放出,在全电池的应用中对安全性有着很大的威胁,这是制约富锂锰材料作为锂离子电池正极材料在商品化应用中的关键因素。美国阿贡高能量实验室Μ.M.Thackeray教授提出利用酸处理富锂猛正极材料的方法提高其首次库仑效率,但是该方法既改变了富锂锰的结构,同时降低了其首次充电容量;韩国汉阳大学Yang-KookSun教授通过对富锂锰材料进行表面AlF3包覆有效的将富锂锰材料的首次库仑效率提高至90%以上,但是仍未达到100%,在充放电过程中氧气的析出依然存在;天津大学赵乃勤教授课题组通过对富锂锰材料表面包覆FePO4有效的将其首次库仑效率提高至80%以上,但是同样也没有从根本上解决其首次库仑效率不足100%的问题。

【发明内容】

[0004]本发明的目 的是为了解决现有富锂锰材料首次充放电库仑效率小于100%的问题,而提供一种表面改性的富锂锰材料、制备方法及在锂离子电池中的应用。
[0005]本发明首先提供一种表面改性的富锂锰材料的制备方法,包括如下步骤:
[0006]步骤一:将富锂锰材料和钥的化合物研磨,得到化合物粉末,所述的钥的化合物中的钥元素和富锂锰材料的质量比为1:(10~1000);
[0007]步骤二:将步骤一得到的化合物粉末在空气中以l-10°c /min升温速率加热,100-500°C条件下煅烧0.5-5h,以1-10°C /min降温速率冷却至室温,即得到表面改性的的富锂锰材料。
[0008]优选的是,所述的富猛锂材料的结构式为(XLi2MnO3-(1-X) Li (MnaNibCoc) O2,其中,0.3?x?0.7,0?a?l, 0?b?0.5,0?c?0.5,a+b+c=l。
[0009]优选的是,所述的富锰锂材料的结构式为0.5Li2Mn03-0.5Li (MnNiCo) 1/302。
[0010]优选的是,所述的富锰锂材料的结构式为0.5Li2Mn03-0.5Li (MnNi) 1/202。
[0011]优选的是,所述的钥的化合物选自三氧化钥或钥酸铵中的一种或两种。
[0012]优选的是,所述的钥的化合物中的钥元素和富锂锰材料的质量比为1:150。
[0013]优选的是,所述的研磨时间为20~60min。
[0014]优选的是,所述的步骤二的煅烧温度为300°C,煅烧时间为5h。
[0015]本发明还提供上述制备方法得到的表面改性的富锂锰材料。[0016]本发明还提供上述表面改性的富锂锰材料在锂离子电池中的应用。
[0017]本发明的有益效果
[0018]本发明提供一种表面改性的富锂锰材料的制备方法,该方法将富锂锰材料和钥的化合物研磨,得到化合物粉末,所述的钥的化合物中的钥元素和富锂锰前驱体质量比为1:(10?1000);将化合物粉末在空气中以l-10°c /min升温速率加热,在100-500°C条件下煅烧0.5-5h,以1-10°C /min降温速率冷却至室温,即得到表面改性的的富锂锰材料。该方法工艺简单,通过控制反应温度,由于钥化合物的单层分散作用,使钥化合物完全包覆在富锂锰前驱体表面。
[0019]本发明还提供一种表面改性的富锂锰材料及在锂离子电池中的应用,该表面改性的富锂锰材料制备的锂离子电池正极材料具有良好的电化学性能,由于钥化合物的完全包覆使富锂锰与电解液完全隔绝,将富锂锰的首次库仑效率提高。实验结果表明:对比于富锂锰前驱体的首次库仑效率为70%-80%,本发明制备的表面改性的富锂锰材料的首次库仑效率提高至100%,同时,在维持富锂锰前驱体放电比容量的前提下,极大的提高了全电池的安全性。
【专利附图】

【附图说明】
[0020]图1为前驱体富锂锰(a)和本发明实施例1中Mo修饰的富锂锰(b)的XRD图谱;
[0021]图2为前驱体富锂锰(a)和本发明实施例1中Mo修饰的富锂锰(b)的扫描电镜图片;
[0022]图3为前驱体富锂锰(a)和本发明实施例1中Mo修饰的富锂锰(b)制备的锂离子电池在0.1C倍率下的首次充放电曲线;
[0023]图4为前驱体富锂锰(a)和本发明实施例1中Mo修饰的富锂锰(b)制备的锂离子电池在不同倍率下首次充放电曲线;
[0024]图5为前驱体富锂锰(a)和本发明实施例1中Mo修饰的富锂锰(b)制备的锂离子电池在0.1C倍率下的充放电循环寿命。
【具体实施方式】
[0025]本发明首先提供一种表面改性的富锂锰材料的制备方法,包括如下步骤:
[0026]步骤一:将富锂锰材料和钥的化合物研磨,得到化合物粉末,所述的钥的化合物中的钥元素和富锂锰材料的质量比为1:(10?1000);
[0027]步骤二:将步骤一得到的化合物粉末在空气中以1-10°C /min升温速率加热,100-500°C条件下煅烧0.5-5h,以1-10°C /min降温速率冷却至室温,即得到表面改性的的富锂锰材料。
[0028]按照本发明,首先先将富锂锰材料和钥的化合物研磨,所述的研磨时间没有特殊限制,充分研磨成粉末即可,优选为20min以上,更优选为20?60min。
[0029]所述的富猛锂材料的结构式优选为(XLi2MnO3-(1-X)Li (MnaNibCoc)O2,其中,0.3〈〈x〈〈0.7,0〈〈a〈〈l,0〈〈b〈〈0.5,0〈〈c〈〈0.5,a+b+c=l。更优选结构式为0.5Li2Mn03-0.5Li (MnNiCo) 1/302 或 0.5Li2Mn03_0.5Li (MnNi) 1/202。
[0030]所述的钥的化合物优选选自三氧化钥或钥酸铵中的一种或两种。所述的钥的化合物中的钥元素和富锂锰材料的质量比优选为1:150。
[0031]按照本发明,将步骤一得到的化合物粉末在空气中以1-10°C /min升温速率加热,优选为5°C /min,在100-500°C条件下煅烧0.5_5h,反应温度优选为250_450°C,最优选为300°C,煅烧时间优选为5h,然后以1-10°C /min降温速率冷却至室温,优选为5°C /min, BP得到表面改性的的富锂锰材料。本发明步骤二中的反应温度控制对得到的产物表面改性的富锂锰材料非常关键,当温度低于100°C时,所述的钥酸铵在该温度下不会分解,其次如果使用的原料为MoO3,在该温度下也不能使MoO3单层分散,就不能达到完全包覆的效果,对首次库仑效率的提高影响不大;当温度高于500°C时,在高温条件下长时间煅烧,Mo可能会掺杂进入富锂锰材料中,改变富锂锰材料结构,生成不必要的副产物。
[0032]本发明还提供上述制备方法得到的表面改性的富锂锰材料。
[0033]本发明还提供上述表面改性的富锂锰材料在锂离子电池中的应用,将所得的表面改性的富锂锰正极材料制备锂离子电池的方法是本领域常用的方法,具体方法为:将制得的正极材料按富锂锰:乙炔黑:PVDF (聚偏氟乙烯)=80:10:10的质量比准确称量,然后加入一定量的NMP (氮甲基吡咯烷酮)研磨均匀,然后用刮刀均匀将其涂覆在铝箔上,120°C真空烘12h,然后经切片、压片、称量等工艺后在充满氩气的手套箱中组装成扣式电池。所用的电解液为ImoVLLiPF6的碳酸乙烯酯+碳酸二甲酯(质量比为1:1)溶液,隔膜为celgard2400膜,以及组装电池所需的正负极电池壳,锂片,垫片。
[0034]本发明表面改性的富锂锰正极材料由于钥化合物的单层分散作用,使钥化合物完全包覆在富锂锰前驱体表面,由于钥化合物的完全包覆使富锂锰与电解液完全隔绝,将富锂锰的首次库仑效率提高至100%。
[0035]为使本领域技术人员更好的理解本发明的技术方案,下面结合具体实施例及附图对本发明作进一步详细描述。
[0036]实施例1
[0037]将50g0.5Li2Mn03-0.5Li (MnNiCo) 1/302 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.5Li2Mn03-0.5Li (MnNiCo) 1/302@1.5%Mo)。
[0038]将制得的表面修饰的富锂锰材料按(0.5Li2Mn03-0.5Li (MnNiCo) 1/302il.5%Mo):乙炔黑:PVDF (聚偏氟乙烯)=80:10:10的质量比准确称量,然后加入一定量的NMP (氮甲基吡咯烷酮)研磨均匀,然后用刮刀均匀将其涂覆在铝箔上,120°C真空烘12h,然后经切片、压片、称量工艺后在充满氩气的手套箱中组装成扣式电池,电池中所用的电解液为Imol/LLiPF6的碳酸乙烯酯+碳酸二甲酯(质量比为1:1)溶液,隔膜为celgard2400膜,以及组装电池所需的正负极电池壳,锂片,垫片。
[0039]图1为实施例1中前驱体富锂锰和Mo修饰的富锂锰的XRD图谱,其中图a为前驱体富锂锰的XRD图谱,图b为Mo修饰富锂锰XRD图谱,测试结果表明Mo修饰富锂锰材料能够保持富锂锰材料的基本特征峰,峰型尖锐,背底平整,65°的峰型发生微小的改变,说明三氧化钥对富锂锰前驱体起到一定的修饰作用同时能够保持富锂锰前驱体的特征峰。图b中并没有发现三氧化钥的特征峰,说明三氧化钥均匀分散在富锂锰前驱体的表面,将富锂锰材料完全包覆。
[0040]图2为实施例1中富锂锰前驱体和Mo修饰的富锂锰的扫描电镜图片,图a为放大倍数为5000倍的富锂锰前驱体的扫描电镜图片,图b为放大倍数为5000倍的Mo修饰富锂锰的扫描电镜图片,从图中可以看出Mo修饰富锂锰在300°C空气中煅烧后并粒径并没有变大,且粒径均匀,分布窄。
[0041]图3为本发明实施例1中富锂锰前驱体和Mo修饰的富锂锰在0.1C条件下的首次充放电曲线,图a为前驱体富锂锰的首次充放电曲线,图b为Mo修饰富锂锰的首次充放电曲线。从图3中可以看出,组装成的扣式电池静置4-5h后,以0.1C的倍率充放电,图a中首次放电容量为ZSOmAhg—1,首次库仑效率为80.9%,图b中首次放电容量为SSOmAhg—1,首次库仑效率为100%。图3表明富锂锰前驱体电化学性能好,Mo修饰富锂锰首次放电容量并没有衰减,并且首次库仑效率。
[0042]图4为本发明实施例1中富锂锰前驱体和Mo修饰的富锂锰不同倍率的首次充放电曲线,图a为前驱体富锂锰在不同倍率下的首次充放电曲线,图b为Mo修饰富锂锰在不同倍率下的首次充放电曲线。从图4中可以看出,组装成的扣式电池静置4-5h后,以不同倍率(0.1C, 0.2C,0.5C)首次充放电,图a中首次库仑效率分别为80.9%, 80.7%, 71.6% ;图b中首次库仑效率均为100%。图4表明Mo修饰富锂锰材料在首次充放电过程中,首次库仑效率均能够提高到100%。
[0043]图5为本发明实施例1中富锂锰前驱体和Mo修饰的富锂锰在0.5C倍率下的充放电循环曲线,图a为前驱体富锂锰在0.5C倍率下的充放电循环曲线,图b为Mo修饰富锂锰在0.1C倍率下的充放电曲线。从 图5中可以看出,组装成扣式电池静置4-5h后,在0.1C倍率下进行充放电循环,图a中首次库仑效率为80%,以后都接近100%,40圈循环后,放电比容量由ZSOmAhg—1降到181.5mAhg^,容量保持率为64.8% ;而在图b中,首次库仑效率为100%,以后都接近100%,40圈循环后,放电比容量由268-1^-1降到152.5mAhg_1,容量保持率为56.9%ο
[0044]实施例2
[0045]将50g0.5Li2Mn03-0.5Li (MnNi) 1/202 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.5Li2Mn03-0.5Li (MnNi) 1/202@1.5%Mo)。
[0046]将制得的Mo修饰富锂锰前驱体正极材料按实施例1的方法组装成扣式电池,在0.1C, 0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0047]实施例3
[0048]将50g0.5Li2Mn03-0.5Li (MnNiCo) 1/302 和 0.1lg 三氧化钥混合研磨 30min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以10°c /min升温至250°C煅烧3h,10°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.5Li2Mn03-0.5Li (MnNiCo) 1/302il.5%Mo03)。
[0049]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0050]实施例4
[0051]将50g0.5Li2Mn03-0.5Li (MnNiCo) 1/302 和 0.065g 钥酸铵混合研磨 60min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以l°c /min升温至450°C煅烧0.5h,1°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.5Li2Mn03-0.5Li (MnNiCo) 1/302@0.1%Μο)。[0052]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为90%,表明其电化学性能良好。
[0053]实施例5
[0054]将50g0.5Li2Mn03-0.5Li (MnNiCo) 1/302 和 6.47g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.5Li2Mn03-0.5Li (MnNiCo) 1/302@10%Mo)。
[0055]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0056]实施例6
[0057]将50g0.3Li2Mn03-0.7Li (Mna3Nia7)O2 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.3Li2Mn03-0.7Li (Mna3Nia7)O2Ol.5%Mo)。
[0058]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0059]实施例7
[0060]将50g(X 7Li2Mn03-0.3Li (Mna3Nia7)O2 和(λ 97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.7Li2Mn03-0.3Li (Mna3Nia7)O2Ol.5%Mo)。
[0061]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0062]实施例8
[0063]将50g0.3Li2Mn03-0.7Li (Mna7Nia3)O2 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.3Li2Mn03-0.7Li (Mna7Nia3)O2Ol.5%Mo)。
[0064]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0065]实施例9
[0066]将50g0.7Li2Mn03-0.3Li (Mna7Nia3)O2 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.7Li2Mn03-0.3Li (Mna7Nia3)O2Ol.5%Mo)。
[0067]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0068]实施例10
[0069]将50g0.3Li2Mn03-0.7Li (MnNiCo) 1/302 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为(0.3Li2Mn03-0.7Li (MnNiCo) 1/302@1.5%Mo)。
[0070]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0071]实施例11[0072]将50g0.7Li2Mn03-0.3Li (MnNiCo) 1/302 和 0.97g 钥酸铵混合研磨 20min,至混合均匀,得到化合物粉末,将化合物粉末在空气中以5°C /min升温至300°C煅烧5h,5°C /min降至室温,即得到表面改性的富锂锰材料,记为0.7Li2Mn03-0.3Li (MnNiCo) 1/302@1.5%Mo)。
[0073]将制得的Mo修饰富锂锰正极材料按实施例1的方法组装成扣式电池,在0.1C,
0.2C,0.5C倍率下充放电,其首次库仑效率均为100%,表明其电化学性能良好。
[0074]以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本【技术领域】的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
[0075]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
【权利要求】
1.一种表面改性的富锂锰材料的制备方法,其特征在于,包括如下步骤: 步骤一:将富锂锰材料和钥的化合物研磨,得到化合物粉末,所述的钥的化合物中的钥元素和富锂锰材料的质量比为1:(10~1000); 步骤二:将步骤一得到的化合物粉末在空气中以1-10 °C /min升温速率加热,100-500°C条件下煅烧0.5-5h,以1-10°C /min降温速率冷却至室温,即得到表面改性的的富锂锰材料。
2.根据权利要求1所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的富锰锂材料的结构式为(XLi2MnO3-(1-x) Li (MnaNibCoc) O2,其中,0.3?x?0.7,0?a?l, O?b?0.5,0?c?0.5,a+b+c=l。
3.根据权利要求2所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的富锰锂材料的结构式为0.5Li2Mn03-0.5Li (MnNiCo) 1/302。
4.根据权利要求2所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的富锰锂材料的结构式为0.5Li2Mn03-0.5Li (MnNi) 1/202。
5.根据权利要求1所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的钥的化合物选自三氧化钥或钥酸铵中的一种或两种。
6.根据权利要求1所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的钥的化合物中的钥元素和富锂锰材料的质量比为1:150。
7.根据权利要求1所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的研磨时间为20~60min。
8.根据权利要求1所述的一种表面改性的富锂锰材料的制备方法,其特征在于,所述的步骤二的煅烧温度为300°C,煅烧时间为5h。
9.权利要求1-8任何一项所述的制备方法得到的表面改性的富锂锰材料。
10.权利要求9所述的表面改性的富锂锰材料在锂离子电池中的应用。
【文档编号】H01M4/525GK103956476SQ201410106775
【公开日】2014年7月30日 申请日期:2014年3月20日 优先权日:2014年3月20日
【发明者】杨向光, 张彬, 张一波, 张兴文, 张震东, 苗珍珍, 李经纬, 邬天笑, 陈斌 申请人:中国科学院长春应用化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1