使用半导体发光器件的显示装置的制作方法

文档序号:11161570阅读:816来源:国知局
使用半导体发光器件的显示装置的制造方法

本发明的实施方式涉及显示装置,更具体地讲,涉及一种使用半导体发光器件的显示装置。



背景技术:

近年来,在显示技术领域已开发出具有诸如薄外形、柔性等的优异特性的显示装置。相反,目前商业化的主要显示器的代表是液晶显示器(LCD)和有源矩阵有机发光二极管(AMOLED)。

然而,在LCD的情况下存在诸如响应时间普通、难以实现柔性的问题,在AMOLED的情况下存在诸如寿命短、产率普通以及低柔性的缺点。

另一方面,发光二极管(LED)是用于将电流转换成光的熟知的发光器件,并且自1962年使用GaAsP化合物半导体的红色LED与基于GaP:N的绿色LED一起商用起已经作为用于显示图像的光源用在包括信息通信装置的电子装置中。因此,半导体发光器件可用于实现柔性显示器,从而提出解决所述问题的方案。

另外,除此之外,可想出在使用半导体发光器件的柔性显示器中用于进一步简化制造工艺的结构。



技术实现要素:

技术问题

本发明的实施方式的一方面在于提供一种能够进一步简化制造工艺以及提供柔性的显示装置。

本发明的实施方式的另一方面在于提供一种具有新结构的倒装芯片型半导体发光器件。

本发明的实施方式的另一方面在于提供一种能够减少在支撑基板上进行的布线工艺的半导体发光器件。

问题的解决方案

为了实现本发明的实施方式的上述任务,提供了根据本发明的实施方式的一种包括多个半导体发光器件的显示装置,其中,所述多个半导体发光器件中的每一个包括第一导电半导体层、与所述第一导电半导体层交叠的第二导电半导体层、被设置在所述第一导电半导体层和所述第二导电半导体层之间的有源层、被沉积在所述第一导电半导体层上的第一电极以及被沉积在所述第二导电半导体层上的第二电极,其中,所述第一电极朝着邻接半导体发光器件延伸以电连接至所述邻接半导体发光器件。

根据本发明的实施方式,所述多个半导体发光器件还可包括被形成为覆盖所述第一电极的绝缘层。

根据本发明的实施方式,所述绝缘层可包括黑色绝缘体或白色绝缘体。

根据本发明的实施方式,所述多个半导体发光器件可被设置为形成发光器件阵列,并且所述多个半导体发光器件的第一电极可连接以形成沿着所述发光器件阵列的列延伸的第一电极线,所述多个半导体发光器件的第二电极可连接以形成在与所述第一电极线交叉的方向上延伸的第二电极线。

根据本发明的实施方式,所述第一电极线和第二电极线可电连接至所述多个半导体发光器件的驱动单元。

根据本发明的实施方式,所述第一电极线的末端部分可与所述发光器件阵列的一侧相邻设置。

根据本发明的实施方式,所述第一电极线和第二电极线中的任一个可按照弯曲形状形成,使得所述第二电极的末端部分与所述发光器件阵列的所述一侧相邻设置。

根据本发明的实施方式,所述第一电极线可被绝缘层的一个表面覆盖,并且所述第二电极线被形成为覆盖所述绝缘层的另一表面。

根据本发明的实施方式,所述第一电极线可被设置在所述第一导电半导体层的一个表面上。

根据本发明的实施方式,电极焊盘可被设置在所述第二电极与所述第二导电半导体层之间。

根据本发明的实施方式,所述第一电极和所述第二电极中的至少一个可以是透明电极。

根据本发明的实施方式,所述多个半导体发光器件可通过粘合层联接至支撑基板。

根据本发明的实施方式,所述粘合层可被形成为填充所述多个半导体发光器件之间存在的空间。

根据本发明的实施方式,所述粘合层可利用非透明层来配置以在所述多个半导体发光器件之间形成间壁。

根据本发明的实施方式,可在所述非透明层上着黑色或白色。

根据本发明的实施方式,连接至所述第一电极和所述第二电极中的至少一个并且朝着设置在支撑基板上的连接区域延伸的连接线可形成在所述支撑基板上。

根据本发明的实施方式,所述连接线可包括连接至所述第一电极的第一连接线以及连接至所述第二电极的第二连接线,金属层可具有不同厚度的第一部分和第二部分,并且所述第一部分可被设置在所述第一电极和所述第一连接线之间,所述第二部分可被设置在所述第二电极和所述第二连接线之间,使得所述第一连接线和所述第二连接线位于所述支撑基板的同一表面上。

根据本发明的实施方式,所述支撑基板可由柔性材料形成。

根据本发明的实施方式,所述多个半导体发光器件可被设置为形成多个发光器件阵列,用于将邻接发光器件阵列彼此电连接的连接部分可形成在所述支撑基板上。

根据本发明的实施方式,所述多个半导体发光器件的第一电极可形成第一电极线,所述多个发光器件的第二电极可形成第二电极线,所述第二电极线可被设置在所述支撑基板上。

根据本发明的实施方式,所述多个半导体发光器件中的每一个可发射红色光、绿色光、蓝色光和紫外光中的至少一种光。

根据本发明的实施方式,荧光粉层可将预定光转换为红色光、绿色光和蓝色光中的至少一种。

根据本发明的实施方式的制造显示装置的方法可包括以下步骤:在基板上按照顺序的方式生长第一导电半导体层、有源层和第二导电半导体层;对所述第二导电半导体层和有源层进行蚀刻以在所述基板上形成多个半导体发光器件;在所述第一导电半导体层上形成在一个方向上延伸的第一电极以电连接所述多个半导体发光器件;形成覆盖所述多个半导体发光器件的绝缘层;以及将所述绝缘层的至少部分去除,然后形成电连接至所述第二导电半导体层的第二电极。

根据实施方式,电极焊盘可被设置在所述第二导电半导体层和所述第二电极之间,并且所述电极焊盘可在形成所述第一电极的步骤期间形成并且通过所述绝缘层的去除而暴露于外。

在根据本发明的实施方式的具有多个半导体发光器件的显示装置中,所述多个半导体发光器件中的每一个可包括:第一导电半导体层;第二导电半导体层,其与所述第一导电半导体层交叠;有源层,其被设置在所述第一导电半导体层和所述第二导电半导体层之间;第一电极,其被沉积在所述第一导电半导体层上;第二电极,其被沉积在所述第二导电半导体层上;以及绝缘层,其中,所述绝缘层的至少部分被设置在所述第一电极和所述第二电极之间。

根据本发明的实施方式,所述绝缘层可覆盖所述第一电极。

根据本发明的实施方式,所述绝缘层可覆盖所述第一导电半导体层的一部分。

本发明的有益效果

根据具有上述配置的本发明的实施方式,半导体发光器件的制造工艺和布线工艺可统一。

这样,根据本发明的实施方式,与布线电极对应的电极可被设置在半导体发光器件自身上,从而减少在支撑基板上进行以将半导体发光器件电连接至驱动单元的布线工艺。

另外,根据本发明的实施方式,布线电极可被设置在半导体发光器件自身上,从而实现没有精细间隙的限制的高清晰度显示装置。

附图说明

附图被包括以提供对本发明的进一步理解,并且被并入本说明书并构成本说明书的一部分,附图示出本发明的实施方式并且与说明书一起用于说明本发明的原理。

在附图中:

图1是示出根据本发明的实施方式的使用半导体发光器件的显示装置的概念图;

图2是图1中的部分“A”的局部放大图,图3A和图3B是沿着图2中的线B-B和C-C截取的横截面图;

图4是示出图3中的倒装芯片型半导体发光器件的概念图;

图5A至图5C是示出与倒装芯片型半导体发光器件结合实现颜色的各种形式的概念图;

图6是示出根据本发明的实施方式的使用半导体发光器件的显示装置的制造方法的横截面图;

图7是示出根据本发明的实施方式的另一实施方式的使用半导体发光器件的显示装置的立体图;

图8是沿着图7中的线C-C截取的横截面图;

图9是示出图8中的垂直型半导体发光器件的概念图;

图10A和图10B是示出具有新结构的半导体发光器件的概念图;

图11A、图11B、图12A和图12B是用于说明图10A和图10B中所示的半导体发光器件的制造工艺的概念图。

图13是示出应用了具有新结构的半导体发光器件的显示装置的局部放大图;

图14A是沿着图13中的线D-D截取的横截面图;

图14B是沿着图13中的线E-E截取的横截面图;

图15A、图15B和图15C是示出图13所示的显示装置的布线结构的概念图;

图16A、图16B、图16C和图16D是示出图13所示的显示装置的布线结构的概念图;

图17A、图17B和图17C是示出与具有新结构的倒装芯片型半导体发光器件关联地实现颜色的各种形式的概念图;

图18是示出根据另一实施方式的具有新结构的半导体发光器件的概念图;

图19是示出应用了具有图18所示的具有新结构的半导体发光器件的显示装置的局部放大图;

图20A是沿着图19中的线F-F截取的横截面图;以及

图20B是沿着图19中的线G-G截取的横截面图。

具体实施方式

以下,将参照附图详细描述本文公开的实施方式,为相同或相似的元件指定相同的标号,而不管图号,其冗余描述将被省略。用于以下描述中公开的构成元件的后缀“模块”或“单元”仅是为了容易描述本说明书,后缀本身并不给予任何特殊含义或功能。此外,在描述本文公开的实施方式时,当本发明所涉及的公知技术的具体描述被判断为使本发明的主旨模糊时,将省略详细描述。另外,应该注意的是,仅示出附图以容易地说明本发明的概念,因此,它们不应被解释为由附图限制本文公开的技术构思。

另外,将理解,当诸如层、区域或基板的元件被称作“在”另一元件“上”时,它可直接在所述另一元件上,或者也可在二者之间插入中间元件。

本文公开的显示装置可包括便携式电话、智能电话、膝上型计算机、数字广播终端、个人数字助理(PDA)、便携式多媒体播放器(PMP)、导航、石板PC、平板PC、超级本、数字TV、台式计算机等。然而,本领域技术人员将容易地理解,本文公开的配置可适用于任何可显示装置,即使它是稍后将开发的新产品类型。

图1是示出根据本发明的实施方式的使用半导体发光器件的显示装置的概念图。

根据附图,在显示装置100的控制器中处理的信息可利用柔性显示器来显示。

柔性显示器可包括柔性、可弯曲、可扭曲、可折叠和可卷曲显示器。例如,柔性显示器可以是在薄的柔性基板上制造的显示器,其在维持现有技术的平板显示器的显示特性的同时可像纸张一样翘曲、弯曲、折叠或卷曲。

在柔性显示器未翘曲的配置(例如,具有无限曲率半径的配置,以下称作“第一配置”)中柔性显示器的显示区域变为平面。在第一配置下柔性显示器由于外力而翘曲的配置(例如,具有有限曲率半径的配置,以下称作“第二配置”)中其显示区域变为曲面。如附图中所示,在第二配置下显示的信息可以是显示在曲面上的视觉信息。该视觉信息可通过分别控制以矩阵形式设置的子像素的光发射来实现。子像素表示用于实现一种颜色的最小单元。

柔性显示器的子像素可通过半导体发光器件来实现。根据本发明的实施方式,示出发光二极管(LED)作为一种半导体发光器件。发光二极管可形成为小尺寸,以通过这即使在第二配置下也起到子像素的作用。

以下,将参照附图更详细地描述利用发光二极管实现的柔性显示器。

图2是图1中的部分“A”的局部放大图,图3A和图3B是沿着图2中的线B-B和C-C截取的横截面图,图4是示出图3A中的倒装芯片型半导体发光器件的概念图,图5A至图5C是示出与倒装芯片型半导体发光器件结合实现颜色的各种形式的概念图。

根据图2、图3A和图3B的附图,示出了使用无源矩阵(PM)型半导体发光器件的显示装置100作为使用半导体发光器件的显示装置100。然而,以下例示也可适用于有源矩阵(AM)型半导体发光器件。

显示装置100可包括基板110、第一电极120、导电粘合层130、第二电极140和多个半导体发光器件150。

基板110可以是柔性基板。基板110可包含玻璃或聚酰亚胺(PI)以实现柔性显示装置。另外,如果它是柔性材料,则可使用诸如聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)等的任一种。另外,基板110可以是透明材料和不透明材料中的任一种。

基板110可以是设置有第一电极120的布线基板,因此第一电极120可被布置在基板110上。

根据附图,绝缘层160可设置在布置有第一电极120的基板110上,辅助电极170可布置在绝缘层160上。在这种情况下,绝缘层160被沉积在基板110上的配置可以是单个布线基板。更具体地讲,绝缘层160可利用诸如聚酰亚胺(PI)、PET、PEN等的绝缘和柔性材料被并入基板110中以形成单个布线基板。

作为将第一电极120电连接到半导体发光器件150的电极的辅助电极170布置在绝缘层160上,并且与第一电极120的位置对应地设置。例如,辅助电极170具有点形状,并且可通过穿过绝缘层160的电极孔171电连接到第一电极120。电极孔171可通过在通孔中填充导电材料来形成。

参照附图,导电粘合层130可形成在绝缘层160的一个表面上,但是本发明的实施方式可不必限于此。例如,还可具有在绝缘层160和导电粘合层130之间形成执行特定功能的层、或者在没有绝缘层160的情况下将导电粘合层130设置在基板110上的结构。在导电粘合层130被设置在基板110上的结构中,导电粘合层130可起到绝缘层的作用。

导电粘合层130可以是具有粘附性和导电性的层,为此,导电材料和粘合材料可被混合在导电粘合层130上。另外,导电粘合层130可具有柔性,从而实现显示装置中的柔性功能。

对于这种示例,导电粘合层130可以是各向异性导电膜(ACF)、各向异性导电糊剂、包含导电颗粒的溶液等。导电粘合层130可允许穿过其厚度的z方向上的电互连,但是可被配置为在其水平x-y方向上具有电绝缘的层。因此,导电粘合层130可被称作z轴导电层(然而,以下称作“导电粘合层”)。

各向异性导电膜是具有各向异性导电介质与绝缘基件混合的形式的膜,因此,当对其施加热和压力时,仅其特定部分可通过各向异性导电介质而具有导电性。以下,对各向异性导电膜施加热和压力,但是其它方法也可用于各向异性导电膜以使其部分地具有导电性。所述方法可包括仅对其施加热和压力中的任一个、UV固化等。

另外,各向异性导电介质可以是导电球或颗粒。根据附图,在本发明的实施方式中,各向异性导电膜是具有各向异性导电介质与绝缘基件混合的形式的膜,因此,当对其施加热和压力时,仅其特定部分可通过导电球而具有导电性。各向异性导电膜可处于具有导电材料的芯包含被具有聚合物材料的绝缘层涂覆的多个颗粒的状态,在这种情况下,它可在被施加热和压力的部分上破坏绝缘层的同时通过芯而具有导电性。这里,可使芯变形以实现在膜的厚度方向上具有对象所接触的两个表面的层。

对于更具体的示例,对各向异性导电膜整体施加热和压力,z轴方向上的电连接通过相对于利用各向异性导电膜粘附的配对对象的高度差来部分地形成。

对于另一示例,各向异性导电膜可处于包含多个颗粒的状态,其中导电材料被涂覆在绝缘芯上。在这种情况下,被施加热和压力的部分可被转变为(加压并粘附到)导电材料以在膜的厚度方向上具有导电性。对于另一示例,它可被形成为在膜的厚度方向上具有导电性,其中导电材料在z方向上穿过绝缘基件。在这种情况下,导电材料可具有尖的端部。

根据附图,各向异性导电膜具有利用导电球插入绝缘基件的一个表面中的形式配置的固定阵列各向异性导电膜(ACF)。更具体地讲,绝缘基件由粘合材料形成,导电球被密集地设置在绝缘基件的底部,当对其施加热和压力时,基件随导电球一起改性,从而在其垂直方向上具有导电性。

然而,本发明的实施方式可不必限于此,各向异性导电膜可以是允许具有导电球随机地与绝缘基件混合的形式或者利用导电球设置在任一层的多个层配置的形式(双ACF)等的所有膜。

作为连接至糊剂和导电球的形式的各向异性导电糊剂可以是导电球与绝缘和粘合基材混合的糊剂。另外,包含导电颗粒的溶液可以是包含导电颗粒或纳米颗粒的形式的溶液。

再参照附图,第二电极140位于绝缘层160上以与辅助电极170分离。换言之,导电粘合层130设置在设置有辅助电极170和第二电极140的绝缘层160上。

当在设置有辅助电极170和第二电极140的状态下形成导电粘合层130,然后在施加热和压力的情况下半导体发光器件150以倒装芯片形式连接到其时,半导体发光器件150电连接到第一电极120和第二电极140。

参照图4,半导体发光器件可以是倒装芯片型半导体发光器件。

例如,半导体发光器件可包括p型电极156、形成有p型电极156的p型半导体层155、形成在p型半导体层155上的有源层154、形成在有源层154上的n型半导体层153、以及在水平方向上与p型电极156分离地设置在n型半导体层153上的n型电极152。在这种情况下,p型电极156可通过导电粘合层130电连接到焊接部分,n型电极152可电连接到第二电极140。

再参照图2、图3A和图3B,辅助电极170可按照一个方向上的伸长方式形成,以电连接到多个半导体发光器件150。例如,辅助电极周围的半导体发光器件的左p型电极和右p型电极可电连接到一个辅助电极。

更具体地讲,半导体发光器件150被压到导电粘合层130中,通过这样,仅半导体发光器件150的p型电极156与辅助电极170之间的部分以及半导体发光器件150的n型电极152与第二电极140之间的部分具有导电性,剩余部分由于半导体发光器件没有下推而不具有导电性。

另外,多个半导体发光器件150构成发光阵列,荧光粉层180形成在该发光阵列上。

发光器件可包括具有不同的自亮度值的多个半导体发光器件。各个半导体发光器件150构成子像素,并且电连接到第一电极120。例如,可存在多个第一电极120,并且例如,半导体发光器件按照多行排列,各行的半导体发光器件可电连接到多个第一电极中的任一个。

另外,半导体发光器件可按照倒装芯片形式连接,因此,半导体发光器件在透明电介质基板上生长。另外,例如,半导体发光器件可以是氮化物半导体发光器件。半导体发光器件150具有优异的亮度特性,因此可配置各个子像素,即使其尺寸较小。

根据附图,间壁190可形成在半导体发光器件150之间。在这种情况下,间壁190可起到将各个子像素彼此分割的作用,并且与导电粘合层130形成为整体。例如,当半导体发光器件150插入各向异性导电膜中时,各向异性导电膜的基件可形成间壁。

另外,当各向异性导电膜的基件为黑色时,在没有附加黑色绝缘体的情况下,间壁190可具有反射特性,同时增大对比度。

对于另一示例,可与间壁190分离地设置反射间壁。在这种情况下,根据显示装置的目的,间壁190可包括黑色绝缘体或白色绝缘体。当使用白色绝缘体的间壁时它可具有增强反射率的效果,并且在具有反射特性的同时增大对比度。

荧光粉层180可设置在半导体发光器件150的外表面。例如,半导体发光器件150是发射蓝色(B)光的蓝色半导体发光器件,荧光粉层180起到将蓝色(B)光转换为子像素的颜色的作用。荧光粉层180可以是构成各个像素的红色荧光粉层181或绿色荧光粉层182。

换言之,能够将蓝色光转换为红色(R)光的红色荧光粉181可沉积在蓝色半导体发光器件151上实现红色子像素的位置处,能够将蓝色光转换为绿色(G)光的绿色荧光粉182可沉积在蓝色半导体发光器件151上实现绿色子像素的位置处。另外,在实现蓝色子像素的位置处可仅单独地使用蓝色半导体发光器件151。在这种情况下,红色(R)、绿色(G)和蓝色(B)子像素可实现一个像素。更具体地讲,一种颜色的荧光粉可沿着第一电极120的各行沉积。因此,第一电极120上的一行可以是控制一种颜色的电极。换言之,可依次设置红色(R)、绿色(G)和蓝色(B),从而实现子像素。

然而,本发明的实施方式可不必限于此,代替荧光粉,半导体发光器件150可与量子点(QD)组合,以实现诸如红色(R)、绿色(G)和蓝色(B)的子像素。

另外,黑底191可设置在各个荧光粉层之间以增强对比度。换言之,黑底191可增强亮度的对比度。

然而,本发明的实施方式可不必限于此,实现红色、绿色和蓝色的另一结构也可适用。

参照图5A,各个半导体发光器件150可利用发射包括蓝色的各种光的高功率发光器件来实现,其中主要使用氮化镓(GaN),并且添加有铟(In)和或铝(Al)。

在这种情况下,半导体发光器件150可分别是红色、绿色和蓝色半导体发光器件,以实现各个子像素。例如,红色、绿色和蓝色半导体发光器件(R、G、B)交替地设置,并且红色、绿色和蓝色子像素通过红色、绿色和蓝色半导体发光器件实现一个像素,从而实现全彩色显示器。

参照图5B,半导体发光器件可具有针对各个元件设置有黄色荧光粉层的白色发光器件(W)。在这种情况下,红色荧光粉层181、绿色荧光粉层182和蓝色荧光粉层183可设置在白色发光器件(W)上以实现子像素。另外,以红色、绿色和蓝色在白色发光器件(W)上重复的滤色器可用于实现子像素。

参照图5C,还可具有这样的结构,其中红色荧光粉层181、绿色荧光粉层182和蓝色荧光粉层183可设置在紫外发光器件(UV)上。这样,半导体发光器件可用在直至紫外光(UV)以及可见光的整个区域上,并且可扩展至紫外光(UV)可用作激发源的半导体发光器件的形式。

再考虑此示例,半导体发光器件150被布置在导电粘合层130上以配置显示装置中的子像素。半导体发光器件150可具有优异的亮度特性,因此可配置各个子像素,即使其尺寸较小。各个半导体发光器件150的尺寸(其一条边长)可小于80μm,并且利用矩形或正方形形状的元件形成。在矩形形状的元件的情况下,其尺寸可小于20×80μm。

另外,即使当边长为10μm的正方形形状的半导体发光器件150用于子像素时,它也将表现出足够的亮度以实现显示装置。因此,例如,在子像素的一条边的尺寸为600μm,其另一条边为300μm的矩形像素的情况下,半导体发光器件之间的相对距离变得足够大。因此,在这种情况下,可实现具有HD图像质量的柔性显示装置。

使用上述半导体发光器件的显示装置将通过新型的制造方法来制造。以下,将参照图6来描述该制造方法。

图6是示出根据本发明的实施方式的使用半导体发光器件的显示装置的制造方法的横截面图。

参照该图,首先,在设置有辅助电极170和第二电极140的绝缘层160上形成导电粘合层130。绝缘层160被沉积在第一基板110上以形成一个基板(或布线基板),第一电极120、辅助电极170和第二电极140被设置在布线基板处。在这种情况下,第一电极120和第二电极140可按照彼此垂直的方向设置。另外,第一基板110和绝缘层160可分别包含玻璃或聚酰亚胺(PI),以实现柔性显示装置。

例如,导电粘合层130可通过各向异性导电膜来实现,为此,各向异性导电膜可被涂覆在设置有绝缘层160的基板上。

接下来,将设置有与辅助电极170和第二电极140的位置对应并且构成各个像素的多个半导体发光器件150的第二基板112设置为使得半导体发光器件150面向辅助电极170和第二电极140。

在这种情况下,作为用于生长半导体发光器件150的生长基板的第二基板112可以是蓝宝石基板或硅基板。

半导体发光器件可在以晶片为单位形成时具有能够实现显示装置的间隙和尺寸,因此有效地用于显示装置。

接下来,将布线基板热压到第二基板112。例如,可通过应用ACF冲头来将布线基板和第二基板112彼此热压。布线基板和第二基板112利用热压而彼此结合。由于通过热压而具有导电性的各向异性导电膜的特性,仅半导体发光器件150与辅助电极170和第二电极140之间的部分可具有导电性,从而使得电极和半导体发光器件150能够彼此电连接。此时,半导体发光器件150可插入各向异性导电膜中,从而形成半导体发光器件150之间的间壁。

接下来,去除第二基板112。例如,可利用激光剥离(LLO)或化学剥离(CLO)方法来去除第二基板112。

最后,去除第二基板112以将半导体发光器件150暴露于外。可在连接至半导体发光器件150的布线基板上涂覆硅氧化物(SiOx)等以形成透明绝缘层。

另外,还可包括在半导体发光器件150的一个表面上形成荧光粉层的工艺。例如,半导体发光器件150可以是发射蓝色(B)光的蓝色半导体发光器件,用于将蓝色(B)光转换为子像素的颜色的红色或绿色荧光粉可在蓝色半导体发光器件的一个表面上形成层。

使用上述半导体发光器件的显示装置的制造方法或结构可按照各种形式来修改。对于这种示例,上述显示装置可适用于垂直半导体发光器件。以下,将参照图5和图6来描述垂直结构。

另外,根据以下修改示例或实施方式,相同或相似的标号被指定给与上述示例相同或相似的配置,其描述将由早前描述代替。

图7是示出根据本发明的实施方式的另一实施方式的使用半导体发光器件的显示装置的立体图,图8是沿着图7中的线C-C截取的横截面图,图9是示出图8中的垂直型半导体发光器件的概念图。

根据附图,显示装置可以是使用无源矩阵(PM)型垂直半导体发光器件的显示装置。

显示装置可包括基板210、第一电极220、导电粘合层230、第二电极240以及多个半导体发光器件250。

作为设置有第一电极220的布线基板的基板210可包括聚酰亚胺(PI)以实现柔性显示装置。另外,也可使用任一种,只要它是绝缘和柔性材料。

第一电极220可被设置在基板210上并且利用在一个方向上伸长的条形电极形成。第一电极220可被形成为起到数据电极的作用。

导电粘合层230形成在设置有第一电极220的基板210上。类似于应用倒装芯片型发光器件的显示装置,导电粘合层230可以是各向异性导电膜(ACF)、各向异性导电糊剂、包含导电颗粒的溶液等。然而,本发明的实施方式示出导电粘合层230由各向异性导电膜实现的情况。

当在第一电极220设置在基板210上的状态下设置各向异性导电膜,然后施加热和压力以连接半导体发光器件250时,半导体发光器件250电连接到第一电极220。此时,半导体发光器件250可优选地设置在第一电极220上。

当如上所述施加热和压力时,由于各向异性导电膜在厚度方向上部分地具有导电性,生成电连接。因此,各向异性导电膜被分割成在其厚度方向上具有导电性的部分231和不具有导电性部分232。

另外,各向异性导电膜包含粘合组分,因此导电粘合层230实现半导体发光器件250与第一电极220之间的机械连接以及电连接。

这样,半导体发光器件250被布置在导电粘合层230上,从而配置显示装置中的单独的子像素。半导体发光器件250可具有优异的亮度特性,因此可配置各个子像素,即使其尺寸较小。各个半导体发光器件250的尺寸(其一条边长)可小于80μm并且利用矩形或正方形形状的元件形成。在矩形形状的元件的情况下,其尺寸可小于20×80μm。

半导体发光器件250可以是垂直结构。

设置在与第一电极220的长度方向交叉的方向上并且电连接到垂直半导体发光器件250的多个第二电极240可设置在垂直半导体发光器件之间。

参照图9,垂直半导体发光器件可包括p型电极256、形成有p型电极256的p型半导体层255、形成在p型半导体层255上的有源层254、形成在有源层254上的n型半导体层253以及形成在n型半导体层253上的n型电极252。在这种情况下,位于其底部的p型电极256可通过导电粘合层230电连接到第一电极220,位于其顶部的n型电极252可电连接到第二电极240(将稍后描述)。电极可在向上/向下方向上设置在垂直半导体发光器件250中,从而提供能够减小芯片尺寸的极大优点。

再参照图8,荧光粉层280可形成在半导体发光器件250的一个表面上。例如,半导体发光器件250是发射蓝色(B)光的蓝色半导体发光器件,将蓝色(B)光转换为子像素的颜色的荧光粉层280可设置在其上。在这种情况下,荧光粉层180可以是构成各个像素的红色荧光粉281和绿色荧光粉282。

换言之,能够将蓝色光转换为红色(R)光的红色荧光粉281可沉积在蓝色半导体发光器件251上实现红色子像素的位置处,能够将蓝色光转换为绿色(G)光的绿色荧光粉282可沉积在蓝色半导体发光器件251上实现绿色子像素的位置处。另外,在实现蓝色子像素的位置处可仅单独地使用蓝色半导体发光器件251。在这种情况下,红色(R)、绿色(G)和蓝色(B)子像素可实现一个像素。

然而,本发明的实施方式可不必限于此,在应用倒装芯片型发光器件的显示装置中如上所述也可适用实现蓝色、红色和绿色的另一结构。

再考虑本发明的实施方式,第二电极240设置在半导体发光器件250之间并且电连接到半导体发光器件250。例如,半导体发光器件250可按照多行设置,第二电极240可设置在半导体发光器件250的行之间。

由于构成各个像素的半导体发光器件250之间的距离足够大,所以第二电极240可设置在半导体发光器件250之间。

第二电极240可利用在一个方向上伸长的条形电极形成,并且设置在与第一电极垂直的方向上。

另外,第二电极240可通过从第二电极240突出的连接电极来电连接到半导体发光器件250。更具体地讲,连接电极可以是半导体发光器件250的n型电极。例如,n型电极利用用于欧姆接触的欧姆电极来形成,第二电极通过印刷或沉积而覆盖欧姆电极的至少一部分。通过这样,第二电极240可电连接到半导体发光器件250的n型电极。

根据附图,第二电极240可设置在导电粘合层230上。根据情况,可在形成有半导体发光器件250的基板210上形成包含硅氧化物(SiOx)的透明绝缘层。当形成透明绝缘层,然后在其上布置第二电极240时,第二电极240可被布置在透明绝缘层上。另外,第二电极240可被形成为与导电粘合层230或透明绝缘层分离。

如果使用诸如铟锡氧化物(ITO)的透明电极来将第二电极240设置在半导体发光器件250上,则ITO材料具有与n型半导体的粘附性较差的问题。因此,第二电极240可被布置在半导体发光器件250之间,从而获得不需要透明电极的优点。因此,n型半导体层和具有良好粘附性的导电材料可用作水平电极,而不受透明材料的选择的限制,从而增强光提取效率。

根据附图,间壁290可形成在半导体发光器件250之间。换言之,间壁290可设置在垂直半导体发光器件250之间以将构成各个像素的半导体发光器件250隔离。在这种情况下,间壁290可起到将各个子像素彼此分割的作用,并且与导电粘合层230形成为整体。例如,当半导体发光器件250插入各向异性导电膜中时,各向异性导电膜的基件可形成间壁。

另外,当各向异性导电膜的基件为黑色时,在没有附加黑色绝缘体的情况下,间壁290可具有反射特性,同时增大对比度。

对于另一示例,可与间壁290分离地设置反射间壁。在这种情况下,根据显示装置的目的,间壁290可包括黑色绝缘体或白色绝缘体。

如果第二电极240被精确地设置在半导体发光器件250之间的导电粘合层230上,则间壁290可被设置在半导体发光器件250与第二电极240之间。因此,各个子像素即使小尺寸也可利用半导体发光器件250来配置,并且半导体发光器件250之间的距离可相对足够大以将第二电极240布置在半导体发光器件250之间,从而具有实现HD图像质量的柔性显示装置的效果。

另外,根据附图,黑底291可设置在各个荧光粉层之间以增强对比度。换言之,黑底191可增强亮度的对比度。

如上所述,半导体发光器件250被设置在导电粘合层230上,从而构成显示装置上的各个像素。由于半导体发光器件250具有优异的亮度特性,从而配置各个子像素,即使其尺寸较小。结果,可实现全彩色显示器,其中红色(R)、绿色(G)和蓝色(B)子像素通过半导体发光器件实现子像素。

如上面参照图8所描述的,当半导体发光器件250是发射蓝色(B)光的蓝色半导体发光器件251时,红色和绿色可通过构成各个像素的红色荧光粉281和绿色荧光粉282来实现。

另外,如上面参照图2、图3A和图3B所描述的,即使当半导体发光器件为倒装芯片型蓝色半导体发光器件时,红色和绿色可通过红色荧光粉181和绿色荧光粉182来实现。

依据根据本发明的实施方式的使用上述半导体发光器件的显示装置,当应用倒装芯片型时由于第一电极和第二电极被布置在同一平面上,所以可能难以实现精细间距,并且当应用垂直型半导体发光器件时可能具有伴随着蚀刻工艺和真空工艺以用于电极欧姆形成的问题。根据本发明的实施方式,提出了一种具有新形式的倒装芯片型半导体发光器件以解决上述问题。

为此,下面将首先描述具有新结构的半导体发光器件。图10A和图10B是示出具有新结构的半导体发光器件的概念图。

根据本发明的实施方式,示出了使用无源矩阵(PM)型半导体发光器件的显示装置1000。然而,以下例示也可适用于有源矩阵(AM)型半导体发光器件。

首先,根据图10A和图10B,半导体发光器件1050可以是倒装芯片型发光器件,并且半导体发光器件1050可包括第一导电半导体层1053、与第一导电半导体层1053交叠的第二导电半导体层1055、形成在第一导电半导体层上的第一电极1052以及沉积在第二导电半导体层1055上的第二电极1057。此外,根据附图,半导体发光器件1050可包括形成在第一导电半导体层1053和第二导电半导体层1055之间的有源层1054。另外,半导体发光器件1050还可包括形成在有源层1054和第二电极1057之间的电极焊盘(或第三电极1056)以及形成为覆盖第一电极的绝缘层1058。此外,第一电极焊盘1052、第二电极焊盘1057和电极焊盘1056中的至少一个可利用透明电极来形成。

第一导电半导体层1053和第一电极1052可分别为“n型半导体层”和“n型电极”,第二导电半导体层1055和电极焊盘(或第三电极1056)可分别为“p型半导体层”和“p型电极”。

更具体地讲,第一电极1052和有源层1054形成在第一导电半导体层1053的一个表面上,并且被设置为通过之间隔着绝缘层1058来彼此分离。这里,一个方向(水平方向)将是半导体发光器件的宽度方向,垂直方向将是半导体发光器件的厚度方向。

第二导电半导体层1055形成在有源层1054的另一表面上。有源层1054具有一个表面及其另一表面,所述一个表面被形成为面向第一导电半导体层1053,另一表面被形成为面向第二导电半导体层1055。

另外,电极焊盘1056与第二导电半导体层1055的一个表面交叠。据此,第一导电半导体层1053、有源层1054、第二导电半导体层1055和电极焊盘1056构成分层结构。

如图中所示,第一电极1052和电极焊盘1056分别被形成为在所述一个方向上彼此分离的位置处在与所述一个方向垂直的厚度方向上具有高度差。

此外,根据附图,绝缘层1058的至少部分形成在第一导电半导体层1053上,并且被设置在第一电极1052和有源层1054之间。另外,绝缘层1058被形成为覆盖第一电极1052,并且被形成为高于从第一导电半导体层1053的一个表面到沉积有电极焊盘1056的位置的高度。如图中所示,绝缘层1058可被形成为在所述一个方向上相对于电极焊盘1056具有台阶。

这样,第一电极1052被绝缘层1058的一个表面覆盖,第二电极1057被形成为覆盖绝缘层1058的另一表面。

此外,第二电极1057被形成为覆盖绝缘层1058和电极焊盘1056。另外,第二电极1057可被形成为覆盖第一导电半导体层1053的整个表面,并且第一电极1052和第二电极1057在与所述一个方向垂直的厚度方向上通过之间隔着绝缘层而彼此交叠。这样,第一电极1052和第二电极1057通过绝缘层彼此分离,因此半导体发光器件的n型电极和p型电极可彼此绝缘。

另一方面,在具有上述结构的半导体发光器件中,第一电极1052和第二电极1057朝着邻接半导体发光器件延伸以电连接至邻接半导体发光器件。

更具体地讲,具有上述结构的多个半导体发光器件可形成发光器件阵列。图10B是示出由具有图10A所示的新结构的半导体发光器件形成的半导体阵列的概念图,是在图10A中的“A”方向上看半导体阵列的平面图。

如图10B所示,多个半导体发光器件被设置为形成发光器件阵列,第一电极1052可配置有第一电极线以电连接在列方向上设置的多个半导体发光器件。这样,设置在发光器件阵列的各个列的多个半导体发光器件共享第一电极1052。换言之,作为形成在第一导电半导体层1053的一个表面上的电极,第一电极1052电连接包括在同一列中的多个半导体发光器件。这样,连接沿着列方向设置的多个半导体发光器件的第一电极1052可在根据本发明的实施方式的显示装置1000中起到扫描电极的作用。第一电极1052可以是半导体发光器件的n型电极以及显示装置1000的扫描电极。这样,根据本发明的实施方式的显示装置1000被允许通过第一电极1052将包括在各个列中的多个半导体发光器件电连接至驱动单元,从而除了用于制造半导体发光器件的工艺之外,减少用于形成扫描电极的附加布线工艺。

此外,上述半导体发光器件中所包括的电极焊盘1056(或第三电极,p型电极)的一个表面上所形成的第二电极1057具有在半导体发光器件阵列中在与设置有第一电极1052(或第一电极线)的列方向交叉的行方向上延伸的第二电极线。如图中所示,第二电极1057电连接包括在各个行中的多个发光器件。

这样,设置在发光器件阵列的各个行的多个半导体发光器件共享第二电极1057。换言之,作为电连接至第二导电半导体层1055的电极,第二电极1057电连接包括在同一行中的多个半导体发光器件。这样,用于电连接沿着行方向设置的多个半导体发光器件的第二电极1057可在根据本发明的实施方式的显示装置1000中起到数据电极的作用。这样,根据本发明的实施方式的显示装置1000被允许通过第二电极1057将包括在各个行中的多个半导体发光器件电连接至驱动单元,从而除了用于制造半导体发光器件的工艺之外,减少用于形成数据电极的附加布线工艺。

另一方面,形成发光器件阵列的多个半导体发光器件可被设置为通过与邻接发光器件隔开预定空间来彼此分离,其中,绝缘层1058可被填充在分离地设置的半导体发光器件之间。换言之,绝缘层1058可被设置在半导体发光器件之间以起到间壁的作用。绝缘层1058包括绝缘体,并且可利用黑色绝缘体或白色绝缘体形成。此外,绝缘体可由树脂形成,黑色绝缘体或白色绝缘体可通过对树脂进行着色来实现。

另一方面,当绝缘层1058利用黑色绝缘体形成时,绝缘层1058可除了将第一电极1052和第二电极1057绝缘之外还增强半导体发光器件的对比度。此外,当绝缘层1058利用白色绝缘体形成时,绝缘层1058除了将第一电极1052和第二电极1057绝缘之外还起到反射器的作用。

如上所述,根据本发明的实施方式的显示装置可使发光器件阵列的制造工艺和布线工艺统一。

以下,将参照附图更详细地描述包括具有图10A和图10B所示的结构的半导体发光器件的发光器件阵列的制造方法。图11A、图11B、图12A和图12B是用于说明制造图10A和图10B所示的半导体发光器件的工艺的概念图。

首先,根据该制造方法,在生长基板1059上分别生长第一导电半导体层1053、有源层1054和第二导电半导体层1055(图11A的(a))。

如果第一导电半导体层1053生长,则在第一导电半导体层1053上生长有源层1054,然后在有源层1054上生长第二导电半导体层1055。这样,当第一导电半导体层1053、有源层1054和第二导电半导体层1055依次生长时,第一导电半导体层1053、有源层1054和第二导电半导体层1055形成分层结构,如图11A的(a)所示。

生长基板1059(晶圆)可由具有光透射特性的任一种材料形成,例如蓝宝石(Al2O3)GaN、ZnO和AlO,但是可不必限于此。另外,生长基板1059可由适合于半导体材料生长的材料(载体晶圆)形成。生长基板1059可由具有优异导热性的材料形成,因此,可使用导热性大于蓝宝石(Al2O3)基板的SiC基板或者Si、GaAs、GaP、InP和Ga2O3中的至少一种,包括导电基板或绝缘基板。

接下来,将有源层1054和第二导电半导体层1055的至少部分去除以暴露第一导电半导体层1053的至少部分(图11A的(b))。

在这种情况下,在垂直方向上去除有源层1054和第二导电半导体层1055的部分以将第一导电半导体层1053暴露于外。

此外,如图11A的(b)和图12A中所示进行隔离,使得通过上述方法形成的多个发光器件形成发光器件阵列。换言之,第二导电半导体层1055和有源层1054被蚀刻以形成多个半导体发光器件。

接下来,分别在第一导电半导体层1053和第二导电半导体层1055上形成在厚度方向上具有高度差的第一电极1052和电极焊盘(或者第三电极或p型电极1056),以实现倒装芯片型发光器件(图11A的(c))。这里,第一电极1052利用电极线形成以将沿着发光器件阵列的一个方向(例如,列方向)设置的多个半导体发光器件电连接,如图12B所示。通过这样,设置在发光器件阵列的各个列的多个半导体发光器件可共享第一电极1052。第一电极可被配置为从任一个半导体发光器件延伸至与它相邻的至少一个其它半导体发光器件以将沿着列彼此相邻的多个半导体发光器件电连接。

这样,在根据本发明的实施方式的显示装置1000中,用于电连接沿着列方向设置的多个半导体发光器件的第一电极1052可起到扫描电极的作用。

换言之,第一电极1052是半导体发光器件的n型电极以及显示装置1000的扫描电极。这样,在根据本发明的实施方式的显示装置1000中,包括在各个列中的多个半导体发光器件和驱动单元可通过第一电极1052彼此电连接,从而除了用于制造半导体发光器件的工艺之外减少用于形成扫描电极的布线工艺。这里,第一电极1052可利用透明电极来形成。此外,电极焊盘或p型电极1056可形成点电极。

第一电极1052和第三电极1056可利用诸如溅射等的沉积方法来形成,但是本发明的实施方式可不必限于此。

如图中所示,第一电极1052和第三电极(或者电极焊盘、p型电极1056)被配置为在一个方向上彼此分离的位置处在与所述一个方向垂直的方向上具有高度差。这里,所述一个方向将是半导体发光器件的宽度方向,垂直方向将是半导体发光器件的厚度方向。

在第一电极1052和第三电极(或者电极焊盘、p型电极1056)形成在其上的状态下,绝缘体被涂覆以形成绝缘层1058(图11B的(a))。如图中所示,第一电极1052和有源层1054形成在第一导电半导体层1053的一个表面上并且被设置为通过之间隔着绝缘层1058而彼此分离。这里,一个方向将是半导体发光器件的宽度方向,垂直方向将是半导体发光器件的厚度方向。

形成发光器件阵列的多个半导体发光器件可被设置为通过与邻接发光器件隔开预定空间来彼此分离,如图中所示,绝缘层1058可被填充在分离地设置的半导体发光器件之间。换言之,绝缘层1058可被设置在半导体发光器件之间以起到间壁的作用。这样,第一电极1052被绝缘层1058的一个表面覆盖。此外,如图中所示,形成发光器件阵列的多个半导体发光器件可被设置为通过与邻接发光器件隔开预定空间来彼此分离,其中,绝缘层1058被填充在分离地设置的半导体发光器件之间。换言之,绝缘层1058可被设置在半导体发光器件之间以起到间壁的作用。

这里,绝缘层1058可被涂覆以覆盖形成在生长基板1059上的所有半导体发光器件。构成绝缘层1058的绝缘体可以是具有特定颜色的树脂。绝缘层1058可利用具有黑色或白色的绝缘体来形成,黑色绝缘体或白色绝缘体可通过对树脂进行着色来实现。

另一方面,当绝缘层1058利用黑色绝缘体形成时,绝缘层1058可增强半导体发光器件的对比度。此外,当绝缘层1058利用白色绝缘体形成时,绝缘层1058除了将第一电极和第二电极1052绝缘之外还起到反射器的作用。

接下来,对绝缘层的至少部分进行蚀刻以暴露电极焊盘(或者第三电极或p型电极1056)(图11B的(b))。在去除绝缘层1058的至少部分之后,形成电连接至电极焊盘的第二电极1057(图11B的(c))。第二电极1057形成在电极焊盘1056(或者第三电极、p型电极)的一个表面上,并且配置有在发光器件阵列中在与设置有第一电极1052(或者第一电极线)的列方向交叉的行方向延伸的电极线。如图中所示,第二电极1057将包括在各个行中的多个发光器件电连接。

设置在发光器件阵列的各个行的多个半导体发光器件共享第二电极1057。换言之,作为电连接至第二导电半导体层1055的电极,第二电极1057将包括在同一行的多个半导体发光器件电连接。这样,在根据本发明的实施方式的显示装置1000中,将沿着行方向设置的多个半导体发光器件电连接的第二电极1057可起到数据电极的作用。

另一方面,第二电极1057被形成为覆盖绝缘层1058和电极焊盘1056,并且第一电极1052和第二电极1057通过在与所述一个方向垂直的厚度方向上隔着绝缘层彼此交叠。这样,第一电极1052和第二电极1057通过绝缘层彼此分离,因此,半导体发光器件的n型电极和p型电极可彼此绝缘。

如上所述,电极焊盘(或者第三电极或p型电极1056)被设置在第二电极1057和第二导电半导体层1055之间。然而,在第二电极1057和第二导电半导体层1055之间可不存在电极焊盘1056。在这种情况下,第二电极1057被设置在第二导电半导体层1055的表面处,并且可从制造半导体发光器件的工艺省略电极焊盘1056的溅射。另外,在制造半导体发光器件的工艺中,绝缘层的至少部分可被蚀刻以暴露第二导电半导体层1055,而非电极焊盘(或者第三电极或p型电极1056)。

根据本发明的实施方式的显示装置1000被允许通过第二电极1057将包括在各个行中的多个半导体发光器件电连接至驱动单元,从而除了用于制造半导体发光器件的工艺之外,减少用于形成数据电极的布线工艺。

最后,如图11B的(d)所示,当生长基板1059被去除时,在其上形成半导体发光器件阵列。

这样,去除了生长基板1059的半导体发光器件可附着在支撑基板1010上,如图13所示。此外,还可在半导体发光器件1050和支撑基板1010之间形成粘合层。

以下,将参照附图更详细地描述通过上述制造方法形成的包括多个半导体发光器件的显示装置。图13是示出应用了具有新结构的半导体发光器件的显示装置的局部放大图,图14A是沿着图13中的线D-D截取的横截面图,图14B是沿着图13中的线E-E截取的横截面图。

根据图13、图14A和图14B的附图,示出了使用无源矩阵(PM)型半导体发光器件的显示装置1000作为使用半导体发光器件的显示装置1000。然而,以下例示也可适用于有源矩阵(AM)型半导体发光器件。

显示装置1000可包括安装有发光器件阵列的支撑基板1010,第一电极1052和第二电极1057形成在发光器件阵列上。这里,第一电极1052和第二电极1057可分别包括多条电极线(第一电极线和第二电极线,参照图10B)。另外,第一电极1052和第二电极1057可分别起到数据电极和扫描电极的作用。然而,本发明的实施方式可不必限于此,第一电极1052可以是扫描电极,第二电极1057可以是数据电极。

作为设置有第二电极1057的基板,支撑基板1010可由柔性材料形成。例如,支撑基板1010可包括聚酰亚胺(PI)以实现柔性显示装置。另外,可使用任何材料,如果它是绝缘和柔性材料的话。对于另一示例,支撑基板1010可由具有高散热效率的刚性材料形成。在这种情况下,可为需要高亮度的应用示例的散热问题提供解决方案。

更具体地讲,发光器件阵列可通过粘合层联接至支撑基板1010。在这种情况下,粘合层可通过在涂覆粘合剂之后固化来形成,粘合剂被涂覆以填充多个半导体发光器件之间。因此,粘合层被形成为填充多个半导体发光器件之间存在的空间。尽管在发光器件阵列中的半导体发光器件之间填充绝缘层1058,可能存在空余空间,粘合层完全填充所述空余空间。

另外,粘合层可利用非透明层来配置以在多个半导体发光器件之间形成间壁。通过这样,类似于绝缘层1058,具有将多个半导体发光器件隔离的效果,甚至无需另外形成间壁。

例如,在非透明层上着黑色或白色。为了发光效率,可在其上着白色以起到反射器的作用,为了使干涉最小化,可在其上着黑色以增强半导体发光器件的对比度。然而,本发明的实施方式可不必限于此,根据设计者的意图,各种颜色可被应用于非透明层。

然而,本发明的实施方式可不必限于通过绝缘层1058和粘合层的组合来形成间壁的配置。换言之,绝缘层1058或者粘合层可自己形成间壁。例如,当粘合层自己形成间壁时,可配置为使得绝缘层1058不填充在多个半导体发光器件之间。相反,当绝缘层1058自己形成间壁时,可配置为使得粘合层不填充在多个半导体发光器件之间。

根据附图,多个半导体发光器件可在与第一电极1052的线平行的方向上形成多列。另外,多个半导体发光器件可沿着第二电极1057的线形成多列。

此外,显示装置1000还可包括形成在多个半导体发光器件1050的一个表面上的荧光粉层1080。例如,半导体发光器件1050是发射蓝色(B)光的蓝色半导体发光器件,荧光粉层1080起到将蓝色(B)光转换为子像素的颜色的作用。荧光粉层1080可以是构成各个像素的红色荧光粉1081或绿色荧光粉1082。换言之,能够将蓝色光转换为红色(R)光的红色荧光粉1081可被沉积在构成红色子像素的位置处的蓝色半导体发光器件上,能够将蓝色光转换为绿色(G)光的绿色荧光粉1082可被沉积在构成绿色子像素的位置处的另一蓝色半导体发光器件上。另外,在构成蓝色子像素的部分处可仅独立地使用蓝色半导体发光器件。在这种情况下,可在像素上构成红色(R)、绿色(G)和蓝色(B)子像素。

更具体地讲,可沿着第二电极1057的各条线沉积一种颜色的荧光粉。因此,第二电极1057上的一条线可以是控制一种颜色的电极。换言之,可沿着第一电极1052依次设置红色(R)、绿色(G)和蓝色(B),从而实现子像素。然而,本发明的实施方式可不必限于此,可沿着第一电极1052的各条线沉积一种颜色的荧光粉,因此可沿着第二电极1057依次设置红色(R)、绿色(G)和蓝色(B)。

另外,代替荧光粉,半导体发光器件1050和量子点(QD)被组合以实现发射红色(R)、绿色(G)和蓝色(B)的子像素。

另一方面,显示装置还可包括设置在各个荧光粉之间以增强荧光粉层1080的对比度的黑底1091。黑底1091可按照这样的方式形成,使得在荧光粉点之间形成间隙并且黑色材料填充该间隙。通过这样,黑底1091可增强亮度的对比度以及吸收外部光反射。黑底1091沿着第二电极1057(是沉积荧光粉层1080的方向)设置在各个荧光粉层之间。在这种情况下,在与蓝色半导体发光器件1051对应的位置处没有形成荧光粉层,但是可通过隔着没有荧光粉层的空间(或者通过隔着蓝色半导体发光器件)分别在两侧形成黑底。

根据本发明的实施方式,布线电极可形成在发光器件阵列自身上以解决将布线电极电连接至半导体发光器件的问题,从而实现更高清晰度的显示装置。

第一电极和第二电极可在起到布线电极的作用的同时连接至用于连接多个半导体发光器件的驱动单元的连接线。在这种情况下,连接线可被设置在支撑基板上。

图15A、图15B和图15C是示出图13所示的显示装置的布线结构的概念图。

参照附图,第一电极1052和第二电极1057在彼此交叉的方向上形成在支撑基板1010上。因此,第一电极1052利用在发光器件阵列的列上延伸的第一电极线形成,第二电极1057设置有在与第一电极线交叉的方向上延伸的第二电极线。

第一电极线和第二电极线电连接至多个半导体发光器件的驱动单元,为此,第一电极线和第二电极线的末端部分被设置在支撑基板1010的边缘处。例如,第一电极线和第二电极线的末端部分可分别与发光器件阵列的彼此交叉的侧面相邻地设置。

在这种情况下,驱动单元可以是驱动半导体芯片并且按照膜上芯片(COF)封装被安装在连接构件1020a上,第一电极线和第二电极线在连接区域1316中连接至连接构件1020a。为了实现这种结构,第一电极线和第二电极线分别电连接至支撑基板的连接线1052a、1057a,并且连接线1052a、1057a中的任一个按照弯曲形状形成。

更具体地讲,第一电极1052可沿着垂直方向延伸,第二电极1057可布置在水平方向上。第二电极1057在水平方向的末端连接至第二连接线1057a,并且第二连接线1057a弯曲并且再次在垂直方向上延伸,从而具有垂直部分。第二连接线1057a的末端部分被聚集在连接区域1316中,延伸连接区域1316。另外,根据附图,第二电极1057的水平部分可分别被设置在基板的左侧和右侧。通过这种结构,可实现更精细的布线图案。相反,第一电极1052可在垂直方向的末端连接至第一连接线1052a,从而起到沿着垂直方向延伸第一电极1052的作用。

然而,本发明的实施方式可不必限于此,例如,第二电极1057可被支撑基板的一个表面覆盖,并且连接线可形成在支撑基板的另一表面上。这里,可在支撑基板上形成通孔以将第一电极和第二电极连接至连接线。这样,用于连接驱动单元的布线结构可不必限于一种类型的实施方式,而是被修改为各种形式。

根据附图,第一电极1052和第二电极1057根据半导体发光器件的厚度方向具有高度差。相反,连接构件1020a的连接焊盘1020b、1020c可包括没有高度差的第一连接焊盘1020b和第二连接焊盘1020c。连接线1052a、1057a形成在支撑基板的同一平面上以与第一连接焊盘1020b和第二连接焊盘1020c的高度对应。第一电极1052和第二电极1057之间的高度差通过至连接线1052a、1057a的电连接来解决。

图15B和图15C分别是沿着图15A中的线F-F和线G-G截取的横截面图,参照附图,连接线1052a、1057a被设置在支撑基板1010上,因此连接构件1020a电连接至支撑基板1010。

更具体地讲,根据附图,金属层1060a、1060b被设置在连接线1052a、1057a的末端部分与电极1052、1057的末端部分之间。这里,在第一连接线1052a和第二连接线1057a的情况下金属层1060a、1060n的厚度可彼此不同,从而允许连接构件1020a的第一连接焊盘1020b和第二连接焊盘1020c具有相同的高度。换言之,具有不同厚度的第一金属层1060a和第二金属层1060n形成在连接线1052a、1057a与电极1052、1057之间。

在这种情况下,金属层1060a、1060b可通过金属键合(凸块键合)来形成。在金属键合(凸块键合)的情况下,如果用于沉积金属层的高度变化,则连接线1052a、1057a电连接至电极1052、1057,而不管高度差。然而,本发明的实施方式可不必限于此,例如,金属层也可通过诸如共晶键合等的其它方法来形成。

如上所述,已描述了根据本发明的实施方式的用于连接驱动单元的连接结构,但是可不必限于一种类型的实施方式,而是被修改为各种形式。换言之,所有类型的连接结构可适用于根据本发明的实施方式的显示装置。对于示例之一,图16A、图16B、图16C和图16D是示出新布线结构的概念图,图16B和图16C分别是沿着图16A中的线F-F和线G-G截取的横截面图。

根据附图,第一电极和第二电极可以是用于连接多个半导体发光器件的驱动单元的连接线。这里,将参照附图描述起到这样的连接线的作用的第一电极和第二电极的结构。

参照附图,第一电极1052和第二电极1057在彼此交叉的方向上形成在支撑基板1010上。因此,第一电极1052利用在发光器件阵列的列上延伸的第一电极线形成,第二电极1057设置有在与第一电极线交叉的方向上延伸的第二电极线。

第一电极线和第二电极线电连接至多个半导体发光器件的驱动单元,为此,第一电极线和第二电极线的末端部分被设置在支撑基板1010的边缘处。例如,第一电极线的末端部分可与发光器件阵列的一侧相邻设置,并且第二电极线的末端部分也可与其所述一侧相邻设置。

在这种情况下,驱动单元可以是驱动半导体芯片并且按照膜上芯片(COF)封装安装在连接构件1020a上,第一电极线和第二电极线在连接区域1316中连接至连接构件1020a。为了实现这种结构,第一电极线和第二电极线中的任一个可按照弯曲形状形成。

更具体地讲,第一电极1052可沿着垂直方向延伸,第二电极1057可布置在水平方向上。第二电极1057在水平方向的末端弯曲并且再次在垂直方向上延伸,从而具有垂直部分。第一电极1052和第二电极1057的末端部分被聚集在连接区域1316中,延伸连接区域1316。另外,根据附图,垂直部分可分别被设置在基板的左侧和右侧。通过这种结构,可实现更精细的布线图案。

对于另一示例,第二电极1057可具有仅具有水平部分的结构。在这种情况下,从第二电极1057的水平部分延伸的部分(垂直部分以及用于连接水平和垂直部分的部分)可形成在支撑基板上。

根据附图,第一电极1052和第二电极1057根据半导体发光器件的厚度方向具有高度差。因此,连接构件1020a的连接焊盘1020b、1020c可包括具有高度差的第一连接焊盘1020b和第二连接焊盘1020c。第二连接焊盘1020c的高度被形成为高于第一连接焊盘1020b的高度,因此,进行至连接构件1020a的电连接,而不管第一电极1052和第二电极1057之间的高度差。

对于另一示例,多个半导体发光器件被设置为形成多个发光器件阵列,在这种情况下,可考虑多个发光器件阵列彼此连接的结构。

参照图16D,发光器件阵列可分别包括第一电极1052,第一电极1052彼此之间的电连接可在发光器件阵列的末端部分处断开。在这种情况下,阵列之间的电连接可通过拼块技术来实现。

对于另一示例,还可使用这样的方法,其中在一个生长基板上实现的多个半导体发光器件形成一个发光器件阵列,并且多个生长基板被允许与单个支撑基板对应。例如,多个生长基板上的发光器件阵列彼此电连接,并且当在单个支撑基板同时覆盖每一个生长基板的状态下去除生长基板时,形成多个发光器件阵列彼此连接的大面积显示装置。在这种情况下,多个发光器件阵列将分别是一个显示器,它们可彼此组合以实现大面积显示装置。

这里,为了实现发光器件阵列之间的电连接,用于使得邻接发光器件阵列能够彼此电连接的连接部分1030可形成在支撑基板1010上。例如,连接部分1030可包括导电粘合层1031和金属焊盘1032。

金属焊盘1032被设置在支撑基板的一个表面上,并且被形成为沿着显示装置的厚度方向分别与邻接发光器件阵列的第一电极交叠。

导电粘合层1031被形成为将邻接发光器件阵列的第一电极电连接至金属焊盘1032。

对于这样的示例,导电粘合层1031可以是包含各向异性导电膜(ACF)、各向异性导电糊剂和导电颗粒的溶液。参照图2、图3A和图3B描述的显示装置中至导电粘合层的电连接可适用于导电粘合层1031和金属焊盘1032之间的电连接,其描述将由早前的描述替代。

如上所述,描述了显示装置包括发射蓝色(B)光的蓝色半导体发光器件的情况,但是本发明的实施方式可不必限于此,用于实现红色、绿色和蓝色的另一结构也可适用。

图17A、图17B和图17C是示出与具有新结构的倒装芯片型半导体发光器件关联地实现颜色的各种形式的概念图。

参照图17A,各个半导体发光器件1050可被实现为发射包括蓝色的各种光的高功率发光器件,其中大部分使用氮化镓(GaN),另外使用了铟(In)和/或铝(Al)。

在这种情况下,半导体发光器件1050可以是红色、绿色和蓝色半导体发光器件以分别实现子像素。例如,红色、绿色和蓝色半导体发光器件(R、G、B)被交替地设置,并且红色、绿色和蓝色子像素通过红色、绿色和蓝色半导体发光器件构成一个像素,从而实现全彩色显示器。

即使在这种结构中,类似于上述描述,半导体发光器件可包括电连接至器件内的邻接半导体发光器件的第一电极1052和第二电极1057。例如,分别与红色、绿色和蓝色半导体发光器件(R、G、B)对应的第一电极1052彼此电连接。这样,红色、绿色和蓝色半导体发光器件(R、G、B)可分别为具有参照图10A和图10B描述的新结构的半导体发光器件。

这样,当半导体发光器件独立地实现R、G和B时,其中可不设置附加荧光粉层。另一方面,即使在这种情况下,为了对比度增强和外部光反射,显示装置还可包括设置在配置有半导体发光器件的多个列之间的黑底1091。如图中所示,黑底1091可被设置为在水平方向上彼此分离。

对于另一示例,参照图17B,半导体发光器件可包括设置有用于各个器件的黄色荧光粉层的白色发光器件(W)。在这种情况下,白色输出部分(W)具有发射白光的结构,并且荧光粉层可形成在白色发光器件(W)的上表面上。另外,为了实现子像素,红色荧光粉层1081、绿色荧光粉层1082和蓝色荧光粉层1083可被设置在白色发光器件(W)上。

另外,子像素可利用滤色器来实现,其中红色、绿色和蓝色在白色发光器件(W)上重复。即使在这种结构中,类似于上述描述,白色发光器件(W)可包括电连接至半导体发光器件的第一电极1052和第二电极1057。这样,白色发光器件(W)可分别是具有参照图10A和图10B描述的新结构的半导体发光器件。以上结构的描述将由早前描述代替。

另一方面,即使在这种情况下,显示装置1000a还可包括设置在配置有半导体发光器件的多个列之间的黑底1091以用于对比度和外部光反射增强。黑底1091可被设置在红色荧光粉层1081、绿色荧光粉层1082和蓝色荧光粉层1083之间。

对于另一示例,参照图17C,可具有这样的结构,其中红色荧光粉层1081、绿色荧光粉层1082和蓝色荧光粉层1083被设置在紫外发光器件(UV)上。这样,半导体发光器件可被用于包括可见光以及紫外光(UV)的整个区域,并且可扩展至紫外光(UV)可用作上面的荧光粉的激发源的半导体发光器件的形式。

即使在这种结构中,类似于上述描述,紫外发光器件(UV)可包括电连接至邻接半导体发光器件的第一电极1052和第二电极1057。这样,紫外发光器件(UV)可分别是具有参照图10A和图10B描述的新结构的半导体发光器件。以上结构的描述将由早前描述代替。

另一方面,即使在这种情况下,显示装置还可包括设置在配置有荧光粉的多个列之间的黑底1091以用于对比度增强和外部光反射。黑底1091可被设置在红色荧光粉层1081、绿色荧光粉层1082和蓝色荧光粉层1083之间。

如上所述,描述了第一电极1052和第二电极1057全部利用线形成以将邻接半导体发光器件彼此连接的情况,但是本发明的实施方式可不必限于此,仅第一电极1052和第二电极1057中的任一个利用线形成的结构。以下,将参照附图描述这种结构。

图18是示出根据另一实施方式的具有新结构的半导体发光器件的概念图,图19是示出应用了具有图18所示的新结构的半导体发光器件的显示装置的局部放大图,图20A是沿着图19中的线F-F截取的横截面图,图20B是沿着图19中的线G-G截取的横截面图。

首先,根据图18的附图,半导体发光器件2050可以是倒装芯片型发光器件,并且半导体发光器件2050可包括第一导电半导体层2053、与第一导电半导体层2053交叠的第二导电半导体层2055、形成在第一导电半导体层上的第一电极2052以及沉积在第二导电半导体层2055上的电极焊盘(或第三电极2056)。

此外,根据附图,半导体发光器件2050可包括形成在第一导电半导体层2053和第二导电半导体层2055之间的有源层2054。另外,半导体发光器件2050还可包括被形成为覆盖有源层2054和电极焊盘2056的绝缘层2058以及第一电极。此外,第一电极2052和电极焊盘2056中的至少一个可利用透明电极来形成。与图10A中的半导体发光器件相比,仅电极焊盘2056可被配置在半导体发光器件上,而没有第二电极。此外,电极焊盘2056可形成在第二导电半导体层2055的一个表面内,因此电极焊盘2056可按照点形状布置。

第一导电半导体层2053和第一电极2052可分别为“n型半导体层”和“n型电极”,第二导电半导体层2055和电极焊盘2056可分别为“p型半导体层”和“p型电极”。因此,电极焊盘2056可具有与参照图2、图3A和图3B描述的例示中的p型电极相同的功能和配置。因此,可能需要用于将p型电极连接至驱动单元的附加线,这将稍后参照图20A和20B来描述。另外,即使在这种情况下,对于n型电极,也在半导体发光器件内实现布线功能。

更具体地讲,第一电极2052和有源层2054被形成在第一导电半导体层2053的一个表面上,并且被设置为通过之间隔着绝缘层2058来彼此分离。这里,一个方向将是半导体发光器件的宽度方向,垂直方向将是半导体发光器件的厚度方向。

如图中所示,第一电极2052和电极焊盘2056分别被形成为在所述一个方向上彼此分离的位置处在与所述一个方向垂直的厚度方向上具有高度差。

此外,根据附图,配置为使得第一电极2052被绝缘层2058的一个表面覆盖,并且电极焊盘2056未被绝缘层2058覆盖。

另一方面,在具有上述结构的半导体发光器件中,第一电极2052朝着邻接半导体发光器件延伸以电连接至邻接半导体发光器件。因此,第一电极2052与图10B所示类似地形成第一电极线。

多个半导体发光器件被设置为形成发光器件阵列,第一电极2052可配置有第一电极线以将设置在列方向上的多个半导体发光器件电连接。这样,设置在发光器件阵列的各个列的多个半导体发光器件共享第一电极2052。换言之,作为形成在第一导电半导体层2053的一个表面上的电极,第一电极2052将包括在同一列中的多个半导体发光器件电连接。这样,在根据本发明的实施方式的显示装置2000中,连接沿着列方向设置的多个半导体发光器件的第一电极2052可起到扫描电极的作用。第一电极2052可以是半导体发光器件的n型电极以及显示装置2000的扫描电极。

根据图19、图20A和图20B中的附图,显示装置2000可包括安装有发光器件阵列的支撑基板2010,第一电极2052和电极焊盘2056形成在发光器件阵列上,并且第二电极线2020被设置在支撑基板2010上。这样,根据本发明的实施方式,在第二电极的情况下,电极焊盘2056被实现于半导体发光器件中,并且第二电极线2020被实现于支撑基板上。第二电极线2020起到连接线的功能,因此支撑基板相对于第二电极2057起到布线基板的功能。

第二电极线2020电连接至包括在半导体发光器件中的电极焊盘2056,并且在与半导体发光器件阵列中设置第一电极2052(或第一电极线)的列方向交叉的行方向上延伸。

作为通过电极焊盘2056电连接至第二导电半导体层2055的电极,第二电极线2020将包括在同一行中的多个半导体发光器件电连接。这样,在根据本发明的实施方式的显示装置2000中,用于将沿着行方向设置的多个半导体发光器件电连接的第二电极2057可起到数据电极的作用。

另一方面,形成发光器件阵列的多个半导体发光器件可被设置为通过与邻接发光器件隔开预定空间来彼此分离,其中,绝缘层2058可被填充在分离地设置的半导体发光器件之间。换言之,绝缘层2058可被设置在半导体发光器件之间以起到间壁的作用。绝缘层2058包括绝缘体,并且可利用黑色绝缘体或白色绝缘体形成。此外,绝缘体可由树脂形成,黑色绝缘体或白色绝缘体可通过对树脂进行着色来实现。

另一方面,当绝缘层2058利用黑色绝缘体形成时,绝缘层2058可除了将第一电极2052和电极焊盘2056绝缘之外还增强半导体发光器件的对比度。此外,当绝缘层2058利用白色绝缘体形成时,绝缘层2058除了将第一电极2052和电极焊盘2056绝缘之外还起到反射器的作用。

支撑基板2010可由柔性材料形成。例如,支撑基板2010可包括聚酰亚胺(PI)以实现柔性显示装置。另外,可使用任何材料,如果它是绝缘和柔性材料的话。对于另一示例,支撑基板2010可由具有高散热效率的刚性材料形成。在这种情况下,可为需要高亮度的应用示例的散热问题提供解决方案。

粘合层可被设置在发光器件阵列和支撑基板2010之间以将第二电极线2020联接至电极焊盘2056。

在这种情况下,粘合层可以是参照图2、图3A和图3B描述的显示装置中所示的导电粘合层。因此,导电粘合层可以是包含各向异性导电膜(ACF)、各向异性导电糊剂和导电颗粒的溶液。

另外,可在导电粘合层上着黑色或白色。为了发光效率,可在其上着白色以起到反射器的作用,为了使干涉最小化,可在其上着黑色以增强半导体发光器件的对比度。然而,本发明的实施方式可不必限于此,根据设计者的意图,各种颜色可被应用于非透明层。

此外,显示装置2000还可包括形成在多个半导体发光器件2050的一个表面上的荧光粉层2080。例如,半导体发光器件2050是发射蓝色(B)光的蓝色半导体发光器件,荧光粉层2080起到将蓝色(B)光转换为子像素的颜色的作用。荧光粉层2080可以是构成各个像素的红色荧光粉2081或绿色荧光粉2082。换言之,能够将蓝色光转换为红色(R)光的红色荧光粉2081可被沉积在构成红色子像素的位置处的蓝色半导体发光器件上,能够将蓝色光转换为绿色(G)光的绿色荧光粉2082可被沉积在构成绿色子像素的位置处的另一蓝色半导体发光器件上。另外,在构成蓝色子像素的部分处可仅独立地使用蓝色半导体发光器件。在这种情况下,可在像素上构成红色(R)、绿色(G)和蓝色(B)子像素。然而,本发明的实施方式可不必限于此,代替荧光粉,半导体发光器件2050和量子点(QD)被组合以实现发射红色(R)、绿色(G)和蓝色(B)的子像素。

另一方面,显示装置还可包括设置在各个荧光粉之间以增强荧光粉层2080的对比度的黑底2091。黑底2091可按照这样的方式形成,使得在荧光粉点之间形成间隙并且黑色材料填充该间隙。通过这样,黑底2091可增强亮度的对比度以及吸收外部光反射。

根据本发明的实施方式,布线电极的部分可从发光器件阵列自身形成,从而解决将布线电极与半导体发光器件电连接的部分问题。

第一电极起到布线电极的作用,因此第一电极和第二电极可以是用于将多个半导体发光器件的驱动单元连接的连接线。以下,图15A、图15B、图15C或者图16A、图16B、图16C和图16D中描述的结构可适用于起到连接线的作用的第一电极和第二电极的结构,其描述将由早前的描述替代。

根据上述实施方式的配置和方法将不以限制的方式适用于使用半导体发光器件的上述显示装置,各个实施方式的全部或部分可被选择性地组合并配置以对其进行各种修改。

根据具有上述配置的本发明的实施方式,半导体发光器件的制造工艺和布线工艺可统一。

这样,根据本发明的实施方式,与布线电极对应的电极可被设置在半导体发光器件自身上,从而减少在支撑基板上进行的将半导体发光器件电连接至驱动单元的布线工艺。

另外,根据本发明的实施方式,布线电极可被设置在半导体发光器件自身上,从而实现没有精细间隙的限制的高清晰度显示装置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1