微拾取和键合组装的制作方法

文档序号:12071449阅读:707来源:国知局
微拾取和键合组装的制作方法与工艺

相比于将多个具有毫米横向芯片尺寸的IC芯片或管芯集成到基板上的常规IC组装,微器件组装集成具有微米范围(例如,1-10μm)的横向芯片尺寸的电子器件和/或光子器件。管芯隔离、处理、键合以及互连对于微器件组装而言比常规IC组装均更具挑战。例如,传统的拾取和放置方法能够处理横向(XY)尺寸小到~200μm且厚度(Z)小到100μm的器件。由于这样的大芯片厚度,难于形成允许封装小型化的互连。

发展中的微器件组装技术包括所谓的转印方法,已经显示该方法能够将具有10微米的横向尺寸和~1μm的Z厚度的微管芯集成到组件中。一种示例性转印技术依赖于提供数千个静电夹持点的复杂的MEMS印刷头。另一示例性转印技术依赖于使用聚二甲基硅氧烷(PDMS)的低温键合,这与高温芯片键合技术(例如,焊接键合)不兼容。

电子显示是可能从先进的微器件组装技术中受益的一个领域。作为对电子设备的重要的用户界面,电子显示技术近些年已经快速发展。至今,对于大画幅(例如,电视)和移动设备来说,液晶显示(LCD)技术已经成为主要的显示技术。然而,当前的基于LCD的显示器仅使来自背光源(例如,LED或CFL等)的~5%的光通过,导致功率效率差,白天显示照度不足,以及视角差。

相当多的研发已经耗费在有机发光二极管(OLED)显示技术上。相对于LCD,OLED显示器提高了显示功率效率(尽管不显著)。OLED技术当前也遭遇褪色,导致显示持久性/寿命降低。另一研究中的下一代显示技术是晶质LED,也称作无机LED(iLED)。晶质LED显示依赖于晶质半导体LED芯片阵列。晶质LED显示器可以例如针对一个图片元素或像素利用一个LED芯片。晶质LED的功率效率比OLED的功率效率高一个数量级,然而,对于显示应用来说,尚未展示出批量制造工艺。晶质LED的技术挑战之一在于,需要将大量非常小的晶质LED从单片生长/制造介质转移到以使得能够控制光发射的方式在电气上互连的在空间上更大的阵列。对于当前的显示分辨率(例如,HD),可以预期在“1”块显示区域内有成千上万的晶质LED元件,每个晶质LED元件为微米级(例如,一侧5μm或更少)。

因此,能够组装晶质LED显示器的微键合技术是有利的。

附图说明

在附图中通过示例方式而非通过限制方式示出了本文所描述的材料。为了简要且清楚地图示,附图中所示的要素不一定按照比例绘制。例如,某些要素的尺寸相对于其他要素而言可能被放大。此外,在认为适当的地方,在附图中重复了附图标记,以指示对应的或类似的要素。在附图中:

图1是根据实施例的示出适合于将微器件元件集成为组件的微拾取和键合(μPnB)方法的流程图;

图2A、2B和2C是根据实施例的μPnB源基板中的示例性晶质LED元件的横截面视图;

图3A、3B和3C是根据实施例的μPnB目标基板中的示例性结构的横截面视图;

图4A、4B和4C是根据实施例的当执行μPnB方法中的拾取操作时的示例性操作的横截面视图;

图5A、5B和5C是根据实施例的当执行μPnB方法中的键合操作时的示例性操作的横截面视图;

图6A是根据实施例的示例性μPnB组装工具的等距视图;

图6B是根据实施例的示出使用图6A中所示的μPnB组装工具来制造μPnB头的方法的流程图;

图7A、7B、7C、7D、7E、7F、7G是根据实施例的当执行从图6B中所示的方法中选择的操作时的示例性μPnB头的横截面视图;

图8A、8B、8C和8D是根据实施例的当执行所选择的制造操作时的示例性μPnB头的横截面视图;

图9是根据实施例的示出制造包括适合于组装到显示器中的晶质LED元件的μPnB源基板的方法的流程;

图10A、10B、10C以及10D、10E、10F、10G、10H、10I、10J、以及10K是根据实施例的当执行图9中的方法的说明性操作时的示例性晶质LED元件的横截面视图;

图10L是根据实施例的图10K中描绘的晶质LED元件的俯视图;

图11是根据替换实施例的示出制造包括适合于组装到显示器中的晶质LED元件的μPnB源基板的方法的流程;

图12A、12B和12C是根据替换实施例的当执行图11中的方法的说明性操作时的示例性晶质LED元件的横截面视图;以及

图13示出根据实施例的整合了晶质LED显示器的移动计算设备的前视图和后视图。

具体实施方式

参照附图来描述一个或多个实施例。虽然详细描绘并讨论了特定配置和布置,但是应理解,这仅是为了说明性目的而这样做。本领域技术人员将认识到,在不脱离本说明书的精神和范围情况下,其他配置和布置是可能的。对于本领域技术人员将显而易见的是,本文描述的技术和/或布置可以在除了本文详细描述之外的各种其他系统和应用中被采用。

在下面的详细描述中参照附图,附图构成详细描述的一部分并且示出示例性实施例。此外,将理解,可以利用其他实施例,并且可以进行结构变化和/或逻辑变化,而不脱离要求保护的主题的范围。还应注意到,方向和基准(例如,上面、下面、顶部、底部等)仅用于有助于描述附图中的特征。因此,以下详细描述不应被认为是限制意义的,并且要求保护的主题的范围仅由所附权利要求及其等价物来限定。

在以下描述中,阐述了大量细节。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节的情况下实施本发明的实施例。在某些实例中,以方框的形式而非详细示出众所周知的方法和器件,以免掩盖本发明的实施例。整个说明书中对“实施例”或“一个实施例”的引用意思是,结合实施例描述的特定特征、结构、功能或特性被包括在本发明的至少一个实施例中。因此,整个说明书中在各处出现的短语“在实施例中”或“在一个实施例中”不一定指代本发明的同一实施例。此外,这些特定特征、结构、功能或特性可以以任何合适的方式组合在一个或多个实施例中。例如,在与第一实施例和第二实施例相关联的特定特征、结构、功能或特性不互相排斥的地方,可以组合两个实施例。

如在说明书和所附权利要求中所使用的,单数形式“一”、“一个”以及“所述”意图也包括复数形式,除非上下文清楚指示其他情况。还将理解,如本文使用的术语“和/或”指代并且包括相关联的列出项中的一个或多个列出项的任何和所有可能的组合。

术语“耦合”和“连接”及其派生词在此可以用于描述部件之间的功能关系或结构关系。应理解,这些术语不意图对于彼此而言是同义词。相反,在特定实施例中,“连接”可以用于指示两个或更多个元件彼此直接物理接触、光接触、或电接触。“耦合”可以用于指示两个或更多个元件彼此直接或间接(它们之间具有其他介入元件)物理接触或电接触,和/或两个或更多个元件彼此协作或交互(例如,处于因果关系)。

如本文使用的术语“在...上方/之上”、“在...下方/之下”、“在...之间”、以及“在...上”指代一个部件或材料相对于其他部件或材料的相对位置,其中这种物理关系是显著的。例如,在材料的背景下,一种或多种材料设置于另一种材料上方或下方可以是直接接触,或者可以具有一种或多种介入材料。此外,一种材料设置于两种材料或更多种材料之间可以是与这两个层直接接触,或者可以具有一个或多个介入层。相比之下,第一材料在第二材料“上”是与该第二材料直接接触。类似的区别可以在部件组件的背景下进行。

如在说明书和权利要求中所使用的,由术语“...中的至少一个”、“...中的一个或多个”相连的项目列表可以意味着所列项目的任何组合。例如,短语“A、B或C中的至少一个”可以意味着A;B;C;A和B;A和C;B和C;或者A、B和C。

本文描述的是微拾取和键合组装技术、微拾取和键合(μPnB)组装设备、以及微器件组装。相比于已知的转印方法,μPnB方法能够在没有高压静电头的复杂性的情况下集成微器件,并且与高温焊接键合兼容。在实施例中,微拾取和键合头将微器件元件(例如,(微)LED)全体地从源基板转移到目标基板(例如,LED显示基板)。源基板上的锚固和释放结构使得器件元件能够与源基板分离,而压敏粘合剂(PSA)使得器件元件能够被临时固定到微拾取和键合头的基座。一旦器件元件被永久固定到目标基板,就可以通过对接合材料(interfacial material)进行剥离和/或热分解来消除PSA接合层。本文所描述的μPnB头和组装技术对于将成千上万乃至数百万的微器件集成到组装基板上(例如,将μLED组装到显示器中)是特别有益。

在以下进一步描述的某些示例性实施例中,μPnB组装头是完全无源的,没有电部件或电路(例如电极)。纯机械的μPnB组装头具有比电控头(例如,采用静电力来拾取微管芯的那些电控头)复杂度低的优点。相比于静电头,根据本文所描述的一个或多个实施例的无源μPnB组装头没有静电夹持电极。因此,不需要有源高压控制,并且不需要在组装过程期间在每个管芯中生成和放掉镜像电荷。

以下在μLED和μLED显示器的背景下详细描述多个μPnB组装实施例。然而,注意到,为了一致性和清楚描述起见而以μLED实施例例示的μPnB的各种特征可以容易地应用于任何微电子、光子、或其他器件(例如,MEMS)。

图1是根据实施例的示出适合于将微器件元件(例如,微管芯)组装到组件中的微拾取和键合(μPnB)方法101的流程图。在一个示例性实施例中,器件元件是组装到显示组件中的μLED管芯。方法101开始于:在操作105,接收管芯键合源基板,以及在操作108,接收管芯键合目标基板。μPnB方法101将一个或多个管芯从源基板转移到目标基板。管芯具有微米级的横向尺寸,例如,不超过10μm。在示例性μLED实施例中,μLED(本文也简单地称作LED)具有不超过5μm的最大横向长度。例如,μPnB方法101是高度可缩放的,适合于1-5μm范围的器件(例如,LED)。对于这类实施例,可以利用方法101例如来组装晶质LED显示器。尽管本文为了清楚起见在少量或者甚至单个器件的背景下进行描述,但是所例示的源基板实施例、目标基板实施例、以及μPnB组装技术还被理解为可应用于同时拾取和键合/组装大量器件。

在实施例中,在操作105处接收的源基板包括多个器件,每个器件包括在晶圆级以某个标称源基板器件节距制造的器件堆(device stack)。源基板中的一个或多个器件将要被拾取并键合到目标基板,例如处于某个目标基板器件节距,目标基板器件节距可以是源基板器件节距的整数倍,以减少在源基板上浪费的空间。图2A是根据实施例的集成在μPnB源基板201中的示例性晶质LED元件的横截面视图。图2B和2C是根据进一步实施例的μPnB源基板201的两个替换实施例(201A和201B)的放大横截面视图。

首先参见图2B,源基板201A包括载体220,其可以是具有足够平坦度的任何金属、半导体或电介质材料,因为载体220的平坦度越大可以有助于后续从载体220整体转移LED元件。在一个有利实施例中,载体220是(单)晶质硅基板,例如,为IC制造所采用的类型的晶圆。在另一有利实施例中,载体220是玻璃基板。

源基板201A还包括锚固到载体220的晶质LED元件230。LED元件230可以是矩形(例如,正方形),或者被图形化为具有替换的形状(例如,圆形占位)。每个元件230包括LED膜叠层(stack)207。通常,可以利用任何已知的半导体LED膜叠层。在实施例中,LED膜叠层207包括一个或多个半导体异质结,例如形成量子阱等。半导体LED膜叠层207包括至少两个互补掺杂的半导体区域(层):二极管叠层架构中的p型掺杂层和n型掺杂层。在特定实施例中,半导体LED膜叠层207是异质外延III-N族半导体膜叠层,例如包括GaN和/或其合金(例如InGaN)。然而,半导体LED膜叠层207的成分取决于期望的发射带,并且这里的实施例不限于此方面。

每个LED元件230还包括接触LED膜叠层的电极金属210。电极金属210的成分可以根据LED膜叠层而变化,例如以提供适合于提供欧姆接触、隧道接触等的期望的金属功函数。在一个示例性实施例中,金属210是适合于与LED膜叠层的p型掺杂半导体层接触的p型金属。每个LED元件230还包括与LED膜叠层接触的第二金属电极225。第二电极金属225的成分可以根据LED膜叠层而变化,例如以提供适合于提供欧姆接触、隧道接触等的期望的金属功函数。在一个示例性实施例中,金属225是适合于与LED膜叠层的n型掺杂半导体层接触的n型金属。

相邻的LED元件230由刻蚀到LED半导体膜叠层中的沟槽来隔开。沟槽的尺寸/节距基本上决定了将要合并到显示组件中的LED元件的尺寸。如在图2B中所示,LED元件230之间的沟槽延伸通过金属电极225和210并通过整个半导体LED膜叠层207,从而限定出每个LED元件的侧壁。在LED元件侧壁之上设置有电介质侧壁间隔层235。侧壁间隔层电介质235可以是任何已知的电介质材料,例如但不限于非晶质Si/C、SiOx、SiON、SiN、CDO和CDN。电介质侧壁间隔层230被共形地淀积在LED元件上方,并被各向异性地刻蚀,以在每个LED元件的金属和半导体侧壁之上形成至少部分自对准的侧壁涂层。

在示例性实施例中,每个LED元件230的横向元件宽度We被图形化为不大于5μm。在有利实施例中,间隔层形成所利用的电介质材料的厚度被选择为确保电介质间隔层235的横向厚度或宽度Ws小于在操作935(图9)处刻蚀到LED膜叠层中的沟槽232的标称横向宽度Wt的一半。对间隔层宽度的限制确保了相邻LED元件上的两个电介质间隔层留下一部分基板材料露出在沟槽底部,以允许脱模剂(例如,基板刻蚀剂)可及。在示例性实施例中,Ws小于0.1μm。

为了可控地从载体220释放LED元件230,LED元件230被锚固到载体220。在相邻元件之间的沟槽内形成有LED元件锚固件,例如与LED元件侧壁的部分相交,同时仍然留下用于脱模剂底切LED元件的可及处。可以将锚固材料回填到沟槽中,例如使用旋涂工艺使其与LED元件230的顶表面平齐。然后,可以使平齐后的锚固材料凹进到LED的顶表面以下,和/或图形化成多个单独的锚固件。凹进的锚固件避免了在拾取期间对μPnB头的污染,并且还允许减小锚固强度以使拾取变得容易。在一个有利实施例中,锚固材料是旋涂到沟槽中的光敏聚合物材料(例如,光刻胶)。可以使用众所周知的技术来完成光刻胶凹进,例如均厚灰化(正光刻胶和负光刻胶两者)、图像反转(正光刻胶)或均厚显影(负光刻胶)。然后,将光刻胶以光刻方式图形化(即,曝光和显影)成填充沟槽并维持相邻LED元件230之间的间距的分开的LED元件锚固件245,如在图2B中进一步所示。LED元件230仅通过锚固件245来保持固定到载体。落在载体220上的锚固件245被在每个LED元件230的整个横向区域或占位上延伸的自由空间空隙249围绕。在对于锚固材料利用光敏聚合物的示例性实施例中,每个锚固件245是接触涂覆至少两个相邻LED元件230的侧壁电介质(间隔层235)的聚合物柱(例如,每个锚固件245连接四个最近的LED元件230)。在图2B所示的形式中,LED元件230准备好被拾取并键合到LED显示组件。

在图2C中所示的替换实施例中,源基板201B也包括锚固到载体220的多个LED元件230。每个LED元件230同样包括LED膜叠层,然而,电介质间隔层235沿着LED膜叠层半导体208的侧壁延伸,并落到p型掺杂半导体209上。电介质间隔层235将LED膜叠层半导体208与提供自对准的p型金属电极210的金属间隔层隔开。作为一个示例,可以使用基于氯的干法刻蚀工艺来刻蚀Al和/或Au以形成电极210,同时留下Cu电极210和SiN间隔层电介质235未刻蚀。自对准的金属电极210维持与掺杂半导体区域209的接触(例如,p接触)。金属电极210可以具有例如小于0.1μm的横向宽度Wm,并且有利地,仅几百纳米。LED锚固件被设置在元件230之间并且由空隙249围绕。在图2C中所示的形式中,LED元件230准备好被拾取并键合到LED显示组件。

回到图1,在操作108处接收的目标基板包括在目标基板的表面上方排列的多个焊岛(land)。目标基板可以例如是大规格的基板,其中每个焊岛已经以某个标称目标基板器件节距被图形化和/或镀上。源基板中的一个或多个器件将要被拾取并键合到目标基板的焊岛上,例如处于比源基板器件节距大很多的目标基板器件节距。

图3A是根据实施例的μPnB目标基板301中的示例性结构的横截面视图。图3B和3C是根据进一步实施例的μPnB目标基板301的两个替换实施例(301A和301B)的放大横截面视图。μPnB目标基板301A可以例如与从源基板301A(图2B)拾取的LED元件键合。μPnB目标基板301B可以例如与从源基板201B(图2C)拾取的LED元件键合。

首先参见图3B,目标基板301A包括载体305。载体305可以是显示背板,或者用于构建显示器的临时基板。图3B还示出载体305覆盖有脱模层314的临时载体实施例。脱模层314可以是任何牺牲材料,并且在一个示例中是PSA材料,如以下进一步描述的。脱模层314还可以是无机电介质层,例如但不限于SiOx,其可以例如与载体305形成压紧键合。在构建之后,可以在脱模层314移走LED显示组件,并且载体305接着在脱模之后可供重复使用。因此,载体305可以具有本领域中已知的适合于构建的任何基板材料,其具有足够的平坦度并且具有足够大的区域以容纳期望的显示区域。图3A中所示的示例性实施例还包括电介质保护层327,用于在构建并从载体305释放之后保护LED显示组件。示例性保护层材料包括SiON、SiN和CDN。在替换实施例中,没有电介质保护层327。

设置在载体305上方的是显示背板接合层,其具有用于把第一LED电极与显示背板(例如,驱动电路、存取晶质管、和/或分立电子线路等)接合的第一金属互连。在图3A所示的示例性实施例中,第一金属互连340是排列在载体305上方的焊盘(pad)。对于LED显示器将要包括5×5μm LED元件阵列的示例性实施例,第一金属互连340可以是具有约25μm节距的10μm金属焊盘。第二金属互连345也可以是排列(例如,具有类似的节距)在载体305上方的金属焊盘。第二金属互连345用于电耦合到第二LED电极,所以应该与第一金属互连340电隔离。

在实施例中,μPnB目标基板具有包括焊接特征件(solder feature)或导电粘合剂元件的焊岛。目标基板301A示出施加于金属互连340的导电粘合剂350。导电粘合剂350用于接收LED元件,将LED元件固定到键合目标基板,同时在LED元件周围构建LED显示组件。在示例性实施例中,导电粘合剂350用于将金属互连340之一电连接到LED元件的第一(背)侧上的金属电极。在一个有利实施例中,导电粘合剂是结构性粘合剂,例如光敏导电膜(例如,导电光刻胶)。这种材料的示例是掺杂有导电聚合物(例如,聚苯胺)的光刻胶(例如,SU-8 25)。某些导电光刻胶制剂已经在技术文献中被描述为具有1欧姆-厘米范围的电阻率。在该电阻率下,因根据本文的实施例所采用的约0.5μm厚度的导电聚合物而产生的寄生电阻,对于5×5μm LED元件而言被预计在~200欧姆的范围内。对于这个大小的元件,这个电阻比典型的(p型)接触电阻(例如,>2千欧)小得多。导电聚合物元件的图形化和对准不是关键的。对于示例性10μm的金属互连焊盘,导电聚合物元件在25μm节距上可以具有10-15μm的横向尺寸。

在也是图3B所示的另一实施例中,代替导电粘合剂350,采用焊接元件351来将管芯永久固定到目标基板。焊接特征件351可以是已知与用于毫米级拾取和放置/压紧键合技术的任何高温(例如,超过150℃)键合工艺兼容的焊接材料或焊接材料的层压叠层的柱或其他结构。在一个示例性实施例中,焊接特征件351包括铟(In),其在160-180℃范围内熔化。焊接特征件351可以还包括Au层,该Au层也将在类似的温度下熔化,以形成具有显著更高(再)熔化温度的Au-In合金。Au-Ti的双层也可以提供类似的性能。然而,不论焊接材料如何,注意到,相对高的焊接键合温度对本文所描述的μPnB技术产生附加的约束。例如,支柱(stand-off)333有利地是在高温下稳定(例如,对于至少190℃是稳定)的材料,使得可以利用高温键合技术。在一个示例中,支柱333是光刻胶,例如SU-8。

在实施例中,μPnB目标基板还包括与管芯焊岛相邻的至少一个机械支柱。这类支柱不需要与源基板上的每个管芯焊岛相邻,并且可以例如稀疏地分布在目标基板上方,使密度足以确保μPnB头与目标基板之间的平坦结合。图3B示出示例性支柱333,其z高度大于管芯(LED)焊岛的z高度加上管芯(LED元件)相对于将要固定到焊岛的μPnB头的平面的z高度。机械支柱与常规的坍塌控制件的区别可以在于,支柱并不决定管芯与焊岛之间的最终z高度,而是向传递管芯的μPnB头的表面提供机械止挡部,如以下进一步描述的。在管芯焊岛的z高度是几微米或者更少(例如,~1μm)的示例性实施例中,对于从μPnB头(例如,图5B中的LED 230)延伸5μm的管芯z高度,支柱333可以是6μm或更少。在某些实施例中,支柱333是在管芯键合后去除的牺牲材料。在一个这种实施例中,支柱333是光敏的(例如,光刻胶,例如但不限于SU-8)。在这类实施例中,可以使用已知的技术来光刻图形化、曝光并随后去除支柱333。

在另一实施例中,采用光学透射粘合剂来将管芯固定到目标基板。参见图3C,键合目标基板301B同样包括金属互连340、345,例如以基本如上面针对目标基板301A所描述的节距和尺寸排列在载体305的表面上方。在这个示例性实施例中,目标基板301B包括显示覆盖层375,其可以是已知适合于显示覆盖应用的任何材料,例如但不限于玻璃和蓝宝石(Al2O3)。在目标基板301B中可以进一步包括触摸传感器层370,在显示覆盖层375上方设置有金属互连340、345。代替导电粘合剂或焊料,每个管芯焊岛包括光学透射粘合剂352。图2C中的基板201B上的LED适合于键合到这种目标基板。由于LED光发射将去往显示覆盖层375,在一个有利实施例中,穿过光透射(例如,透明)粘合剂352。

回到图1,μPnB组装方法101继续于:在操作110开始管芯拾取,在这里,μPnB头上的多个基座与锚固到源基板的多个管芯或者器件元件对准。图4A、4B和4C是根据示例性LED实施例的当执行μPnB方法101中的拾取操作时的示例性操作的横截面视图。如在图4A中所示,μPnB头401包括排列在μPnB头基板407之上的多个单片微工具(monolithic microtool)380。微工具380以预定为匹配或容纳键合目标基板上的特定焊岛节距的目标节距Pt来布置。基座节距Pt进一步为源基板上的源器件(LED元件)节距的倍数,使得所述多个微工具380可以同时与多个LED元件230对准。

回到图1,μPnB组装方法101继续于操作115,在这里,使用压敏粘合剂(PSA)将多个源管芯接触并粘结到μPnB头基座。如本文所使用的,PSA是当施加压力以将粘合剂和被粘物(例如,基座表面和/或管芯表面)粘结时形成键合的粘合剂。PSA不同于典型地用于形成永久键合的结构性粘合剂。与结构性粘合剂经由诸如溶剂蒸发、UV辐射诱发反应、成分反应或热固性的处理而变硬形成对照的是,不需要溶剂(例如,水)、热、或其他固化(例如,UV)来激活PSA。一旦PSA和被粘物靠近,分子间相互作用(例如,范德华力)使键合完善。典型地,压敏粘合剂由它们的剪切阻力和剥离阻力以及初始粘性来表征。键合强度可以进一步受接合表面化学物以及用于朝μPnB头基座按压多个管芯的压力量影响。在有利实施例中,在操作115处采用的PSA材料在高温下稳定,以有助于后续将管芯键合到目标基板。在一个示例性实施例中,在操作115处采用的PSA材料对于至少180℃是稳定的,并且理想地,在250℃或者更高温度(例如,300℃)下稳定。在操作115处采用的PSA材料维持足够的剪切强度,以将管芯-基座键合保持在升高的管芯键合温度。在一个示例性实施例中,在操作115处采用的PSA材料是基于硅的材料,包括硅氧烷聚合物(Si-O-Si)。如在图4A中进一步示出的,μPnB头401已经在z方向位移,以使微工具380的键合表面与LED元件230的键合表面接触。PSA材料已经被预先施加到这些键合表面中的至少一个,并且被压在源基板201与μPnB头基板407之间。

回到图1,μPnB组装方法101继续于操作120,在这里,通过在管芯借助PSA材料粘接到基座的同时,使μPnB头基座相对于源基板位移,来使管芯与源基板之间的锚固件断裂。PSA材料的剥离强度与源基板锚固件的键合强度兼容,以确保PSA键合能够克服源基板锚固件。在示例性μLED实施例中,对于合适选择的锚固材料和设计结构,小于1N/cm的PSA剥离强度可以是足够的。在示例性实施例中,5μm×5μm LED上的锚固力可以小于10μN,对比之下,剥离力为100μN,剥离强度为0.2N/cm。如在图4C中进一步描绘的,μPnB头401至少在z方向上相对于源基板201位移。在一些实施例中,μPnB头401还可以相对于源基板201横向位移,以便克服锚固件剪切强度。在完成操作120之后,PSA键合将多个LED元件230固定到多个μPnB头微工具380。

回到图1,μPnB组装方法101继续于键合阶段,在这里,在操作120处拾取的管芯现在被转移到目标基板。在操作125,固定到μPnB头基座的所述多个管芯与键合目标基板上的焊岛对准。在操作130,所述多个管芯被固定到键合目标基板的焊岛。操作130可以进行已知适合于毫米级的管芯的任何焊接键合/压紧键合工艺。图5A、5B和5C是根据示例性LED实施例的当执行μPnB方法101中的键合操作时的示例性操作的横截面视图。如在图5A中所示,目标节距Pt下的微工具380的工作表面与键合目标基板301上的焊岛对准。图5B示出当向目标基板301按压μPnB头401时LED元件230结合到目标基板301。在一个示例中,目标基板301被加热到稍微低于焊料回流/熔化温度,而μPnB头401被加热到焊料回流温度以上的温度。可以在μPnB头401与目标基板301之间施加压力。μPnB头401将焊接特征件本地加热到焊料回流温度以上,形成焊点,接着被冷却。替换地,操作130可以进行粘合剂键合工艺,包括例如,在将管芯临时固定到μPnB头401时,对预先施加到目标基板或者预先施加到管芯的结构性粘合剂进行UV或热固化和/或干燥。在一个有利实施例中,采用室温压紧键合来将所述多个LED元件230固定到目标基板301上的导电粘合剂元件。在另外的实施例中,利用室温键合进行初始键合,之后对导电粘合剂进行高温(例如,140-180℃)固化和/或UV固化。

回到图1,接着在操作135,每个微管芯/芯片与每个组装头基座之间的PSA键合被断裂或者破坏,留下固定到目标基板的管芯。在一个示例性实施例中,通过在管芯被固定到焊岛的同时,使μPnB头基座相对于目标基板位移,来破坏管芯与μPnB头基座之间的PSA键合。在进一步于图5C中所示的一个实施例中,通过使μPnB头401相对于目标基板301同时横向地(例如,y方向)和垂直地(例如,z方向)位移,来将管芯与μPnB头基座剥离。可以通过多个参数来精确控制剥离力,包括例如管芯的占位,其可以是圆形的,使得剥离力初始为低,并且有利地,总是低于仅在最大管芯直径下发生的最大力。在剥离μPnB组装头之后,在微管芯顶表面599或基座380的表面上可能留有一些PSA残留物。假定PSA在键合工艺中是稳定的,那么这种PSA残留物可以使用溶剂来去除。如果没有去除,则PSA残留物可能不同程度地留在管芯顶表面599上,因此,在管芯的至少一部分上存在这种残留物指示了根据实施例的采用PSA的组装方法。

在另一实施例中,分解与PSA材料接合的牺牲材料,以使管芯与μPnB头基座之间的PSA键合断裂。在有利实施例中,牺牲接合材料存在于PSA材料的管芯侧。这使得PSA材料能够留在μPnB头基座上,以便在方法101的后续迭代期间重复使用。作为一个示例,牺牲接合材料是预先施加到管芯的可热分解材料。可以在操作135处对可热分解材料进行热分解。如以下进一步描述的,聚碳酸酯是可以利用来在250℃的温度或更高温度下实现μPnB头基座与管芯之间的分离的可热分解材料。在一个这种实施例中,在键合操作130中采用的升高的温度不足以分解可热分解材料(例如,<250℃),但是足以形成(再)熔化温度(例如,>350℃)高于可热分解接合材料的热分解温度的焊料合金(例如,>160℃)。一旦在操作130处(例如,在180-200℃下)形成了高熔化温度合金,操作135就可以进行加热到更高温度(例如,250-300℃)以热分解牺牲材料。

接着,μPnB组装方法101可以通过以上所述的拾取和键合操作来迭代,直到管芯(例如,LED元件)键合到目标基板上的所有焊岛。在将所有源管芯附接到目标基板之后,可以进一步处理目标基板,以完成组装到目标基板上的微器件的互连和/或封装。在目标基板上制造的、有助于μPnB组装的任何辅助结构(例如,支柱333)也可以被去除。

注意到,成功执行μPnB组装方法101至少部分地取决于源基板和目标基板具有足够平坦度,和/或μPnB组装头具有足够平坦度。在有利实施例中,μPnB组装头包括能够容纳μPnB组装头基座与目标基板之间的阈值水平的非平坦度的微工具。图6A是根据实施例的可以利用来执行μPnB组装方法101的示例性μPnB组装工具601的等距视图。图6B是根据某些实施例的示出用于制造合并到μPnB组装工具601中的μPnB组装头401的方法602的流程图,其中在μPnB组装头基座上提供有PSA材料。图7A-7G是根据第一实施例的当执行方法602中的选定操作时的示例性μPnB组装头的横截面视图。图8A-8D是根据替换实施例的当执行方法602中的选定操作时的示例性μPnB头的横截面视图。

首先参见图6A,μPnB组装工具601包括装配有μPnB组装头401的管芯压紧键合器655。在图6A所示的示例中,压紧键合器655包括铰接机器臂或者机架680。如在典型的热压紧键合工具中那样,机架680可以包含:用于绕XYZ方向移动工具的机构;以及用于调整键合头的平面的平衡环。毫米级键合器接口670与μPnB组装头基板407的后侧例如通过精确平坦的真空块660配合,真空块660包括多个气道665,用于键合器接口670与μPnB组装头基板407之间的压力/真空控制。接着,微工具380提供工作表面,同时μPnB组装头基板407被固定到键合器655。在以下进一步描述的示例性实施例中,每个微工具380包括基座,以接触耦合到挠性构件的微管芯,挠性构件将与并非完美平坦的源键合基板和目标键合基板共形。

μPnB组装工具601可以通过操作任何已知的拾取和放置/压紧管芯键合器以首先拾取μPnB组装头401来构建。μPnB组装头401将要被相继地放置在键合源基板以及键合目标基板上,通过每次迭代在源基板与目标基板之间转移多个微管芯。当μPnB组装头401被放置在键合源基板上时,头401上的微工具以胜过源基板锚固的方式临时与源管芯(例如,使用PSA材料)键合。当键合器655将μPnB组装头401(再)放置到键合目标基板上时,管芯与目标之间形成的永久键合胜过与μPnB组装头401的临时键合。接着,对于另一次μPnB迭代,键合器655将μPnB组装头401(再)放置到键合源基板上。在μPnB组装头401变老化的情况下,(例如,在键合源基板与键合目标基板之间的一次或多次放置之后),键合器655在微管芯μPnB迭代之间丢弃老化的μPnB组装头401,并且从μPnB头托盘中拾取更换的μPnB组装头401。以此方式,μPnB组装头401与压紧键合器655交互,就像任何微米级管芯一样。然而,一旦被键合器655拾取,μPnB组装头401就用作另外的工具,使得压紧键合器655能够执行μPnB组装方法(例如,μPnB组装方法101)。

图6B进一步示出μPnB组装头制造方法602,通过该方法602,在μPnB组装头基板上单片地制造包括耦合到挠性构件的基座的微工具。在操作605处接收的头基板可以是适合于MEMS制造的任何基板,例如但不限于,玻璃、硅、锗、SiGe、III-V族化合物(如GaAs、InP)、III-N族化合物(如GaN)、3C-SiC、以及蓝宝石,等。在进一步于图7A中所示的一个有利实施例中,头基板407包括对于8×25mm部位而言具有小于0.1μm的局部平坦度的玻璃或晶质硅。在示例性实施例中,通过对硅基板进行热表面氧化,形成设置在头基板407上的化学计量的二氧化硅(SiO2)层718,来进一步提高头基板平坦度。

再次参见图6B,μPnB组装头制造方法602继续于操作610,在这里,在设置在头基板上的低应力材料层上方淀积电介质基层。虽然示例性实施例示出电介质基层和低应力层两者,但是在替换实施例中(例如,PSA材料层足够厚以提供足够的顺应性),没有这些衬垫层,在基板上直接淀积后续的材料层(例如,PSA)。可以作为方法602的一部分而淀积低应力材料和上覆的电介质基层两者,或者在操作605处接收的输入基板可以包括其中一种或两种材料。低应力材料层可以具有适合于使用任何已知的MEMS/IC制造技术来形成具有受控弹性常数的挠性构件的任何成分。在一个示例性实施例中,低应力材料是约1μm厚度的Al/Cu合金膜。根据需要,可以对低应力材料层进行退火。在另一示例性实施例中,低应力材料是SOI基板的硅器件层。淀积在低应力材料层上方的电介质基层有利地是能够淀积成1-5μm厚度、在高温下稳定(例如,超过250℃)且适于图形化的材料。在有利实施例中,电介质基层材料是能够旋涂到头基板上并且接着被固化和/或干燥的有机聚合物。一个示例性有机聚合物是聚酰亚胺(PI)。

在操作615,在基板上方(例如,在头组装材料叠层上方)淀积PSA材料。PSA材料可以是具有适合于施加的剥离力(例如,<1N/cm)的任何已知的材料。在PSA材料将要经受高温管芯键合的另外实施例中,PSA材料在高温下也是稳定的。例如,如上所述,PSA材料可以是有机硅树脂基的(例如,硅氧烷聚合物)。在有利实施例中,通过将有机硅树脂基聚合物混合物旋涂到头基板上,接着将混合物固化和/或干燥成PSA材料层,来施加PSA材料。

图7B进一步示出头基板后续操作610,在这里,在硅基板407上的化学计量的SiO2层上方淀积低应力材料层721(例如,AlCu)。在低应力材料层721上设置高温兼容的电介质基层723,并且在电介质基层723上方淀积盖帽层(capping layer)727。尽管可选,但是盖帽层727可以有利地将电介质基层723与上覆的PSA层731分离(图7C)。取决于电介质基层723和PSA材料层731的成分,介入材料(例如但不限于SiON)可以提高粘性和/或有助于对PSA层731和/或电介质基层723的图形化。在PSA被放置在LED上而不是μPnB头上的实施例中,用于层727的材料可以被选择为精细调节粘性和剥离力。在有利实施例中,用于层727的材料可以被选择为使得能够进行用于检测用电介质基层723制造的基座的平面的光学测量。例如,金属层727可以用作镜面,或者与相邻层723和731的光指数不同的电介质层可以增强反射,以得到更好的信号。

回到图6B,μPnB头制造方法602继续于操作620,在这里,通过刻蚀穿过至少PSA层,并且进一步穿过下面的电介质材料层(当存在时),以露出低应力层(当存在时),来将多个μPnB头基座图形化成头组件。图7D示出设置在低应力层721上的基座741。可以根据目标键合基板的规格来设定基座741的尺寸,并使其与其他基座(未描绘)间隔开。例如,在基座741将要拾取具有1-5μm横向尺寸的μLED的实施例中,基座741具有同样为1-5μm的横向尺寸(例如,y尺寸)。在一个有利实施例中,基座741具有直径约3μm的圆形占位。为了图形化基座741,可以在材料层731上方旋涂光刻胶。在一些实施例中,在PSA材料层731上方设置薄氧化物层(未绘出),以有助于抵抗与PSA材料不兼容的加工。可以通过干法刻蚀或溶剂来去除PSA材料。在某些聚酰亚胺实施例中,电介质基层723是光可界定的聚酰亚胺。可以使用对PSA材料图形化时所采用的相同的掩模和相同的曝光量来光刻图形化正色调光可界定PI。在某些聚酰亚胺实施例中(例如,非光可界定PI),图形化可以在去除盖帽层727和PSA层731之后执行任何已知的干法刻蚀。

尽管在所描绘的示例性实施例中,PSA材料层731具有与电介质基层723基本相同的横向尺寸(即,几乎垂直的基座侧壁),但是在替换实施例中,基座741可以为厚(例如,为5μm而不是1μm)并且被图形化为具有正斜率的侧壁,其中PSA材料层731的横向尺寸小于电介质基层723的横向尺寸,以提高基座顺应性。在另外其他实施例中,电介质基材723具有双层结构,并且双层电介质基材的第一层相对于电介质基材的第二层是横向底切的。例如,双层基材的底层可以被底切等于双层电介质的第二层的横向宽度的至少10%-30%的量。基座底切的示例在图7E中使用虚线来图示。对基座进行底切,以将电介质基层与挠性构件之间的接合面积减小到小于PSA材料的露出表面面积,这可以有利地提供基座内的附加的应力释放。这种应力减小可以确保基座在释放的挠性构件上是稳定的,并且在多个头基座上将维持足够的平坦度,以与源/目标键合基板良好地接触。基座底切还可以提高基座顺应性。可以在将低应力层图形化成挠性构件之前或之后对基座进行底切。

回到图6B,μPnB组装头制造方法602继续于操作630,在这里,将低应力层(如果存在)图形化成多个挠性构件,每个挠性构件在物理上耦合到至少一个基座。挠性构件和基座一起构成微工具380(图4A、6A)。挠性构件在μPnB组装操作期间将要相对于组装头基板弹性形变/弯曲。挠性构件向基座提供了足以容纳源键合基板和/或目标键合基板的阈值水平的平坦度的顺应性或行程(travel),使得在每个基座与源/目标基板上的器件和/或焊盘之间可以产生接触。在示例性实施例中,每个挠性构件在垂直于基板表面的方向上可弹性形变至少0.1μm。每个挠性构件可以被制造为具有遵从(compliment)低应力材料膜厚度的横向尺寸,以实现期望的弹性常数和足以经受管芯拾取、键合以及头分离的强度。在PSA材料的剥离强度不大于1.0N/cm的示例性实施例中,每个挠性构件的尺寸被设计为具有100-600N/m的弹性常数。挠性构件的尺寸被设计为支承基座。换言之,基座完全浮在挠性构件上,仅经由挠性构件而耦合到组装头基板。

在实施例中,在操作630处制造每个挠性构件需要刻蚀一部分低应力层,并且在基板中刻蚀凹口,凹口底切基座下方的挠性构件。于是,挠性构件在凹口上方延伸,从而允许挠性构件在垂直于基板表面的方向上弯曲。图7E和7F示出在描画(delineation)和释放挠性构件之后的示例性微工具380。图7G示出多个微工具380的俯视图。如在图7E中所示,在低应力层721中形成释放开口780。在基座741下方形成凹口或空隙785。接着,低应力层721形成膜或隔膜,其将基座741支承在凹口785上方。如进一步在图7G中所示的,低应力层721被图形化成离散的膜。在有利实施例中,低应力层721和层718在μPnB组装头上可以是连续的,仅在每个基座741周围离散地限定出凹口785。通过不去除层712和718,基板407的形貌被降低,使得更易于测量并用作用于机械止挡部333(图5A)的基准表面。尽管在示例性实施例中示出圆形挠性构件,但是挠性构件可以采用其他形状,其中,基座仍然耦合到接触基板表面的两个锚固点之间的挠性构件的区域。在替换实施例中,基座可以通过仅具有一个锚固点(例如,悬臂)或者具有两个分立的锚固点(例如,桥)的挠性构件来耦合到基板。

图8A、8B、8C和8D是根据替换实施例的当执行方法602(图6B)的选定制造操作时的示例性μPnB头的横截面视图。图8A示出被接收作为起始材料的示例性绝缘体上硅(SOI)基板807。SOI基板807包括通过电介质层718(例如,SiO2)与(单)晶质硅基板基底805隔开的(单)晶质硅器件层821。在SOI基板807上方淀积基座材料膜或膜叠层,基本如上所述。在示例性实施例中,电介质基材723是光敏PI。在电介质基材723上方淀积阻挡层727(例如,TiN),并且在电介质阻挡层727上方淀积PSA材料731。在基座材料膜叠层上方形成光刻胶掩模。在有利实施例中,在光刻胶淀积之前,可以在PSA 731上淀积薄电介质层(例如,SiOx)。中间层能够消除光刻胶与PSA之间的化学不兼容性,提高光刻胶粘性,并且还能够用作用于后续图形化的硬掩模。可以在掩埋氧化物718的底切刻蚀期间容易地去除SiOx中间层。去除未掩蔽的PSA材料731和阻挡层727,并且对电介质基材723的整片曝光完成基座741的图形化。

在图形化之后,许多聚酰亚胺材料要求高温固化。在固化温度对于PSA 731而言可能太高的一些实施例中,改为在淀积层727和731之前固化PI。接着,在去除层727和731之后,可以对固化的PI进行干法刻蚀,而不是以上所述的整片曝光。在图8C中所示的示例性实施例中,以正侧壁斜率来印制电介质基层和/或PSA。在这类实施例中,基座基底具有比基座的顶表面处的PSA材料大的横向尺寸,以提高机械稳定性。如进一步在图8D中所示的,设置在基座741下方的一部分器件层821被刻蚀以开孔(用于电介质层718的底切刻蚀),并从基底基板705释放以形成挠性构件。于是,微工具380基本完成,并且包括多个单片微工具380的单片组装头基板准备好用于单片化和拾取。

如上提及的,在一些实施例中,足够厚的PSA层731单独提供了足够的顺应性以用于足够平坦的源基板和目标基板,并且可以避免与挠性构件关联的复杂性。对于这类实施例,微工具380仅包括基座741,而没有任何下层的挠性构件。在某些这类实施例中,基板805可以是常规晶质硅晶圆,没有器件层821和介入电介质层718。

在实施例中,μPnB源基板包括PSA材料。除了或者替代将PSA材料并入μPnB组装头中,PSA材料也可以并入源基板中。图9是示出用于制造包括适合于组装到显示器中的晶质LED元件的μPnB源基板的方法901的流程。图10A-10K提供了根据实施例的当执行方法901的操作时的示例性晶质LED元件的横截面视图。同样的技术可以直接应用于任何微器件/管芯(例如,任何微米尺寸的IC或光芯片等)。

方法901进行适合于从在操作905处接收的半导体LED膜生成LED源基板的晶圆级加工。半导体LED膜叠层可以是覆盖外延基板的连续膜,以形成单片主体(例如,LED外延晶圆)。通常,可以利用任何已知的半导体LED膜叠层。在图10A中所示的示例性实施例中,外延晶圆1001包括外延基板1005、缓冲层1006和在缓冲层1006上外延生长的半导体LED膜叠层207。在实施例中,LED膜叠层207包括一个或多个半导体异质结,例如,形成量子阱等,如以上在图2A的背景下描述的。外延基板1005可以是任何已知的适合于生长LED半导体膜叠层的基板。例如,基板1005可以是各种材料,包括但不限于硅、锗、SiGe、III-V族化合物(如GaAs、InP)、III-N族化合物(如GaN)、3C-SiC、以及蓝宝石,等。缓冲层1006可以具有适合于从外延基板1005的成分/微结构过渡到LED膜叠层207的成分/微结构的任何已知架构。

回到图9,方法901继续于操作910,在这里,在LED膜叠层上方淀积电极金属。电极金属的成分可以根据LED膜叠层而变化,例如以提供适合于提供欧姆接触、隧道接触等的期望的金属功函数。在一个示例性实施例中,在操作910处淀积的金属是适合于与LED膜叠层的p型掺杂半导体层接触的p型金属。在操作910处可以利用任何已知的淀积技术,例如但不限于PVD、CVD、电解、或无电镀覆。如进一步在图10B中所示的,p型金属膜210是淀积在LED膜叠层207的p型掺杂半导体层上方的包覆层。

回到图9,方法901继续于操作915,在这里,将LED膜和金属电极叠层耦合到载体。在操作920,将LED和金属电极叠层与LED外延基板去耦合。操作915和920实现晶圆级薄膜转移,从而允许LED膜叠层夹在两个相对的金属电极之间。在操作915,可以利用本领域已知的任何技术来将LED膜和电极叠层耦合到载体。在一个实施例中,使用任何(热)压紧键合技术来将LED膜和电极叠层耦合到载体。在替换实施例中,LED膜/电极叠层和载体被静电和/或粘性耦合。在进一步于图10C中所示的一个这种实施例中,键合材料层1012是第二PSA材料(例如,高温兼容的有机硅树脂基PSA)。键合材料层1012被施加在金属电极210或载体220中的至少一者上方。接着,将键合材料层1012压紧在载体220与器件材料叠层之间。对于粘合剂键合,可以在室温下进行压紧,或者对于无机(例如,SiOX)键合,可以在升高的温度下进行压紧。在有利的粘合剂键合实施例中,由静电载体施加的静电夹力可以压紧粘合剂材料。使用静电载体可以确保在后续去除外延基板期间的足够平坦度。在去除外延基板之后,依赖于粘合剂材料键合,可以放掉夹持电压。可以利用任何已知的静电载体,例如带嵌入式电极的玻璃载体。可以利用本领域中任何已知的技术来将LED膜/金属电极叠层与外延基板去耦合,以得到图10D中所示的结构。例如,可以利用激光剥离或CMP/研磨和清洗来去除外延基板,以露出LED膜叠层207的第二掺杂半导体区域(例如,n型掺杂层)。

回到图9,方法901继续于操作925,在这里,在由操作920露出的LED膜叠层的表面上方淀积第二金属电极膜。第二电极金属的成分可以根据LED膜叠层而变化,例如以提供适合于提供欧姆接触、隧道接触等的期望的金属功函数。在一个示例性实施例中,在操作925处淀积的金属是适合于与LED膜叠层的n型掺杂半导体层接触的n型金属。在操作925处可以利用任何已知的淀积技术,例如但不限于PVD、CVD、电解、或无电镀覆。如进一步在图10E中所示的,n型金属膜225是淀积在LED膜叠层207的n型掺杂半导体层上方的包覆层。

回到图9,方法901继续于操作930,在这里,在第二金属电极膜上方淀积PSA材料。可以在PSA材料层上方进一步淀积保护盖帽材料。PSA材料可以是以上所述的那些中的任何材料,例如但不限于,高温兼容的有机硅树脂基PSA。在示例性实施例中,使用任何旋涂工艺在第二金属电极膜上方施加包括硅氧烷聚合物(或其前体)的液体混合物。接着,对PSA混合物进行固化和/或干燥,以形成PSA材料层。在某些实施例中,PSA材料层淀积为1-5μm厚度。盖帽材料是可选的,但是有利地,使得能够进行后续的光刻,并且在后续加工期间保护PSA材料避免侵蚀。盖帽材料可以具有本领域中已知适合于此目的的任何材料。可以利用任何低温淀积技术在PSA材料上方淀积盖帽材料,例如但不限于PVD和CVD。图10F进一步示出淀积在n型金属LED电极膜225上方的包覆层,以及淀积在PSA材料1027上方的碳掺杂硅氮化物(CDN)膜1035包覆层。

回到图9,方法109继续于操作935,在这里,通过将沟槽刻蚀到LED半导体膜叠层中来形成多个LED元件。在操作935处可以利用任何已知的光刻掩膜图形化和薄膜刻蚀工艺。在操作935处的掩模特征的尺寸基本上决定了将要合并到显示器中的LED元件的尺寸。可以使用干法或湿法化学工艺来刻蚀PSA材料。湿法化学刻蚀将产生各向同性刻蚀轮廓,其根据PSA材料厚度减小LED元件之间的沟槽的纵横比,这在为了增加基座顺应性而采用较大厚度(例如,2μm-5μm)的PSA材料的情况下是有利的。

在操作940,在LED元件侧壁之上形成电介质侧壁间隔层。可以在LED元件上方共形地淀积任何已知的电介质材料,例如但不限于非晶质Si或碳、SiOx、SiON、SiN、CDO、以及CDN。接着,可以使用本领域中已知适合于所选择的电介质材料的任何各向异性刻蚀工艺来执行各向异性刻蚀,以形成涂覆在每个LED元件的金属和半导体侧壁之上的至少部分自对准的侧壁。

图10G是晶质LED元件230在它们被描画并通过电介质间隔层封装后的横截面视图。湿法刻蚀轮廓1082以虚线示出,其中,盖帽层1035被去除,并且间隔层235仅覆盖LED元件侧壁。在一个这种实施例中,由于盖帽层不保护PSA 1082,因此有利地是,键合层1012具有与PSA1082不同的成分。例如,键合层1012可以是能够由对PSA 1082具有选择性的溶剂去除的替换成分的另一PSA。替换地,键合层1012可以是SiOx,其可以使用HF来去除。在示例性实施例中,每个LED元件230的横向元件宽度We被图形化为不超过5μm。如进一步描绘的,间隔层电介质235(例如,CDN)用作涂覆在LED元件230上的自对准的侧壁电介质。在包括盖帽层1035的实施例中,LED元件230可以通过一个或多个电介质材料(例如,CDN)在六侧中的五侧上封装。在有利实施例中,为间隔层形成所利用的电介质材料的厚度被选择为确保电介质间隔层235的横向厚度或宽度Ws小于刻蚀到LED膜叠层中的沟槽的标称横向宽度Wt的一半。对间隔层宽度的限制确保了相邻LED元件上的两个电介质间隔层留下一部分基板材料(例如,键合/释放材料1012)露出在沟槽1040的底部。

接着,可以去除键合材料1012以释放LED元件(除了选定的锚固点之外),或者如果键合材料是PSA材料,则可以简单地通过克服将元件耦合到载体的键合材料来从源基板移走LED元件。例如,在操作930(图9)处,将元件耦合到载体的PSA材料可以被选择为相对于LED元件的顶侧上的PSA材料具有低的剥离强度和/或低的剪切强度。例如,对于键合材料层1012(图10G)可以利用低温PSA材料,而对于PSA材料层1027可以利用高温兼容的PSA材料。在露出PSA材料1027并且与加热的组装头基座接触之后,对接触的LED元件进行本地加热可以使得PSA材料层1027的键合能够克服键合材料层1012的键合。在另一实施例中,可以从LED元件230的周边去除键合层1012,仅留下对于将要经由PSA 1027拾取LED来说足够小的中央接触区域。

替换地,可以在相邻元件之间的沟槽内图形化LED元件锚固件,并且可以在锚固件周围去除键合材料层1012。对于这种实施例,键合材料层1012可以是粘合剂或其他材料(SiOx)。如在图10H中进一步所示的,一个或多个键合材料层1012的至少一部分被凹进。在这种实施例中,材料层1012在功能上是键合和释放层两者。可以使用通过电介质间隔层235和保护PSA材料1027的盖帽材料1035掩蔽的均厚刻蚀工艺,使键合材料层1012凹进到电介质间隔层235下方。接着,将锚固材料淀积到相邻LED元件230之间的凹进的沟槽中,至少填充凹进的释放层以及与电介质间隔层对齐(line)的一部分沟槽。可以例如使用旋涂工艺将锚固材料回填到沟槽中,与LED元件230的顶表面平齐。接着,可以将平齐的锚固材料图形化成多个分开的锚固件245,如在图10I中进一步所示的。在一个有利实施例中,锚固材料是旋涂到沟槽中的光敏聚合物材料(例如,光刻胶)。接着,将光刻胶光刻图形化(例如,曝光和显影)成填充沟槽并且维持相邻LED元件230之间的间距的分开的LED元件锚固件245。在锚固件就位的情况下,在操作950从载体释放LED元件。例如,如在图10J中进一步所示的,例如使用任何各向同性干法或湿法化学刻蚀剂来横向刻蚀键合材料1012,底切所述多个晶质LED元件230,并且形成围绕锚固件245的空隙249。

于是,落在载体220上的锚固件245由在每个LED元件230的整个横向区域或占位上方延伸的自由空间空隙249围绕。在对锚固材料采用光敏聚合物的示例性实施例中,每个锚固件245是接触涂覆至少两个相邻LED元件230的侧壁电介质(间隔层235)的聚合物柱(例如,四个最近的LED元件230由位于元件230的角落处的每个锚固件245来连接,或者如果锚固件245位于边缘而不是角落,则连接两个最近的LED元件)。接着,去除盖帽材料1035,以露出PSA材料1027。于是,图10K和10L中所示的源基板1050准备好用于以基本上与以上针对没有PSA材料1027的源基板201A所描述的相同的方式转移/键合到目标基板。在另外的实施例中,因此,依赖于组装头提供替换手段(例如,PSA材料)进行微管芯拾取,可以修改方法901以放弃施加PSA材料1027。

图11是根据替换实施例的示出用于制造包括适合于组装到显示器中的晶质LED元件的μPnB源基板的方法1101的流程,其中,将牺牲层合并到源基板中以有助于将微管芯在键合到目标基板之后与组装头分离。通常,除了PSA材料或者替代将PSA材料合并到源基板中,可以将牺牲层合并到源基板中。图12A-12C是根据一个示例性实施例的当执行方法1101的说明性操作时的示例性晶质LED元件的横截面视图。

方法1101开始于:在操作1105,接收设置在载体基板上方的多个单片集成的LED元件。在示例性实施例中,LED元件已经被制造在外延基板上并且转移到载体基板,基本上如以上在操作905-920(图9)的背景下描述的。方法1101继续于:在操作1130,淀积电介质盖帽层;在操作1135,将LED膜/电极叠层刻蚀成多个LED元件;以及在操作1140,在LED元件侧壁之上形成电介质间隔层,基本上如以上在方法901的背景下描述的。在进一步于图12A中所示的示例性实施例中,锚固材料1045与电介质盖帽材料1035平齐。方法1101继续于操作1142,在这里,在LED元件上方淀积牺牲接合材料。在示例性实施例中,牺牲接合材料是可热分解的。分解温度有利地是250℃或者更高。在进一步于图12B中所示的一个示例性实施例中,在平齐的LED元件上旋涂牺牲接合材料1235,例如聚碳酸酯,并且在相对低的温度(例如,150℃以下)下使其固化。在操作1145,连同锚固光刻胶一起光刻图形化牺牲接合材料1235。如在图12C中所示,一旦对平齐的光刻胶进行曝光和显影以形成锚固件,就通过去除键合材料1012以形成空隙249,来从载体释放LED元件,基本上如上所述。电介质间隔层235和牺牲接合材料1235保护LED膜叠层(可以不需要盖帽材料1035)。于是,图12C中图示的源基板1250准备好用于拾取/键合到目标基板。在使用适当选择的材料(例如,InAu)进行热键合操作(例如,图1中的操作130)之后,键合头可以被加热到更高温度,使得牺牲接合材料1235分解,以从源管芯释放头组件。接着,在所有的LED元件被组装在目标基板之后,可以去除盖帽电介质1035,以露出LED膜叠层和/或顶部电极。

根据本文的实施例组装的LED显示器可以合并到以变化的物理样式或形状因子体现的电子器件中。图13示出根据实施例的合并有晶质LED显示器的移动计算手持设备1300的前视图和后视图。在实施例中,例如,设备1300可以被实现为具有无线能力的移动计算设备。移动计算设备可以指代具有处理系统和移动功率源或电源(例如一个或多个电池)的任何设备。移动计算设备的示例可以包括超级膝上型计算机、平板电脑、触摸板、便携式计算机、手持计算机、掌上电脑、个人数字助理(PDA)、蜂窝电话、组合蜂窝电话/PDA、电视机、智能设备(例如,智能手机、平板电脑或智能电视机)、移动互联网设备(MID)、消息传送设备、数据通信设备等。移动计算设备的示例还可以包括被配置为由人穿戴的计算机和/或媒体捕获/传输设备,例如腕式计算机、手指计算机、戒指计算机、眼镜计算机、带夹式计算机、臂章式计算机、鞋式计算机、衣服计算机、以及其他可穿戴计算机。在各种实施例中,例如,移动计算设备可以被实现为能够执行计算机应用、以及语音通信和/或数据通信的智能手机。尽管某些实施例可以通过示例方式使用实现为智能手机的移动计算设备来描述,但是可以理解,其他实施例也可以使用其他无线移动计算设备来实现。实施例不限于此上下文。

如在图13中所示,移动手持设备1300可以包括具有正面1301和背面1302的壳体。例如,根据以上所述的示例性实施例,设备1300包括晶质LED显示器组件1304。设备1300进一步包括输入/输出(I/O)设备1306、以及集成天线1308。设备1300还可以包括导航特征件1312。I/O设备1306可以包括用于将信息输入到移动计算设备中的任何合适的I/O设备。I/O设备1306的示例可以包括字母数字键盘、数字小键盘、触摸板、输入键、按钮、开关、麦克风、扬声器、语音识别设备以及软件等。还可以通过麦克风(未示出)将信息输入到设备1300,或者可以由语音识别设备来数字化。实施例不限于该上下文。集成到至少背面1302中的是相机1305(例如,包括镜头、光圈、以及成像传感器)、以及闪存1310,这两者可以是相机模块的用于产生图像数据的部件,图像数据由设备1300处理成将要显示在晶质LED显示组件1304上和/或从设备1300远程传输的流视频。

虽然本文已经参照各种实现方式描述了给出的一些特征,但是该描述不意图解释为限制意义。因此,本文描述的实现方式的各种修改以及对于本公开所属领域的技术人员来说显而易见的其他实现方式被视为在本公开的精神和范围内。

将理解,发明范围不限于如此描述的实施例,而是能够在不脱离所附权利要求的范围的情况下借助修改和改变来实施。例如,以上实施例可以包括如以下进一步提供的特征的特定组合。

在一个或多个第一实施例中,一种微拾取和键合(μPnB)组装头,包括:基板;多个基座。每个基座包括:基底,机械地耦合到所述基板;以及压敏粘合剂(PSA)材料,在与所述基板相反的顶端处。

进一步对于第一实施例,所述组装头进一步包括:多个挠性构件,排列在所述基板之上,每个基座通过一个或多个挠性构件耦合到所述基板。

进一步对于第一实施例中,所述基底包括设置在所述PSA材料与所述挠性构件之间的电介质材料。

进一步对于第一实施例,基座基底的最大横向尺寸小于10μm,并且自所述挠性构件起的所述基座的高度小于10μm。

进一步对于第一实施例,所述PSA材料具有倾斜的侧壁,使得所述PSA靠近所述顶端处的横向尺寸小于靠近所述基板处的横向尺寸;和/或所述基底包括设置在所述PSA材料与所述基板之间的电介质材料,并且电介质基材的一部分被底切,使得所述电介质基层靠近所述基板的区域小于所述粘合剂材料的露出表面的区域。

进一步对于第一实施例,所述PSA材料是有机硅树脂基PSA材料;以及所述基座基底包括聚合电介质材料。

进一步对于第一实施例,所述PSA材料对于至少160℃是稳定的。

进一步对于上一个实施例,所述PSA材料对于至少250℃是稳定的,并且包括硅氧烷聚合物。

进一步对于第一实施例,每个挠性构件在垂直于基板表面的方向上能够弹性形变至少0.1μm。

进一步对于上一个实施例,每个挠性构件具有100-600N/m的弹性常数,以及所述PSA材料具有不大于1.0N/cm的剥离强度。

进一步对于以上的实施例,每个挠性构件在基板表面中的凹口上方延伸,以及所述基座耦合到所述挠性构件的在接触基板表面的锚固点之间的区域。

进一步对于上一个实施例,所述挠性构件包括通过电介质薄膜材料锚固到所述基板的至少一个金属薄膜或半导体薄膜。

进一步对于第一实施例,所述基板包括:玻璃或晶质硅,对于8×25mm部位而言具有小于1μm的局部平坦度;以及所述挠性构件包括所述基板的晶质硅层或通过化学计量的SiO2层与所述基板隔开的金属薄膜。

进一步对于第一实施例,所述基座具有直径小于5μm的圆形顶表面。

在一个或多个第二实施例中,一种晶质LED显示器,包括:显示界面,包括多个金属互连;以及多个LED元件。所述多个LED元件中的每一个LED元件包括耦合到至少一个金属互连的第一金属电极,并且所述多个LED元件中的至少一个LED元件进一步包括在所述LED元件的与所述第一金属电极相反的表面上方的压敏粘合剂(PSA)。

进一步对于第一实施例,所述PSA包括硅氧烷聚合物,并且所述金属互连通过焊料或导电粘合剂耦合到所述第一电极。

在一个或多个第三实施例中,一种制造微拾取和键合(μPnB)组装头的方法包括:在基板上方淀积压敏粘合剂(PSA)材料层;以及将所述PSA材料层图形化成排列在所述基板上方的多个基座。

进一步对于第三实施例,所述方法进一步包括:在设置于基板上的低应力材料层上方淀积电介质基层。所述方法包括:在所述电介质基层上方淀积压敏粘合剂(PSA)材料层。所述方法包括:将所述PSA材料层和所述电介质基层图形化成多个基座。所述方法包括:将所述低应力材料层图形化成多个挠性构件,每个挠性构件在结构上支承至少一个基座。所述方法包括:在所述基板中形成凹口,所述凹口底切所述基座下方的挠性构件。

进一步对于第三实施例,淀积电介质基层进一步包括:在所述低应力材料上方旋涂包含高温稳定的聚合物的混合物,以及将所述混合物固化或干燥成所述电介质基层。淀积PSA材料层进一步包括:旋涂包含硅氧烷聚合物的液态混合物,以及将所述混合物固化或干燥成所述PSA材料层。将PSA材料层和电介质基层图形化成多个基座进一步包括:在所述PSA材料层上方淀积并图形化光刻胶,以及刻蚀或溶解所述PSA材料和所述电介质基层未被图形化光刻胶保护的部分。

进一步对于第三实施例,所述方法进一步包括:在所述电介质基层与所述压敏粘合剂(PSA)材料之间淀积无机电介质材料,以及连同所述PSA材料和所述电介质基层一起图形化所述无机电介质材料,以形成所述基座。所述方法进一步包括:通过底切所述电介质基层,将所述电介质基层与所述挠性构件之间的接合区域减小到小于所述PSA材料的露出表面区域。

在一个或多个第四实施例中,一种微拾取和键合(μPnB)组装方法,包括:将多个μPnB头基座与锚固到源基板的多个管芯对准。所述方法包括:按压所述多个管芯中的每个管芯与至少一个μPnB头基座的表面,以使用压敏粘合剂(PSA)材料将管芯粘接到基座。所述方法包括:在所述管芯借助所述PSA材料粘接到所述基座的同时,通过使所述μPnB头基座相对于所述源基板位移来破坏所述管芯与所述源基板之间的锚固件。所述方法包括:将固定到所述μPnB头基座的所述多个管芯与键合目标基板上的焊岛对准。所述方法包括:将所述多个管芯固定到所述键合目标基板上的焊岛。所述方法包括:在所述管芯固定到所述焊岛的同时,破坏所述管芯与所述基座之间的PSA键合。

进一步对于上一个实施例,破坏所述管芯与所述基座之间的PSA键合进一步包括以下中的至少一个:使所述μPnB头基座相对于所述目标基板位移,或者热分解与PSA材料接合的可热分解材料。

进一步对于上一个实施例,破坏所述管芯与所述基座之间的PSA键合进一步包括:同时在横向方向和垂直方向两者上使所述μPnB头基座位移,以从所述基座或所述管芯的接合材料剥离所述PSA材料。

进一步对于第四实施例,将所述多个管芯固定到所述键合目标基板上的焊岛进一步包括:焊料键合所述管芯。

在一个或多个第五实施例中,一种微拾取和键合(μPnB)源基板包括载体、以及设置在所述载体上方的多个器件元件。每个器件元件进一步包括:器件材料叠层、所述器件材料叠层与所述载体之间的电极、以及通过至少器件材料叠层与所述电极隔开的压敏粘合剂(PSA)材料或可热分解材料中的至少一者。

进一步对于第五实施例,所述多个器件元件包括多个LED元件。每个LED元件进一步包括:半导体LED膜叠层,包括设置在第一金属LED电极与第二金属LED电极之间的至少第一和第二掺杂半导体区域,所述第一金属LED电极面向所述载体并且通过自由空间空隙与所述载体间隔开。每个LED元件进一步包括设置在LED膜叠层的侧壁、所述第一金属LED电极的侧壁、以及所述第二金属LED电极的侧壁之上的侧壁电介质涂层。所述源基板进一步包括设置在将每个LED元件与相邻LED元件隔开的沟槽内的多个锚固件。

进一步对于第五实施例,所述多个器件元件包括多个LED元件。每个LED元件进一步包括:外延半导体LED膜叠层,包括至少第一和第二掺杂半导体区域;第一金属LED电极,与所述第一掺杂半导体区域接触;电介质侧壁间隔层,在所述第一金属LED电极以及所述第一掺杂半导体区域的侧壁周围;以及第二金属LED电极,进一步包括与所述电介质间隔层相邻并且与所述第二掺杂半导体区域电接触的金属间隔层。所述源基板进一步包括设置在将每个LED元件与相邻LED元件隔开的沟槽内的多个锚固件。

在一个或多个第六实施例中,一种形成微拾取和键合(μPnB)源基板的方法,包括:在基板上单片地制造多个微电子或光子器件。所述方法包括:在单片微电子或光子器件上方施加压敏粘合剂(PSA)。所述方法包括:穿过所述PSA并且在所述微电子或光子器件之间图形化出沟槽,以限定出单个管芯。所述方法包括:通过刻蚀围绕耦合到每个管芯的一个或多个锚固件的一种或多种材料,来从所述基板释放所述单个管芯。

进一步对于第六实施例,在基板上单片地制造所述多个微电子或光子器件进一步包括:在第一基板上方形成器件材料叠层,执行所述器件材料叠层从所述第一基板到载体基板的基板级转移,以及在固定到所述载体基板的同时在所述器件材料叠层上方施加PSA。

进一步对于上一个实施例,执行基板级转移进一步包括:将第二PSA材料施加到所述载体和所述器件材料叠层中的至少一者,在所述载体与所述器件材料叠层之间压紧所述第二PSA材料,以及去除所述第一基板以露出所述器件材料叠层。通过刻蚀围绕耦合到每个管芯的一个或多个锚固件的一种或多种材料来从所述基板释放所述单个管芯进一步包括:溶解所述载体与所述器件材料叠层之间的所述第二PSA材料。

进一步对于上一个实施例,所述载体包括具有一个或多个静电夹持结构的静电载体。在所述载体与所述器件材料叠层之间压紧PSA材料包括:将电压施加到所述静电载体,以在所述PSA材料上形成电场。

进一步对于第六实施例,在基板上单片地制造所述多个微电子或光子器件进一步包括:在覆盖外延基板的半导体LED膜叠层上方淀积第一金属电极膜。在基板上单片地制造所述多个微电子或光子器件进一步包括:将LED膜和电极叠层转移到载体,所述第一金属电极膜面向所述载体。在基板上单片地制造所述多个微电子或光子器件进一步包括:在LED膜叠层上方淀积第二金属电极膜。在基板上单片地制造所述多个微电子或光子器件进一步包括:通过将沟槽刻蚀到所述LED膜叠层、第一金属电极膜、以及第二金属电极膜来形成多个LED元件,每个LED元件具有由沟槽刻蚀限定出的侧壁。在基板上单片地制造所述多个微电子或光子器件进一步包括:在LED元件侧壁之上形成电介质间隔层。在基板上单片地制造所述多个微电子或光子器件进一步包括:在所述沟槽内形成LED元件锚固件,所述锚固件与所述LED元件侧壁的部分相交。在基板上单片地制造所述多个微电子或光子器件进一步包括:通过横向地刻蚀所述LED元件与所述载体之间的释放层来从所述载体释放除了锚固件之外的LED元件。

在一个或多个第七实施例中,一种微拾取和键合(μPnB)目标基板,包括:排列在所述目标基板上方的多个管芯焊岛,每个管芯焊岛进一步包括焊料或粘合剂;以及与至少一个管芯焊岛相邻的至少一个机械支柱,所述支柱的z高度大于所述管芯焊岛的z高度加上将要固定到所述焊岛的管芯的z高度。

进一步对于第七实施例,所述支柱包括光刻胶。

进一步对于第七实施例,每个管芯焊岛包括光透射粘合剂或导电粘合剂。

然而,实施例不限于以上示例,并且在各种实现方式中,以上实施例可以包括仅承担这些特征的子集,承担这些特征的不同顺序,承担这些特征的不同组合,和/或承担除了明确列出的那些特征之外的附加特征。因此,应当参考所附权利要求、以及这些权利要求赋予的等价物的全部范围,来确定发明范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1