半导体装置的制造方法与流程

文档序号:12513805阅读:304来源:国知局
半导体装置的制造方法与流程

本发明涉及一种能够抑制晶片加工时的晶片破损而不会使生产率下降的半导体装置的制造方法。



背景技术:

就LSI而言,进行了通过3维安装等实现的封装的高密度化,薄晶片化发展到工艺完成时的晶片厚度为25μm左右。另外,诸如IGBT(绝缘栅型双极晶体管)、MOSFET(MOS型场效应晶体管)这样的功率器件作为工业用电动机、汽车用电动机等的逆变器电路、大容量服务器的电源装置、以及不间断电源装置等的半导体开关而被广泛使用。对于这些功率半导体装置,为了改善以导通特性等为代表的通电性能而将半导体衬底加工得薄。近年来,为了对成本方面、特性方面进行改善,使用极薄晶片工艺制造出半导体装置,该极薄晶片工艺使通过FZ(Floating Zone)法而制作出的晶片薄型化至50μm左右。

通常,就晶片的薄型加工而言,使用通过背磨、抛光进行的研磨、以及用于将在机械研磨中产生的加工畸变去除的湿式蚀刻、干式蚀刻。并且,在对背面侧通过离子注入、热处理而形成扩散层后,通过溅射法等形成电极。在上述状况下,晶片的背面加工时的晶片破裂的产生频度变高。因此,关于晶片的薄型化,近年来,提出了将晶片外周部作为肋部而保留得较厚、仅将晶片中心部加工得较薄的加工方法(例如参照专利文献1)。

通过使用上述的带肋部的晶片,从而晶片的翘曲大幅度地得以缓和,工艺装置处的晶片输送变得容易。并且,在进行晶片的处理(handling)时,晶片的强度大幅度地提高,能够减轻晶片的破裂、缺口。另外,针对上述带肋部的晶片,还提出有下述方法,即,通过在从肋部至薄化部设置使晶片的厚度逐渐变薄的过渡区域,从而防止带肋部的晶片在热处理工序中的晶片破损(例如参照专利文献2)。

专利文献1:日本特开2007-19379号公报

专利文献2:日本专利第5266869号说明书



技术实现要素:

由于在形成肋部时,如果在肋部产生碎片(chipping)等缺陷,则晶片的强度下降,因此在晶片加工时发生晶片破损。另外,在设置过渡区域的情况下,由于在晶片的端部形成15度至45度的锥面,因此晶片外周部的能够作为器件利用的有效区域减少,生产率下降。

本发明就是为了解决上述课题而提出的,其目的在于得到一种能够抑制晶片加工时的晶片破损而不使生产率下降的半导体装置的制造方法。

本发明所涉及的半导体装置的制造方法的特征在于,具有下述工序,即:在晶片的表面形成多个半导体装置的工序;第1磨削工序,由第1磨石对所述晶片的背面的外周部进行磨削而在所述外周部形成破碎层;第2磨削工序,将形成了所述破碎层的所述外周部作为肋部保留,并且由所述第1磨石对所述晶片的背面的中央部进行磨削而形成凹部;以及第3磨削工序,使用与所述第1磨石相比磨粒粒径小的第2磨石对所述凹部的底面进行磨削而将所述晶片薄化。

发明的效果

在本发明中,在形成肋部前对晶片的背面的外周部进行磨削而导入破碎层。由此,能够抑制成为晶片破裂起点的肋部的碎片,因此能够抑制晶片加工时的晶片破损。另外,由于不需要像以往那样在晶片的端部形成锥面,因此有效区域不会减少,生产率不会下降。

附图说明

图1是表示本发明的实施方式1所涉及的背磨装置的平面图。

图2是表示磨削工序的情况的剖视图。

图3是表示磨削工序的情况的俯视图。

图4是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。

图5是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。

图6是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。

图7是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。

图8是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。

图9是本发明的实施方式1所涉及的半导体装置的制造方法的流程图。

图10是表示薄化后的晶片的外端部的俯视图。

图11是图10的沿I-II的剖视图。

图12是表示导入破碎层的工序中的磨削量和大于或等于50μm的碎片数的图。

图13是表示第1磨石的平均粒径和磨削时的面灼烧率的图。

图14是表示第1磨石的平均粒径和磨削时的破裂率的图。

图15是表示本发明的实施方式2所涉及的未磨削区域的宽度的测定方法的剖视图。

图16是表示本发明的实施方式2所涉及的未磨削区域的宽度的其他测定方法的剖视图。

图17是表示本发明的实施方式2所涉及的未磨削区域的宽度的其他测定方法的平面图。

具体实施方式

参照附图,对本发明的实施方式所涉及的半导体装置的制造方法进行说明。对相同或者相对应的结构要素标注相同的标号,有时省略重复的说明。

实施方式1

图1是表示本发明的实施方式1所涉及的背磨装置的平面图。将粘贴了表面保护带的晶片1设置于晶片盒2,由输送机器人3输送至校准机构4。然后,由校准机构4进行晶片定心,晶片1被输送臂5输送至晶片交接部6。然后,使磨削处理台7沿纸面逆时针方向旋转,将晶片1移动至1轴磨削台8。在1轴磨削台8进行第1及第2磨削工序。

然后,使磨削处理台7进一步沿纸面逆时针方向旋转,将晶片1移动至2轴磨削台9。在2轴磨削台9进行第3磨削工序。通过上述第1、第2及第3磨削工序,在晶片1的外周形成肋部。然后,晶片1由输送臂5输送至晶片清洗机构10,进行水洗及干燥处理。然后,晶片1由输送机器人3回收至晶片盒11。

图2及图3分别是表示上述磨削工序的情况的剖视图及俯视图。吸附台12及台盖13与图1的1轴磨削台8、2轴磨削台9相对应。使贴附了保护带14的晶片1的表面侧吸附于吸附台12,在规定的方向上以例如300rpm左右的速度进行旋转。设置了磨削磨石15的磨削轮16从上方以4000rpm左右的速度缓慢地与晶片1接触而进行磨削工序。

图4~8是表示本发明的实施方式1所涉及的半导体装置的制造方法的剖视图。图9是本发明的实施方式1所涉及的半导体装置的制造方法的流程图。所制造的半导体装置是IGBT、MOSFET、二极管等纵型半导体器件。

首先,准备n型半导体的晶片1,在晶片1的表面形成了p型、n型的杂质层后,通过多晶硅等而形成栅极电极。然后,在表面使用铝等金属材料形成用于将晶体管及栅极电极引出至外部的配线层。由此,形成晶片表面侧电路(步骤S1)。晶片表面侧电路具有:由分割预定线对多个半导体装置进行了划分的器件区域;以及外周剩余区域,其围绕该器件区域。

然后,如图4所示,将表面保护带14粘贴至晶片1的表面(步骤S2)。然后,如图5所示,作为第1磨削工序,由第1磨石17对晶片1的背面的外周部进行磨削(步骤S3)。此时,不对晶片1的背面的中央部进行磨削而是作为未磨削区域18保留。在磨削后的外周部形成由机械加工导致的破碎层19。

然后,如图6所示,对第1磨石17和晶片1的相对位置进行变更(步骤S4)。例如使用伺服电动机将第1磨石17的位置错开规定量。然后,作为第2磨削工序,将形成了破碎层19的外周部的一部分作为肋部20保留,并且由第1磨石17将包含未磨削区域18的晶片1背面的中央部以规定量进行磨削而形成凹部21(步骤S5)。

然后,如图7所示,作为第3磨削工序,使用与第1磨石17相比磨粒粒径小的第2磨石22对凹部21的底面进行磨削而将晶片1薄化至所设定的厚度(步骤S6)。进行晶片1的水洗和干燥(步骤S7)。然后,如图8所示,通过使用含有氢氟酸和硝酸的混合酸进行的湿式蚀刻而将破碎层19去除。通过以上的工序而形成具有肋部20的晶片1。

然后,在晶片1的背面,通过离子注入而进行杂质导入,使用扩散炉、激光器进行杂质的激活,形成用于将电气引出至外部的配线层、用于与电路基板进行连接的电极。此时,由晶片1的薄化所导致的晶片翘曲使得晶片输送变得困难。但是,如上所述,通过背磨而形成肋部20,从而晶片1的翘曲大幅度地得以缓和,工艺装置处的晶片输送变得容易。另外,由于晶片的强度大幅度提高,因此在进行晶片1的处理时能够减轻晶片1的破裂、缺口。

图10是表示薄化后的晶片的外端部的俯视图。图11是图10的沿I-II的剖视图。晶片1的外端部的变厚的部分是肋部20,晶片1的加工得薄的部分是器件区域。通过第1、第2及第3磨削工序,在肋部20的器件区域侧产生碎片23。在对晶片1进行处理时如果对晶片1施加应力,则晶片1以碎片23为起点而产生破裂。

在本实施方式中,在形成凹部前,对晶片1的背面的外周部进行磨削而导入破碎层19。由此,能够抑制成为晶片破裂起点的肋部20的碎片23,因此能够抑制晶片加工时的晶片破损。另外,由于不需要像以往那样在晶片1的端部形成锥面,因此有效区域不会减少,生产率不会下降。

另外,在晶片表面侧形成半导体装置时,还会在晶片背面侧形成氧化硅膜等绝缘膜。当前,绝缘膜在磨削后的湿式蚀刻中成为掩模,在肋部20形成大的台阶,在后续工序中,在为了进行晶片处理而对肋部进行吸附时发生吸附不良。另一方面,在本实施方式中,由于通过第1磨削工序而将晶片1的背面的外周部的绝缘膜去除,因此能够防止在肋部20形成大的台阶。

图12是示出了导入破碎层的工序中的磨削量和大于或等于50μm的碎片数的图。大于或等于50μm的碎片会导致晶片破裂。在磨削量小于1μm的情况下,晶片的背面的外周部的磨削面保持硅晶片的单晶状态。因此,在第2磨削工序中,在从磨石受到了力的晶片处产生超过50μm的大碎片。另一方面,在第1磨削工序中进行了大于或等于1μm的磨削的情况下,由于在晶片端部的磨削面导入由机械加工导致的破碎层,因此虽然从磨石承受了力的晶片产生细的碎片,但是导致晶片破裂的超过50μm的碎片数大幅度减少。

图13是表示第1磨石的平均粒径和磨削时的面灼烧(surface burning)率的图。所谓面灼烧,是指如果将磨削力减小后的磨石以一定速度推入晶片,则由磨石摩擦的晶片表面变黑。如果第1磨石17的平均粒径变小,则磨削力变低,如果粒径变得小于或等于20μm,则面灼烧的频度增加。因此,优选第1磨石17的平均粒径大于或等于20μm。由此,即使在晶片背面侧残留有绝缘膜、多晶硅膜等情况下,也能够稳定地进行磨削,而不会因第1磨石17而引起面灼烧。

图14是表示第1磨石的平均粒径和磨削时的破裂率的图。如果第1磨石17的平均粒径大于100μm,则破裂率增加。因此,优选第1磨石17的平均粒径小于或等于100μm。由此,能够防止磨削时的晶片破裂。

另外,优选第2磨石22的平均粒径小于或等于10μm。由此,即使在将晶片1薄化后,也能够确保晶片1的强度,抑制由处理所导致的晶片破裂。

实施方式2

在实施方式2中,在第1磨削工序后对未磨削区域18的宽度进行测定,基于其测定的值而决定第2磨削工序中的第1磨石的位置。其他工序与实施方式1相同。

图15是表示本发明的实施方式2所涉及的未磨削区域的宽度的测定方法的剖视图。对由照相机24拍摄到的晶片影像进行图像处理而对未磨削区域18的宽度进行测定。由于根据未磨削区域18的宽度可知第1磨石17的磨损量,因此通过与第1磨石17的磨损量相应地决定第1磨石17的位置,从而能够将肋部20的宽度设为所期望的值。另外,通过对晶片影像进行图像处理,从而能够高速且非接触地对第1磨石17的磨损量进行测定。

图16及图17分别是表示本发明的实施方式2所涉及的未磨削区域的宽度的其他测定方法的剖视图及平面图。以经过晶片1的中心附近的方式直线式地使台阶测定件25进行扫描。以经过由此求得的未磨削区域18的凸部的宽度的中央的方式在垂直方向上使台阶测定件25进行扫描。在将通过各测定而得到的未磨削区域18的凸部的宽度设为2×a、2×b时,未磨削区域18的宽度D能够通过使用勾股定理而基于D=(a2+b2)/b求出。通过该测定方法,即使在第1磨削工序中的磨削量小、图像的对比度低的情况下,也能够高精度地求出未磨削区域的宽度。

标号的说明

1晶片,17第1磨石,18未磨削区域,19破碎层,20肋部,21凹部,22第2磨石。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1