电阻式随机存取存储器装置的制作方法

文档序号:11064336阅读:938来源:国知局
电阻式随机存取存储器装置的制造方法

本发明是关于电阻式随机存取存储器(RRAM)装置,且特别关于RRAM装置的堆叠结构。



背景技术:

电阻式随机存取存储器(RRAM)装置具有功率消耗低、操作电压低、写入抹除时间短、耐久度长、存储时间长、非破坏性读取、多状态存储、元件工艺简单、及可微缩性等优点,所以成为新兴非挥发性存储器的主流。RRAM装置的基本结构为底电极、电阻转态层、及顶电极构成的金属-绝缘体-金属(metal-insulator-metal,MIM)叠层结构,且RRAM装置其电阻转换(resistive switching,RS)阻值特性为元件的重要特性。举例来说,在施加写入电压至RRAM装置时,电阻转态层中的氧原子将迁移至顶电极,达成电阻转换的效果。然而顶电极中的氧原子可能回扩散至电阻转态层,甚至逃逸出顶电极而造成RRAM装置失效。

综上所述,目前亟需新的RRAM装置及其制造方法,以改善上述缺点。



技术实现要素:

本发明一实施例提供的电阻式随机存取存储器装置,包括:底电极;电阻转态层,设置于底电极上;可氧化层,设置于电阻转态层上;第一氧扩散阻障层,位于可氧化层与电阻转态层之间;以及第二氧扩散阻障层,位于可氧化层上。

本发明实施例的电阻式随机存取存储器装置,可以克服现有技术中的在施加写入电压至RRAM装置时,电阻转态层中的氧原子可能回扩散至电阻转态层,甚至逃逸出顶电极而造成RRAM装置失效的问题。

附图说明

图1是本发明一实施例中,RRAM装置的剖视图。

图2是本发明另一实施例中,RRAM装置的剖视图。

附图标号:

200 MIM结构

202 底电极接触插塞

204 顶电极接触插塞

206 底电极

208 电阻转态层

209 第一氧扩散阻障层

210 可氧化层

211 第二氧扩散阻障层

211a、211c 氮化钛层

211b 氮氧化钛层、氧化铝层

250 半导体基板

252、254 层间介电层

256 晶体管

500 RRAM装置

具体实施方式

本发明一实施例提供非挥发性存储器如电阻式随机存取存储器(RRAM)装置。在已知RRAM装置中,因施加电压而自电阻转态层迁移至顶电极中的氧,可能会向下回扩散至电阻转态层,或向上逃逸出顶电极。上述顶电极中氧扩散/逃逸的现象会使RRAM装置失效。为克服上述氧扩散/逃逸的问题,本发明提供新颖的RRAM堆叠结构。

图1是本发明一实施例中,RRAM装置500的剖视图。如图1所示,RRAM装置500可设置于半导体基板250上。在一实施例中,半导体基板250可为硅基板。RRAM装置500的主要元件包括底电极接触插塞202设置于半导体基板250上、底电极206设置于底电极插塞202上且接触底电极插塞202、电阻转态层208设置于底电极206上、第一氧扩散阻障层209设置于电阻转态层208上、可氧化层210设置于第一氧扩散阻障层(diffusion barrier layer)209上、第二氧扩散阻障层211设置于可氧化层210上、以及顶电极接触插塞204设置于第二氧扩散阻障层211上且接触第二氧扩散阻障层211。

在一实施例中,底电极接触插塞202和顶电极接触插塞204的材质可为钨(W)。在一实施例中,底电极206的材质可为钨、铂、铝、钛、氮化钛、或上述组合,且其厚度介于10nm至100nm之间。若底电极206的厚度过薄,则可能对下方层状物的粗糙度过份敏感。若底电极206的厚度过厚,则可能改变结晶相关的微结构。在一实施例中,可氧化层210的材质可为钛,且其厚度介于10nm至50nm之间。若可氧化层210的厚度过薄,则可能自电阻转换态层208接收氧并氧化,而无法以低电压操作。若可氧化层210的厚度过厚,则可能自电阻转态层接收过多氧,使电阻转态层208失去转态能力。在一实施例中,底电极206和可氧化层210的形成方法可为电子束真空蒸镀(E-beam evaporation)、溅射法(sputtering)、或物理气相沉积(PVD)。

在一实施例中,电阻转态层208的材质包括氧化铪、氧化钛、氧化钨、氧化钽、氧化锆、或上述的组合,且其厚度介于5nm至10nm之间。若电阻转态层208的厚度过薄,则电阻转态层208的漏电流可能过大而无法转态。若电阻转态层208的厚度过厚,则难以作为电阻转态单元。在一实施例中,电阻转态层208的形成方法可为原子层沉积(ALD)。

在一实施例中,夹设于电阻转态层208与可氧化层210之间的第一氧扩散阻障层209为氧化铝,且第一氧扩散阻障层209的厚度介于0.3nm至0.6nm之间。若第一氧扩散阻障层209过薄,则无法有效避免自电阻转态层208迁移至可氧化电层210的氧,在未施加电压的状态下回扩散至电阻转态层208的问题。若第一氧扩散阻障层209过厚,则会大幅增加整个MIM结构200的电阻而增加RRAM的驱动电压,甚至使RRAM失效。在一实施例中,第一氧扩散阻障层209的形成方法为ALD。

在一实施例中,夹设于可氧化层210与顶电极接触插塞204之间的第二氧扩散阻障层211为双层结构,比如氮氧化钛层211b位于氮化钛层211a下,如图1所示。在此实施例中,氮氧化钛层211b的厚度介于5nm至15nm之间,而氮化钛层211a的厚度介于10nm至20nm之间。若氮氧化钛层的厚度过薄,则无法有效避免自电阻转态层208迁移至可氧化层210的氧,在未施加电压的状态下向上逃逸出可氧化层210的问题。若氮氧化钛层的厚度过厚,则会大幅增加整个MIM结构200的电阻而增加RRAM的驱动电压,甚至使RRAM失效。在另一实施例中,另一氮化钛层211c位于氮氧化钛层211b下,如图2所示。若氮氧化钛层下的氮化钛层过厚,则会氮氧化钛层与可氧化层210之间的距离过远,而无法避免可氧化层210中的氧向上逃逸的问题,且会使工艺难以进行(需刻蚀较厚的氮化钛层)。在一实施例中,氮氧化钛层之上的氮化钛层,与氮氧化钛层之下的氮化钛层具有相同厚度。在一实施例中,氮氧化钛层中的钛、氧、与氮的摩尔比介于4:0.04:1至4:1:3之间。若氧的比例过低,则无法避免上述氧逃逸的问题。若氧的比例过高,则会大幅增加整个MIM结构200的电阻而增加RRAM装置的驱动电压,甚至使RRAM装置失效。在一实施例中,氮化钛层与氮氧化钛层的形成方法可为电子束真空蒸镀、溅射法、PVD、或ALD。在此实施例中,第二氧扩散阻障层211中最上层的氮化钛层211a可作为MIM结构200的顶电极。

在另一实施例中,第二氧扩散阻障层211为双层结构,比如位于氮化钛层211a下的氧化铝层211b,如图1所示。在此实施例中,氧化铝层的厚度介于0.3nm至0.6nm之间,而氮化钛层的厚度介于10nm至20nm之间。若的氧化铝层过薄,则无法有效避免自电阻转态层208迁移至可氧化层210的氧,在未施加电压的状态下向上逃逸出可氧化层210的问题。若氧化铝层的厚度过厚,则会大幅增加整个MIM结构200的电阻而增加RRAM装置的驱动电压,甚至使RRAM装置失效。在一实施例中,氮化钛层的形成方法可为电子束真空蒸镀、溅射法、或PVD,而氧化铝层的形成方法可为PVD或ALD。在一实施例中,第二氧扩散阻障层211的顶部的氮化钛层211a可作为MIM结构200的顶电极。

上述底电极206、电阻转态层208、第一氧扩散阻障层209、可氧化层210、与第二氧扩散阻障层211共同构成MIM结构200。

本发明实施例的RRAM装置500的操作方式如下述。对RRAM装置500的顶电极接触插塞204施加正(负)偏压,以转换电阻式随机存取存储器装置500的电阻状态(resistance state)。当对RRAM装置500的顶电极接触插塞204施加正(负)直流偏压时,电流会随着电压增加而增加,当电流上升至限流值,其对应的偏压为形成电压(forming voltage),且形成电压通常具有较大值。此时RRAM装置500的电阻状态由原始状态(original state;O-state)转换到低电阻状态(low resistance state;LRS,或可称为ON-state)。接着,对本发明实施例的RRAM装置500的顶电极接触插塞204施予一抹除电压(turn-off voltage),当抹除电压至一适当值时元件电流开始下降,当抹除电压至一极限值时电流急速下降至较低的电流值,此时RRAM装置500的电阻状态由低电阻状态的电流转态到高电阻状态(high resistance state;HRS,或可称为OFF-state)。

接着,对RRAM装置500的顶电极接触插塞204施予开启电压(turn-on voltage)时,电流会随着电压增加而增加,当开启电压至一极限值时到达电流限流值,此时RRAM装置500的电阻状态由高电阻状态转换至低电阻状态,且此电阻转换特性可以多次重复操作。另外,可对电阻状态为高电阻状态(HRS)或低电阻状态(LRS)的RRAM装置500施予小于抹除电压和写入电压的读取电压,以读取RRAM装置500在不同电阻状态下的电流值,得知RRAM装置500的存储状态。换言之,通过调整施加至RRAM装置500的偏压大小,可转换RRAM装置500的电阻以达存储目的。在无外加电源供应下,高低电阻态皆能维持其存储态,即RRAM装置500可用于非挥发性存储器。

接着将进一步说明本发明一实施例的RRAM装置500的制造方法。首先,提供半导体基板250,如硅基板,并对其进行湿式清洗工艺。接着形成晶体管256于半导体基板250上。值得注意的是,图式中的晶体管256仅用以举例而非局限本发明。然后,可利用化学气相沉积法(CVD)或等离子体增强型化学气相沉积法(PECVD),毯覆性地沉积层间介电层252。然后,可利用例如包括光刻法和非等向刻蚀法的图案化工艺,形成开口于层间介电层252中,以定义底电极接触插塞202的形成位置,且底电极接触插塞202接触晶体管256(如晶体管256的漏极)。接着可利用化学气相沉积法(CVD),沉积阻障层如钛或氮化钛(TiN)于开口侧壁,再将导电材料如钨(W)填入开口中,再进行平坦化工艺如化学机械抛光(CMP),以移除层间介电层252的顶面上多余的导电材料,以形成底电极接触插塞202于开口中。接着,可利用电子束真空蒸镀、溅射法、或PVD,形成底电极层于层间介电层252上。之后可利用原子层沉积法(ALD),于底电极层上成长电阻转态层。在一实施例中,可在形成电阻转态层之后对上述电阻转态层进行退火工艺如快速热退火工艺(rapid thermal annealing,RTA)。接着,可利用ALD形成第一氧扩散阻障层(如氧化铝)于电阻转态层上。接着可采用电子束真空蒸镀法、溅射法、PVD、或ALD,形成可氧化层于第一氧扩散阻障层上。接着可采用电子束真空蒸镀法、溅射法、PVD、或ALD,形成第二氧扩散阻障层于可氧化层上。接着图案化第一氧扩散阻障层、可氧化层、第一氧扩散阻障层、电阻转态层、及底电极层,以定义第一氧扩散阻障层211、可氧化层210、第一氧扩散阻障层209、电阻转态层208、及底电极206如MIM结构200。

之后,可再利用化学气相沉积法(CVD)或等离子体增强型化学气相沉积法(PECVD),毯覆性地沉积层间介电层254。然后,可利用例如包括光刻法和非等向性刻蚀法的图案化工艺,于层间介电层254中形成开口,定义出顶电极接触插塞204的形成位置,且开口露出部分可氧化层210。接着,可利用CVD沉积阻障层如钛或氮化钛(TiN)于开口侧壁,再于将导电材料如钨(W)填入开口中,再进行平坦化工艺如化学机械抛光(CMP),以移除层间介电层254的顶面上多余的导电材料,并形成顶电极接触插塞204于开口中。可以理解的是,本申请案的RRAM装置500的形成方法包含但不限于上述方法。

虽然本发明已以数个实施例揭露于上,然其并非用以限定本发明,任何本技术领域中相关技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1