连接体及连接体的制造方法与流程

文档序号:11142667阅读:516来源:国知局
连接体及连接体的制造方法与制造工艺

本发明涉及连接有电子部件和电路基板的连接体及连接体的制造方法,特别涉及电子部件经由含有导电性粒子的粘接剂连接到电路基板的连接体及连接体的制造方法。本申请以在日本于2014年1月28日申请的日本专利申请号特愿2014-013696及在日本于2014年10月28日申请的日本专利申请号特愿2014-219705为基础主张优先权,这些申请通过参照被引用至本申请。



背景技术:

一直以来,作为电视机、PC监视器、便携电话、智能手机、便携式游戏机、平板终端、可穿戴终端、或者车载用监视器等的各种显示单元,采用液晶显示装置或有机EL面板。近年来,在这样的显示装置中,出于微细间距化、轻薄型化等的观点,采用将驱动用IC直接安装于显示面板的玻璃基板上的所谓COG(chip on glass,玻璃覆晶)。

例如采用COG安装方式的液晶显示面板中,如图12(A)(B)所示,在由玻璃基板等构成的透明基板101形成有多个由ITO(氧化铟锡)等构成的透明电极102,在这些透明电极102上连接有液晶驱动用IC103等的电子部件。液晶驱动用IC103在安装面对应于透明电极102形成有多个电极端子104,经由各向异性导电膜105热压接到透明基板101上,从而连接电极端子104与透明电极102。

各向异性导电膜105向粘合剂树脂中混入导电性粒子而制成膜状,在两个导体间通过加热压接而以导电性粒子取得导体间的电导通,以粘合剂树脂保持导体间的机械连接。作为构成各向异性导电膜105的粘接剂,通常,会使用可靠性高的热固化性的粘合剂树脂,但是也可以为光固化性的粘合剂树脂或光热并用型的粘合剂树脂。

经由这样的各向异性导电膜105将液晶驱动用IC103向透明电极102连接的情况下,首先,通过未图示的临时压接单元将各向异性导电膜105临时贴在透明基板101的透明电极102上。接着,经由各向异性导电膜105将液晶驱动用IC103搭载在透明基板101上,形成临时连接体后,通过热压接头106等的热压接单元将液晶驱动用IC103与各向异性导电膜105一起向透明电极102侧加热按压。通过利用该热压接头106进行的加热,各向异性导电膜105引起热固化反应,由此液晶驱动用IC103粘接到透明电极102上。

现有技术文献

专利文献

专利文献1:日本特许第4789738号公报

专利文献2:日本特开2004-214374号公报

专利文献3:日本特开2005-203758号公报。



技术实现要素:

发明要解决的课题

随着近年来液晶显示装置和其他电子设备的小型化、高精密化,也进行电路基板的布线间距或电子部件的电极端子的微细间距化,在利用各向异性导电膜来将IC芯片等的电子部件COG连接在电极端子被微细间距化的电路基板上的情况下,在窄小化的电极端子间也为了可靠地夹持导电性粒子并确保导通,需要高密度填充导电性粒子。

然而,如图13所示,若在进行电路基板的布线间距或电子部件的电极端子的微细间距化过程中高密度填充导电性粒子107,则由分散在电极端子104间的导电性粒子107连续而造成的端子间短路的发生率会变高。

此外,一般形成在电路基板的电极因印刷等而以数十nm~数μm级的薄度形成,因此电路基板侧的电极间的短路不会成为问题。

因此,本发明目的在于提供一种即便电路基板的布线间距或电子部件的电极端子被微细间距化,也确保电子部件与电路基板的导通性,并能防止电子部件的电极端子间的短路的连接体及连接体的制造方法。

用于解决课题的方案

为了解决上述的课题,本发明所涉及的连接体经由各向异性导电粘接剂在电路基板上连接电子部件,在上述连接体中,上述各向异性导电粘接剂中导电性粒子排列在粘合剂树脂,形成在上述电子部件的连接电极间的空间中的导电性粒子彼此的粒子间距离,比在形成于上述电路基板的基板电极与上述连接电极之间被捕捉的上述导电性粒子彼此的粒子间距离长。

另外,本发明所涉及的连接体的制造方法,通过在电路基板上经由含有导电性粒子的粘接剂搭载电子部件,将上述电子部件对上述电路基板进行按压,并且使上述粘接剂固化,从而将上述电子部件连接到上述电路基板上,在上述连接体的制造方法中,上述各向异性导电粘接剂在粘合剂树脂排列导电性粒子,上述连接电极间的空间中的导电性粒子彼此的粒子间距离,比在形成于上述电路基板的基板电极与形成于上述电子部件的连接电极之间被捕捉的上述导电性粒子彼此的粒子间距离长。

发明效果

依据本发明,在邻接的电极端子间的端子间空间中的导电性粒子彼此的粒子间距离,比在连接电极与基板电极之间被捕捉的导电性粒子彼此的粒子间距离长。因而,能够防止因微细间距化的连接电极的端子间空间中导电性粒子相连而造成的端子间短路。

附图说明

图1是作为连接体的一个例子而示出的液晶显示面板的截面图。

图2是示出液晶驱动用IC与透明基板的连接工序的截面图。

图3是示出液晶驱动用IC的电极端子(凸块)及端子间空间的平面图。

图4是示出液晶驱动用IC和透明基板中,电极端子及端子部的排列方向上的最小距离D的截面图。

图5是示出各向异性导电膜的截面图。

图6是示出导电性粒子以点阵状规则排列的各向异性导电膜的平面图。

图7是示出利用导电性粒子规则排列的各向异性导电膜、和随机分散的各向异性导电膜的连接体中的电极端子的粒子捕捉数的分布的图表。

图8中图8(A)是示出导电性粒子在长度方向疏散排列、宽度方向密集排列的各向异性导电膜的平面图,图8(B)是示出导电性粒子在长度方向密集排列、宽度方向疏散排列的各向异性导电膜的平面图。

图9是示出将导电性粒子相对于膜长度方向及宽度方向倾斜地排列的各向异性导电膜以膜长度方向沿着端子部的排列方向的方式配置在端子部上的状态的平面图。

图10是示出将导电性粒子相对于膜长度方向及宽度方向倾斜地排列的其他各向异性导电膜以膜长度方向沿着端子部的排列方向的方式配置在端子部上的状态的平面图。

图11是将导电性粒子相对于膜长度方向及宽度方向倾斜地排列的其他各向异性导电膜以膜长度方向沿着端子部的排列方向配置在端子部上的状态的平面图。

图12是示出在液晶显示面板的透明基板连接IC芯片的工序的截面图,(A)示出连接前的工序、(B)示出连接工序。

图13是示出现有的透明基板与IC芯片的连接状态的截面图。

具体实施方式

以下,参照附图,对适用本发明的连接体及连接体的制造方法进行详细说明。此外,本发明并不仅限于以下的实施方式,显然在不脱离本发明的主旨的范围内能够进行各种变更。此外,附图是示意性的,各尺寸的比例等有不同于现实的情况。具体尺寸等应该参考以下的说明进行判断。此外,应当理解到附图相互之间也包含彼此尺寸的关系或比例不同的部分。

[液晶显示面板]

以下,作为适用本发明的连接体,以在玻璃基板安装液晶驱动用的IC芯片作为电子部件的液晶显示面板为例进行说明。该液晶显示面板10如图1所示,对置配置由玻璃基板等构成的两块透明基板11、12,并通过框状的密封材料13来互相粘合这些透明基板11、12。而且,液晶显示面板10通过向由透明基板11、12围绕的空间内封入液晶14而形成面板显示部15。

透明基板11、12以使由ITO(氧化铟锡)等构成的条纹状的一对透明电极16、17互相交叉的方式形成在互相对置的两内侧表面。而且,两透明电极16、17成为通过这两透明电极16、17的该交叉部位构成作为液晶显示的最小单位的像素。

两透明基板11、12之中,一个透明基板12形成为平面尺寸大于另一个透明基板11,在该形成为较大的透明基板12的边缘部12a,设有安装液晶驱动用IC18作为电子部件的COG安装部20。此外,在COG安装部20形成有透明电极17的端子部17a以及与设在液晶驱动用IC18的IC侧对准标记22重叠的基板侧对准标记21。

液晶驱动用IC18通过对像素选择性地施加液晶驱动电压,使液晶的取向局部变化,以能进行既定液晶显示。另外,如图2所示,液晶驱动用IC18在对透明基板12的安装面18a形成有与透明电极17的端子部17a导通连接的多个电极端子19(凸块)。电极端子19适合使用例如铜凸块、金凸块、或者对铜凸块实施镀金的材料等。

[电极端子]

液晶驱动用IC18例如如图3所示,电极端子19(输入凸块)沿着安装面18a的一个侧缘排成一列,且电极端子19(输出凸块)沿着与一个侧缘对置的另一个侧缘以交错状排成多列。电极端子19和设在透明基板12的COG安装部20的端子部17a,分别以同数且同间距形成,并且通过使透明基板12和液晶驱动用IC18对位并连接而连接。

此外,随着近年来液晶显示装置和其他电子设备的小型化、高功能化,对液晶驱动用IC18等的电子部件也要求小型化、低矮化,电极端子19的高度也变低(例如6~15μm)。

另外,如上所述,随着近年来液晶显示装置和其他电子设备的小型化、高精密化,还进行电路基板的布线间距或电子部件的电极端子的微细间距化。例如,液晶驱动用IC18中,与电极端子19的端子部17a连接的连接面的大小被设为宽度8~60μm、长度400μm以下且下限为与宽度同距离(8~60μm)或小于导电性粒径的7倍。另外,电极端子19间的最小距离也依照电极端子19的宽度,例如为8~30μm。另外,例如,图4所示的电极端子19及端子部17a的排列方向上的最小距离D(该距离在能够各向异性连接的范围偏离排列方向也可。)可为小于导电性粒径的4倍。

另外,如后述那样,液晶驱动用IC18通过安装在透明基板12的COG安装部20,各向异性导电膜1的粘合剂树脂的流动性在电极端子19上与在邻接的电极端子19间的空间23有所不同,在该端子间空间23中的粘合剂树脂的流动性较高、且容易流动。因为该流动性,液晶显示面板10中,端子间空间23的导电性粒子4的粒子间距离会比与端子部17a连接的电极端子19上的导电性粒子4与最接近的粒子的距离(以下,也称为“粒子间距离”。)长。

另外,液晶驱动用IC18在安装面18a形成有通过与基板侧对准标记21重叠而进行对透明基板12的对准的IC侧对准标记22。此外,由于进行透明基板12的透明电极17的布线间距或液晶驱动用IC18的电极端子19的微细间距化,所以要求液晶驱动用IC18和透明基板12高精度对准调整。

基板侧对准标记21及IC侧对准标记22能够使用通过组合能取得透明基板12和液晶驱动用IC18的对准的各种标记。

形成在COG安装部20的透明电极17的端子部17a上,利用各向异性导电膜1作为电路连接用粘接剂而连接液晶驱动用IC18。各向异性导电膜1含有导电性粒子4,用来经由导电性粒子4电连接液晶驱动用IC18的电极端子19和在透明基板12的边缘部12a形成的透明电极17的端子部17a。该各向异性导电膜1因被热压接头33热压接而粘合剂树脂流动,从而导电性粒子4在端子部17a与液晶驱动用IC18的电极端子19之间压碎,在该状态下粘合剂树脂固化。由此,各向异性导电膜1将透明基板12和液晶驱动用IC18电气、机械地连接。

另外,在两透明电极16、17上,形成有实施了既定摩擦处理的取向膜24,以通过该取向膜24规定液晶分子的初始取向。而且,在两透明基板11、12的外侧配置有一对偏振光板25、26,以通过这两偏振光板25、26规定来自背光灯等的光源(未图示)的透射光的振动方向。

[各向异性导电膜]

接着,对各向异性导电膜1进行说明。各向异性导电膜(ACF:Anisotropic Conductive Film)1如图5所示,通常,在成为基体材料的剥离膜2上形成含有导电性粒子4的粘合剂树脂层(粘接剂层)3。各向异性导电膜1为热固化型或者紫外线等的光固化型粘接剂,粘着在液晶显示面板10的在透明基板12形成的透明电极17上并且搭载有液晶驱动用IC18,通过用热压接头33来热加压而流动,从而导电性粒子4在相对置的透明电极17的端子部17a与液晶驱动用IC18的电极端子19之间压碎,通过加热或者紫外线照射,在导电性粒子压碎的状态下固化。由此,各向异性导电膜1连接透明基板12与液晶驱动用IC18,从而能够使之导通。

另外,各向异性导电膜1在含有膜形成树脂、热固化性树脂、潜伏性固化剂、硅烷偶联剂等的普通粘合剂树脂层3中以既定图案有规则地排列导电性粒子4。

支撑粘合剂树脂层3的剥离膜2,例如,在PET(聚对苯二甲酸乙二醇酯:Poly Ethylene Terephthalate)、OPP(定向聚丙烯:Oriented Polypropylene)、PMP(聚4-甲基戊烯-1:Poly-4-methylpentene-1)、PTFE(聚四氟乙烯:Polytetrafluoroethylene)等上涂敷硅酮等的剥离剂而成,不仅防止各向异性导电膜1的干燥,而且维持各向异性导电膜1的形状。

作为粘合剂树脂层3中含有的膜形成树脂,优选平均分子量为10000~80000左右的树脂。作为膜形成树脂,能举出环氧树脂、改性环氧树脂、尿烷树脂、苯氧基树脂等的各种树脂。其中,出于膜形成状态、连接可靠性等的观点特别优选苯氧基树脂。

作为热固化性树脂,无特别限定,能举出例如市售的环氧树脂、丙烯树脂等。

作为环氧树脂,无特别限定,但是能举出例如萘型环氧树脂、联苯型环氧树脂、酚醛清漆型环氧树脂、双酚型环氧树脂、芪型环氧树脂、三酚甲烷型环氧树脂、酚醛芳烷基型环氧树脂、萘酚型环氧树脂、二聚环戊二烯型环氧树脂、三苯基甲烷型环氧树脂等。这些既可以单独也可以组合2种以上而使用。

作为丙烯树脂,无特别限制,能够根据目的适宜选择丙烯化合物、液态丙烯酸酯等。能够举出例如丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、环氧丙烯酸酯、二丙烯酸乙二醇酯、二丙烯酸二乙二醇酯、三羟甲基丙烷三丙烯酸酯、二羟甲基三环葵烷二丙烯酸酯、1,4-丁二醇四丙烯酸酯、2-羟基-1,3-二丙烯酰氧基丙烷、2,2-双[4-(丙烯酰氧基甲氧基)苯基]丙烷、2,2-双[4-(丙烯酰氧基乙氧基)苯基]丙烷、二环戊烯基丙烯酸酯、三环葵基丙烯酸酯、树状(丙烯酰氧基乙基)异氰脲酸酯、尿烷丙烯酸酯、环氧丙烯酸酯等。此外,也能使用丙烯酸酯为甲基丙烯酸酯的材料。这些既可以单独使用1种,也可以并用2种以上。

作为潜伏性固化剂,无特别限定,但是能举出例如加热固化型、UV固化型等的各种固化剂。潜伏性固化剂通常不会反应,通过热、光、加压等的根据用途而选择的各种引发条件来激活,并开始反应。热活性型潜伏性固化剂的激活方法有:以利用加热的离解反应等生成活性种(阳离子、阴离子、自由基)的方法;在室温附近稳定地分散到环氧树脂中而在高温与环氧树脂相溶/溶解,并开始固化反应的方法;在高温熔出分子筛封入型的固化剂并开始固化反应的方法;利用微囊进行的熔出/固化方法等。作为热活性型潜伏性固化剂,有咪唑类、酰肼类、三氟化硼-胺络合物、锍盐、胺化酰亚胺、聚胺盐、双氰胺等或它们的改性物,这些既可以单独使用,也可为2种以上的混合体。其中,优选微囊型咪唑类潜伏性固化剂。

作为硅烷偶联剂,无特别限定,但是能够举出例如环氧类、氨类、巯基/硫化物类、脲化物类等。通过添加硅烷偶联剂,提高有机材料和无机材料的界面中的粘接性。

[导电性粒子]

作为导电性粒子4,能够举出各向异性导电膜1中使用的公知的任意导电性粒子。作为导电性粒子4,能举出例如镍、铁、铜、铝、锡、铅、铬、钴、银、金等的各种金属或金属合金的粒子;在金属氧化物、碳、石墨、玻璃、陶瓷、塑料等的粒子的表面镀敷金属的粒子;或者,在这些粒子的表面进一步镀敷绝缘薄膜的粒子等。在向树脂粒子的表面镀敷金属的粒子的情况下,作为树脂粒子,能举出例如环氧树脂、酚醛树脂、丙烯树脂、丙烯腈苯乙烯(AS)树脂、苯代三聚氰胺树脂、二乙烯基苯类树脂、苯乙烯类树脂等的粒子。导电性粒子4的大小优选1~10μm,但本发明并不限于此。

[导电性粒子的规则排列]

各向异性导电膜1中,导电性粒子4在俯视下以既定排列图案有规则地排列,例如如图6所示,以点阵状且均匀地排列。由于在俯视下有规则地排列,所以与导电性粒子4随机分散的情况相比,各向异性导电膜1即便液晶驱动用IC18的邻接的电极端子19间微细间距化、端子间面积窄小化,并且导电性粒子4以高密度填充,也能防止液晶驱动用IC18的连接工序中,导电性粒子4的凝聚物造成的电极端子19间的短路。

另外,各向异性导电膜1因导电性粒子4有规则地排列而在粘合剂树脂层3以高密度填充的情况下,也防止导电性粒子4的凝聚造成的疏密的发生。因而,依据各向异性导电膜1,在微细间距化的端子部17a、电极端子19中也能捕捉导电性粒子4。导电性粒子4的均匀排列图案能够任意设定。关于液晶驱动用IC18的连接工序,将在后面进行详述。

这样的各向异性导电膜1能够通过例如在可延伸的片上涂敷粘着剂,并在其上单层排列导电性粒子4后,以期望的延伸倍率延伸该片的方法;在基板上以既定排列图案排列导电性粒子4后,对被剥离膜2支撑的粘合剂树脂层3转印导电性粒子4的方法;或者对被剥离膜2支撑的粘合剂树脂层3上,经由设有与排列图案对应的开口部的排列板而供给导电性粒子4的方法等来制造。

[粒子个数密度]

在此,由于进行透明基板12的透明电极17的布线间距或液晶驱动用IC18的电极端子19的微细间距化,所以在透明基板12上COG连接液晶驱动用IC18的情况下,在微细间距化的电极端子19及端子部17a之间也可靠地夹持导电性粒子,并且为了确保导通,各向异性导电膜1中导电性粒子4以高密度排列。

具体而言,各向异性导电膜1中,导电性粒子4以5000~60000个/mm2的个数密度排列。若粒子个数密度少于5000个/mm2,则微细间距化的电极端子19及端子部17a之间的粒子捕捉数减少,导通电阻会上升。另外,若粒子个数密度多于60000个/mm2,则处于窄小化的电极端子19间的端子间空间23的导电性粒子4会相连,有可能使邻接的电极端子19间短路。此外,这些是一个例子,粒子个数密度可根据导电性粒子4的大小任意调整,本发明并不限于此。

此外,各向异性导电膜1的形状没有特别限定,但是能够制成例如如图5所示,能够卷绕到卷取盘(reel)6的长尺带形状,并切断成既定长度而使用。

另外,上述实施方式中,作为各向异性导电膜1,以将在粘合剂树脂层3规则排列导电性粒子4的热固化性树脂组合物成形为膜状的粘接膜为例进行了说明,但本发明所涉及的粘接剂并不局限于此,可以为例如层叠仅由粘合剂树脂3构成的绝缘性粘接剂层和由规则排列导电性粒子4的粘合剂树脂3构成的导电性粒子含有层的结构。另外,各向异性导电膜1只要导电性粒子4在俯视下规则排列,则除了如图5所示那样单层排列之外,也可以使导电性粒子4遍及多个粘合剂树脂层3而排列并且俯视下规则排列。另外,各向异性导电膜1也可以在多层结构的至少一个层内以既定距离单一地分散。

[连接工序]

接着,对将液晶驱动用IC18连接到透明基板12的连接工序进行说明。首先,在透明基板12的形成有端子部17a的COG安装部20上临时贴各向异性导电膜1。接着,将该透明基板12承载于连接装置的平台上,经由各向异性导电膜1在透明基板12的安装部上配置液晶驱动用IC18。

接着,通过加热到使粘合剂树脂层3固化的既定温度的热压接头33,以既定压力、时间从液晶驱动用IC18上开始热加压。由此,各向异性导电膜1的粘合剂树脂层3显示流动性,从液晶驱动用IC18的安装面18a与透明基板12的COG安装部20之间流出,并且粘合剂树脂层3中的导电性粒子4被夹持在液晶驱动用IC18的电极端子19与透明基板12的端子部17a之间而压碎。

其结果,通过在电极端子19与端子部17a之间夹持导电性粒子4而电连接,在该状态下被热压接头33加热的粘合剂树脂固化。由此,能够制造在液晶驱动用IC18的电极端子19与形成在透明基板12的端子部17a之间确保导通性的液晶显示面板10。

不在电极端子19与端子部17a之间的导电性粒子4,在邻接的电极端子19间的端子间空间23中分散在粘合剂树脂中,维持着电绝缘的状态。由此,仅在液晶驱动用IC18的电极端子19与透明基板12的端子部17a之间取得电导通。此外,作为粘合剂树脂,通过使用自由基聚合反应类的速固化类型的粘合剂树脂,使粘合剂树脂在短的加热时间内也能速固化。另外,作为各向异性导电膜1,不限于热固化型,只要能进行加压连接,也可以使用光固化型或光热并用型的粘接剂。

[导电性粒子间距离]

在此,本发明中,邻接的电极端子19间的端子间空间23中的导电性粒子4彼此的粒子间距离,比在电极端子19与端子部17a之间被捕捉的导电性粒子4彼此的粒子间距离长。因此,液晶显示面板10能够防止在微细间距化的电极端子19的端子间空间23中因导电性粒子4相连而造成的端子间短路。

即,本发明中,各向异性导电膜1的导电性粒子4被有规则地配置。另外,在以热压接头33进行热加压时,液晶驱动用IC18中,与电极端子19上相比,端子间空间23的粘合剂树脂的流动性更高且容易流动。而且,在电极端子19与端子部17a之间被捕捉的导电性粒子4受粘合剂树脂的流动的影响较低。

另一方面,端子间空间23中的导电性粒子4没有被电极端子19、端子部17a夹持,相对受较大的因热压接头33的热加压而流动的粘合剂树脂的影响。因此,端子间空间23中的导电性粒子4的粒子间距离会相对变大。因而,液晶显示面板10能够在电极端子19与端子部17a之间可靠地捕捉导电性粒子4而确保导通性,且,在邻接的电极端子19间的端子间空间23中,保持粒子间距离,因此能够防止电极端子19间的短路。

另外,如上所述,导电性粒子的个数密度优选为5000~60000个/mm2。通过具有该个数密度,液晶显示面板10防止在窄小化的端子间空间23中导电性粒子4连续而造成的端子间短路,并且在微细间距化的电极端子19与端子部17a之间可靠地捕捉导电性粒子4,从而能够提高导通性。

图7是对利用导电性粒子4有规则地配置的各向异性导电膜1(个数密度:28000个/mm2)和导电性粒子随机分散的各向异性导电膜(个数密度:60000个/mm2)分别各向异性导电连接的连接体中的一个电极端子19的导电性粒子捕捉数的分布进行对比的图表。电极端子19的尺寸为14μm×50μm(=700μm2),电极端子19间的距离为14μm。另外,各向异性导电膜1的粘合剂及连接条件依照下述的实施例及比较例。

如图7所示,可知利用各向异性导电膜1制造的连接体中,提高了捕捉的可靠性。

[膜长度方向上疏密排列]

另外,如图8(A)所示,各向异性导电膜1也可以形成为以端子部17a及电极端子19的排列方向为长度方向的膜状,且导电性粒子4遍及长度方向疏散排列、遍及宽度方向密集排列。

各向异性导电膜1以使长度方向沿着端子部17a及电极端子19的排列方向的方式粘着。因而,各向异性导电膜1粘合到COG安装部20,从而导电性粒子4遍及端子部17a及电极端子19的排列方向疏散排列,且遍及端子部17a及电极端子19的长度方向密集排列。

这样的各向异性导电膜1中,导电性粒子4遍及端子部17a及电极端子19的排列方向相对疏散排列,从而遍及端子间空间23中邻接的电极端子19间的导电性粒子4的数减少、粒子间距离扩大,因此更能防止电极端子19间的短路。

另外,各向异性导电膜1中,由于导电性粒子4遍及宽度方向相对密集排列,所以端子部17a及电极端子19之间的导电性粒子4的粒子捕捉率上升。因而,也不会损害与液晶驱动用IC18的导通性。

此外,如图8(B)所示,各向异性导电膜1也可以形成为以端子部17a及电极端子19的排列方向为长度方向的膜状,并且导电性粒子4遍及长度方向密集排列、遍及宽度方向疏散排列。

在该情况下,端子间空间23中的导电性粒子4很受因热压接头33的热加压而流动的粘合剂树脂的影响,粒子间距离会相对变大。因此,液晶显示面板10能够防止电极端子19间的短路。

另外,液晶显示面板10中,导电性粒子4遍及膜的长度方向相对密集排列,因此在端子部17a及电极端子19之间能够可靠地捕捉导电性粒子4,也不会损害与液晶驱动用IC18的导通性。

[高密度填充排列]

另外,如图9~图11所示,各向异性导电膜1使导电性粒子4相对于与膜的长度方向Lf正交的宽度方向Lt倾斜地排列,通过使膜的长度方向Lf与端子部17a的排列方向平行,且使膜的宽度方向Lt与端子部17a的长度方向平行地配置,与异方导电性膜1的长度方向Lf正交的方向的、导电性粒子P的外切线(双点划线),贯穿与该导电性粒子P邻接的导电性粒子Pc、Pe也可。

由此,在对透明电极17的端子部17a重叠各向异性导电性膜1的平面图中,对于端子部17a的宽度方向(膜的长度方向Lf)的邻接的导电性粒子4的粒子间距离变密,能够提高占微细间距化的端子部17a的连接面的导电性粒子4的捕捉率。因而,各向异性导电膜1在各向异性导电连接时被夹持在对置的电极端子19之间而压入端子部17a,能够防止使电极端子19与端子部17a之间导通的导电性粒子P的数变得不够。

此外,图9~图11所示的各向异性导电膜1中,导电性粒子对膜宽度方向Lt的第2排列方向L2相对于膜宽度方向Lt倾斜,并且对膜的长度方向Lf的第1排列方向L1相对于膜长度方向Lf倾斜,从而对于端子部17a的宽度方向及长度方向的邻接的导电性粒子间距离变密,进一步提高了捕捉率。

实施例

接着,对本发明的实施例进行说明。在本实施例中,利用导电性粒子规则排列的各向异性导电膜、和导电性粒子随机分散的各向异性导电膜,制成向评价用玻璃基板连接评价用IC的连接体样品,分别测定了形成在评价用玻璃基板的基板电极和形成在评价用IC的IC凸块之间被捕捉的导电性粒子的数及导电性粒子的与最接近的粒子的距离(粒子间距离)、遍及邻接的IC凸块间的凸块间空间中的导电性粒子的数及导电性粒子的与最接近的粒子的距离(粒子间距离)、初始导通电阻、邻接的IC凸块间的短路发生率。

[各向异性导电膜]

评价用IC的连接所使用的各向异性导电膜的粘合剂树脂层,通过调制在溶剂中加入苯氧基树脂(商品名:YP50,新日铁化学公司制)60质量份、环氧树脂(商品名:jER828,三菱化学公司制)40质量份、阳离子类固化剂(商品名:SI-60L,三新化学工业公司制)2质量份的粘合剂树脂组合物,并将该粘合剂树脂组合物涂敷在剥离膜上、烧成而形成。

[评价用IC]

作为评价元件,使用了外形:1.8mm×20mm、厚度0.5mm;凸块(Au-plated,镀金):宽度30μ×长度85μm、高度15μm;凸块间空间宽度:50μm的评价用IC。

[评价用玻璃基板]

作为连接有评价用IC的评价用玻璃基板,使用了外形为30mm×50mm、厚度0.5mm、形成有与评价用IC的凸块同尺寸同间距的梳齿状的电极图案的ITO图案玻璃。

在该评价用玻璃基板临时贴上各向异性导电膜后,进行IC凸块与基板电极的对准的同时搭载评价用IC,利用热压接头在180℃、80MPa、5sec的条件下进行热压接,从而制成了连接体样品。关于各连接体样品,测定了被夹持在IC凸块与基板电极之间的导电性粒子的捕捉数及粒子间距离、处于遍及邻接的IC凸块间的凸块间空间的导电性粒子的数及粒子间距离、初始导通电阻、邻接的IC凸块间的短路发生率。

关于在IC凸块与基板电极之间夹持的导电性粒子的捕捉数,针对各连接体样品,从评价用玻璃基板的背面观察显现在基板电极的压痕,对于任意100个IC凸块及基板电极计测在1对的IC凸块及基板电极之间捕捉的导电性粒子的数,并求其平均。同样地,关于在IC凸块与基板电极之间捕捉的导电性粒子的粒子间距离,从评价用玻璃基板的背面观察显现在基板电极的压痕,对于任意100个IC凸块及基板电极进行计测,并求其平均及最小距离。

关于处于凸块间空间的导电性粒子的数,针对各连接体样品,从评价用玻璃基板的背面进行观察,对任意100个凸块间空间进行计测,并求其平均。同样地,关于处于凸块间空间的导电性粒子的粒子间距离,从评价用玻璃基板的背面进行观察,对任意100个凸块间空间进行计测,并求其平均及最小距离。此外,关于同一观察面中偏离深度方向的粒子,从计测值估计而求出。

另外,关于各连接体样品,将初始导通电阻为0.5Ω以下、IC凸块间的短路发生率为50ppm以下的评价为良好。

[实施例1]

实施例1中,使用了导电性粒子在粘合剂树脂层中规则排列的各向异性导电膜。在实施例1中使用的各向异性导电膜,通过向能够延伸的片上涂敷粘着剂,并在其上以点阵状且均匀地单层排列导电性粒子后,以期望的延伸倍率延伸该片的状态下,层压粘合剂树脂层而制造。所使用的导电性粒子(商品名:AUL704,积水化学工业公司制)粒径4μm、连接前的粒子间距离为0.5μm、粒子个数密度为28000个/mm2

[实施例2]

实施例2中,除了使用连接前的粒子间距离为1μm、粒子个数密度为16000个/mm2的各向异性导电膜之外,采用与实施例1相同的条件。

[实施例3]

实施例3中,除了使用连接前的粒子间距离为1.5μm、粒子个数密度为10500个/mm2的各向异性导电膜之外,采用与实施例1相同的条件。

[实施例4]

实施例4中,除了使用连接前的粒子间距离为3μm、粒子个数密度为5200个/mm2的各向异性导电膜之外,采用与实施例1相同的条件。

[实施例5]

实施例5中,除了使用连接前的粒子间距离为0.5μm、粒子个数密度为50000个/mm2的各向异性导电膜之外,采用与实施例1相同的条件。

[比较例1]

比较例1中,使用了通过向粘合剂树脂组合物加入导电性粒子而调制,并涂敷到剥离膜上、烧成,从而制造的粘导电性粒子随机分散到合剂树脂层的各向异性导电膜。所使用的导电性粒子(商品名:AUL704,积水化学工业公司制)粒径4μm且粒子个数密度为100000个/mm2

[比较例2]

比较例2中,除了粒子个数密度为16000个/mm2之外,采用与比较例1相同的条件。

[表1]

如表1所示,在实施例1~5所涉及的连接体样品中,在1对评价用IC的IC凸块及评价用玻璃基板的基板电极之间夹持的导电性粒子的数为平均8.1以上,初始导通电阻为0.4Ω以下,是良好的。夹持在1对IC凸块及基板电极之间的导电性粒子的粒子间距离为平均1.2μm以上,最小也为0.2μm以上。

另外,已知在实施例1~5所涉及的连接体样品中,遍及邻接的IC凸块间的凸块间空间的导电性粒子的数平均为14.3~194.2,但是导电性粒子的粒子间距离平均为1.4μm以上、最小也为0.3μm,IC凸块间的短路发生率低于50ppm,绝缘性也是良好的。

另一方面,比较例1中,以个数密度100000个/mm2填充的导电性粒子随机分散在粘合剂树脂层中,因此在基板电极与IC凸块之间被夹持的导电性粒子数平均48个、粒子间距离平均0.5μm、最小距离0μm、初始导通电阻为0.2Ω,是没有问题的。另一方面,在凸块间空间中,导电性粒子的数平均80个、粒子间距离平均0.7μm、最小距离0μm、即能看到导电性粒子彼此的接触,凸块间短路的发生率成为1000ppm以上。

另外,比较例2中,以个数密度16000个/mm2填充的导电性粒子随机分散,因此在凸块间空间中,导电性粒子的数平均12.8个、粒子间距离平均2.6μm、最小距离为0μm,即能看到导电性粒子彼此的接触,但是凸块间短路的发生率成为50ppm以下。另一方面,在基板电极与IC凸块之间被夹持的导电性粒子数平均7.7个、粒子间距离平均2.1μm、最小距离为0μm、导通电阻高达5Ω。

此外,实施例4中,导电性粒子的个数密度为5000个/mm2,但是导通电阻0.4Ω,而大于0.5Ω的情况为不良,实际使用上没有问题。另外实施例5中,导电性粒子的个数密度为50000个/mm2,但是凸块间的短路数为50ppm以下,而大于50ppm的情况为不良,实际使用上没有问题。即,可知各向异性导电膜的粘接前的导电性粒子的个数密度优选为5000~60000个/mm2

此外,在由压痕计数在凸块捕捉的导电性粒子的个数的情况下,如上所述一般从基板侧进行观察。此时,凸块间空间的导电性粒子中,与在凸块捕捉的导电性粒子存在于同一平面上的较少。这推测为流动造成的影响。

标号说明

1 各向异性导电膜;2 剥离膜;3 粘合剂树脂层;4 导电性粒子;6 卷取盘;10 液晶显示面板;11、12 透明基板;12a 边缘部;13 密封材料;14 液晶;15 面板显示部;16、17 透明电极;17a 端子部;18 液晶驱动用IC;18a 安装面;19 电极端子;20 COG安装部;21 基板侧对准标记;22 IC侧对准标记;23 端子间空间;33 热压接头。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1