半导体封装体及其制造方法与流程

文档序号:11142552阅读:785来源:国知局
半导体封装体及其制造方法与制造工艺

本发明涉及半导体封装体及其制造方法。



背景技术:

一般地,在用于光通讯等的半导体激光元件、高功能MPU(微处理单元)等半导体元件中,为了防止工作不良等,如何高效地释放由该元件产生的热非常重要。由于这些半导体元件一般被容纳在半导体封装体中使用,因此为了使此封装体所容纳的半导体元件安全且稳定地工作,必须效率良好地使元件工作时产生的热散发至封装体外。此散热通常通过从作为发热源的半导体元件通过与其接合的散热构件进行导热来实现。

近年来,随着半导体元件技术的进步,朝着元件的高输出化、高速化、高集成化发展,对其散热的要求也变得越来越严格。因此,一般地,也对半导体封装体的散热构件要求高导热率,使用了导热率高达390W/mK的铜(Cu)。

另一方面,随着半导体元件的高输出化,其工作温度也变高,半导体元件和被直接接合的半导体封装体的散热构件的热膨胀的不匹配(mismatch)的问题变得明显。为了解决这些问题,要求开发出兼顾高导热这样的特性、和与半导体元件的热膨胀率匹配的散热构件。作为这样的材料,有金属和陶瓷的复合体,例如,铝(Al)和碳化硅(SiC)的复合体(专利文献1)。

然而,在Al-SiC系的复合材料中,无论如何优化条件,导热率都在300W/mK以下,要求开发出具有铜的导热率以上的更高导热率的散热构件。作为这样的材料,提出了将金刚石所具有的高导热率和金属所具有的大热膨胀率组合、高导热率且热膨胀系数接近于半导体元件材料的金属-金刚石复合材料(专利文献2)。

此外,专利文献3中,通过在金刚石粒子的表面形成β型的SiC层,在抑制复合化时所形成的低导热率的金属碳化物的生成的同时,改善与熔融金属的浸润性,改善了所得到的金属-金刚石复合材料的导热率。作为此金属-金刚石复合材料的优选实施方式,提出了使用铝作为金属基体(专利文献3)。

专利文献1日本特开平9-157773号公报

专利文献2日本特开2000-303126号公报

专利文献3日本特表2007-518875号公报



技术实现要素:

在使用包括这些金属-陶瓷复合体的散热构件作为半导体封装体的情况下,在该散热构件上,使用接合材料A接合绝缘构件,另外在散热构件上或者在绝缘构件上使用接合材料B接合半导体。这些接合材料一般使用使用了活性金属的焊料等,但就其接合温度而言,若是接合材料A的接合温度比接合材料B低,则在使用接合材料B时接合材料A熔融,因此接合材料A的接合温度必须比接合材料B高。

在使用以铝为基体的金属-陶瓷复合体作为散热构件的情况下,铝的熔融温度在600℃附近,因此一般使用含有金的焊料作为散热构件与绝缘构件的接合材料,但金的原料材质价格高,有耗费成本等问题。

因此,本发明的目的在于便宜地提供散热性优异的半导体封装体。

根据本发明,提供半导体封装体,其为依次层叠有散热构件、接合层、绝缘构件的半导体封装体,其特征为上述散热构件包括含有金刚石粒子与含铝金属的铝-金刚石系复合体,将上述散热构件和上述绝缘构件接合的上述接合层为使用包含平均粒径为1nm以上并且100μm以下的氧化银微粒或者有机覆膜银微粒的复合材料而形成的。

本发明的一个实施方式中,在上述半导体封装体中,铝-金刚石系复合体的金刚石粒子的含量为上述铝-金刚石系复合体整体的40体积%以上并且75体积%以下。

本发明的一个实施方式中,在上述半导体封装体中,上述绝缘构件为氧化铝、氮化硅或者氮化铝。

本发明的一个实施方式中,在上述半导体封装体中,对上述散热构件和上述接合层的接合部施加含有Ni、Ag或者Au的至少1种的镀覆处理。

本发明的一个实施方式中,在上述半导体封装体中,对上述绝缘构件和上述接合层的接合部施加含有Ni、Ag或者Au的至少1种的镀覆处理。

本发明的一个实施方式中,在上述半导体封装体中,对上述散热构件的半导体元件的实装部施加含有Ni、Ag或者Au的至少1种的镀覆处理。

根据本发明,提供半导体封装体的制造方法,其为制造包括散热构件、绝缘构件和接合层的半导体封装体的方法,其特征为包括:在上述散热构件和上述绝缘构件的接合部设置包含平均粒径为1nm以上并且100μm以下的氧化银微粒或者有机覆膜银微粒的复合材料的工序;和在180℃以上并且550℃以下的温度下加热,将上述复合材料制成将上述散热构件和上述绝缘构件接合的接合层的工序。

根据本发明,能便宜地提供散热性优异的半导体封装体。

附图说明

[图1]为本发明的实施方式的半导体封装体的概念剖面图。

[图2]为显示使用本发明的实施方式的半导体封装体的半导体元件的实装例的概念剖面图。

具体实施方式

接下来,说明本发明的一实施方式。图1为本实施方式的半导体封装体的概念剖面图。本实施方式的半导体封装体为散热构件2、接合层3、绝缘构件1依次层叠而成。

本实施方式涉及的散热构件2优选包括含有金刚石粒子与含铝金属的平板状的铝-金刚石系复合体。散热构件2可以设为包括铝-金刚石系复合体的复合化部分及设于该复合化部分的两面的表面层的构成。

铝-金刚石系复合体中的金刚石粒子的含量优选为包括该铝-金刚石系复合体的复合化部分和表面层的复合体整体的40体积%以上并且75体积%以下。若金刚石粒子的含量为40体积%以上,则得到充分的导热率,此外,若金刚石粒子的含量为75体积%以下,则利用金刚石粒子和铝的复合体的形成变得容易。

被覆铝-金刚石系复合体的复合化部分的两面的表面层包括铝合金等主要包含含铝金属的材料,但也可以包含含铝金属以外的物质。该表面层优选包含80质量%以上的铝。

本实施方式的散热构件2的厚度优选为100μm以上并且5mm以下。若散热构件2的厚度为100μm以上,则能充分得到作为半导体封装体的材料的强度、刚性,若散热构件2的厚度为5mm以下,则作为构件的成本变得便宜,作为半导体封装体而言是优选的。

散热构件2中的表面层的厚度没有特别限制,但考虑散热特性变得良好,优选表、背层分别是散热构件2的厚度的20%以下。

可以对散热构件2和接合层3的接合部施加镀覆。此外,散热构件2利用焊接与半导体组件接合而使用,因此也可以对散热构件2的半导体元件的实装部(散热构件和半导体元件的接合部)施加镀覆。

在对散热构件2施加镀覆处理的情况下,也可以施加镀Ni、或者考虑焊料浸润性而施加镀Ni和镀Au的两层镀覆。也可以使用镀Ag代替镀Au。镀覆处理的方法没有特别的限定,可以是无电解镀覆处理、电镀处理法中的任一种。

镀覆的厚度优选为0.5μm以上并且10μm以下。若镀覆厚度为0.5μm以上,则能防止镀覆针孔或焊接时的焊料空隙(void)的产生,能够确保来自半导体元件的散热特性。此外,若镀覆的厚度为10μm以下,则能够不受低导热率的镀覆膜的影响而确保来自半导体元件的散热特性。

关于镀覆膜的纯度,只要为不对焊料浸润性带来妨害的纯度就没有特别的制约,可以含有磷、硼等其他成分。

作为本实施方式的接合层3,优选使用包含氧化银微粒或者有机覆膜银微粒的复合材料、或者包含氧化银微粒及有机覆膜银微粒的复合材料。

作为上述氧化银微粒,可举出氧化银(Ag2O、AgO),能使用从它们的群组中所选出的至少1种以上的金属。

上述有机覆膜银微粒意指包括银的核的周围被有机保护膜所被覆而成的微粒。作为有机覆膜,若为含有C、H及/或O的有机物,则没有特别的限制,作为其实例,可举出脂肪族羧酸或胺化合物。

氧化银微粒或者有机覆膜银微粒的平均粒径希望为1nm以上并且100μm以下,优选1nm以上并且50μm以下。

若平均粒径为100μm以下,则能缩小粒子间的间隙,能得到致密的接合层。此外,若平均粒径为1nm以上,则金属氧化物粒子本身的制造变得容易。

此外,关于氧化银微粒及有机覆膜银微粒,能够通过混合粒径小的微粒和粒径大的微粒来更细密地填充银微粒。

此外,在使用氧化银微粒的情况下,必须并用将表面的氧化银还原的还原剂,作为还原剂,只要为具有将金属氧化物粒子还原的作用的还原剂即可。

作为还原剂,例如,除了醇类、羧酸类、胺类以外,也可以使用含有包含醛基或酯基、巯基、酮基等的有机物或者是羧酸金属盐等的有机物的化合物。

氧化银微粒或有机覆膜银微粒也可以根据需要分散于溶剂等作为糊状的接合材料使用。除了可以对该糊料添加上述还原剂以外,可以对该糊料适当添加分散剂、粘度调整剂、促进烧成的其他金属成分等。

这些糊料中的有机成分优选使用在氧化银微粒或者有机覆膜银微粒的烧成温度下具有95%以上的重量减少的成分。若有机成分的重量减少为95%以上,则能充分地实现结合层的致密化。另外,在此所谓的重量减少是指利用市售的TG-DTA测定装置在大气中以10℃/min的升温速度进行测定的数值。

接合层3的厚度没有特别的制约,但考虑接合材料的供给量及接合工序的简便性,希望为5μm以上并且200μm以下。

作为绝缘构件1的材质,例如,可以使用氧化铝、氮化铝、氮化硅、氧化铍等。

可以对绝缘构件1施加镀覆。镀覆处理的方法没有特别的限定,可以是无电解镀覆处理、电镀处理法中的任一种。作为具体实例,可以是施加镀Ni、或者镀Ni和镀Au的两层镀覆,也可以使用镀Ag来代替镀Au。

镀覆的厚度优选为0.5μm以上并且10μm以下。若镀覆厚度为0.5μm以上,则能防止镀覆针孔,能够确保来自半导体元件的散热特性。此外,若镀覆的厚度超过10μm,则成本变高。

通过对绝缘构件1和接合层3的接合部施加镀覆,具有与接合层3的接合性变好等效果。

接合层3对绝缘构件1及散热构件2的接合温度需要比半导体封装体中利用的其他构件的熔点低,且为了有机溶媒挥发需要使其足够高。

此外,为了降低接合后的半导体封装体的应力,希望接合温度低。具体地,若为180℃以上并且550℃以下的接合温度,则能够以不对其他构件带来温度影响的方式进行接合。另一方面,在将半导体实装在所得到的半导体封装体的工序中,为了避免焊料接合时接合层3熔融,接合温度优选为300℃以上。

形成本实施方式的接合层3的合适的一个方案为,将已经糊料化的接合材料涂布在构件间,经过加热、加压形成接合层者。但是,接合材料的方式不限于糊状,也可以使用片状的接合材料。

上述实施方式涉及的半导体封装体便宜且散热性优异,能够优选地应用于功率半导体模块等。

图2为显示使用本发明的实施方式的半导体封装体的半导体元件的实装例的概念剖面图。半导体8介由焊料接合层7而接合于散热构件2。盖材5介由盖材接合层4而接合于绝缘构件1。盖材接合层4的材料能使用Au系焊料、或者与接合层3同样的材料。

实施例

以下,举出实施例及比较例,更详细地说明本发明。

[实施例1]

作为散热构件,将平均粒径130μm的金刚石粒子的含量为铝-金刚石系复合体整体的60体积%、铝含量为99%以上的铝表面层的表、背面皆为50μm、整体厚度为1.5mm的铝金刚石复合体加工成10mm×10mm的尺寸。

作为接合层,使用了以质量比1∶7的比例混合由胺化合物(辛胺)所覆膜的平均粒径8nm的银微粒和平均粒径190nm的银微粒而成的混合粉末分散于萜品醇、固体成分比率70质量%的糊料。以10μm的厚度将该糊料涂覆于上述铝-金刚石复合体,使用厚度1mm的氧化铝作为绝缘构件在真空下在520℃下进行接合,施加镀Ni,进一步施加镀Au以得到半导体封装体。

[实施例2]

散热构件、绝缘构件皆为在接合前施加镀Ni,在接合后施加镀Au,除此以外,与实施例1同样地进行以得到半导体封装体。

[实施例3]

散热构件、绝缘构件皆为在接合前施加镀Ni,进一步施加镀Au,除此以外,与实施例1同样地进行以得到半导体封装体。

[比较例]

作为散热构件,将金刚石粒子的含量为铝-金刚石系复合体整体的60体积%、铝表面层的表、背面皆为50μm、整体厚度为1.5mm的铝金刚石复合体加工成10mm×10mm的尺寸。

使用了Ag:40质量%、Cu:30质量%、Zn:30质量%的焊料作为接合层。以10μm的厚度将该焊料的糊料涂覆在上述铝-金刚石复合体,使用厚度1mm的氧化铝作为绝缘构件在真空下在550℃下进行接合。

实施例1至3能得到充分的接合,能制造半导体封装体,但比较例无法得到充分的接合,未能制造半导体封装体。这是因为在比较例的接合温度下接合材料(焊料)无法充分熔融。另一方面,若上升到比较例的接合材料充分熔融的温度,则其他构件熔融而形状崩溃。

由上述的结果可知,实施例1至3的半导体封装体得到了充分的接合。依此方式所接合的半导体封装体具有散热性优异这样的优点。此外,接合层使用了包含比较便宜的氧化银微粒或者有机覆膜银微粒的复合材料。由此可知,利用本发明,能便宜地提供散热性优异的半导体封装体。

符号说明

1 绝缘构件

2 散热构件

3 接合层

4 盖材接合层

5 盖材

6 引线

7 焊料接合层

8 半导体

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1