用于制造芯片载体的条带形衬底、具有该芯片载体的电子模块、具有该模块的电子设备和制造衬底的方法与流程

文档序号:12185443阅读:430来源:国知局
用于制造芯片载体的条带形衬底、具有该芯片载体的电子模块、具有该模块的电子设备和制造衬底的方法与流程

由条带形衬底制成的芯片载体被应用于在芯片卡中使用的电子模块,例如RFID芯片(射频识别)。RFID芯片卡具有存储芯片,其可以借助外部RFID天线利用无线射频识别和用于能源供应的应答器来进行非接触式地读取和写入。这种RFID芯片的可能的应用领域是具有生物特征数据的证件(身份证、护照)、医保卡、银行卡或公共交通的票卡。

为了制造这种类型的RFID芯片,为前面提到的条带形衬底装备大量各自用灌注料或浇铸料进行封装的半导体芯片。为此,前面提到的条带形的衬底具有用于制造芯片载体的片材,该片材具有多个单元,其中每个单元具有用于紧固半导体芯片的芯片岛(Chipinsel)、用于电连接半导体芯片的电极以及用于构造单元的穿孔。如此形成的模块在功能性检测完成后从条带分开并且集成到芯片卡中。

由于芯片卡是平坦的,所以模块一方面不允许超过最大的总厚度,另一方面模块必须具有足够的稳定性,以便阻止对芯片或芯片载体造成损害,由此可以影响芯片卡的功能。

此外,芯片卡的正常运行需要将封装芯片的灌注料锚固好。对此,设置在衬底中的穿孔形成用于封装半导体芯片的灌注料的锚固边。

锚固边在从DE 20 2012 100 694 U1公知的衬底中由用作底部凹口的(Hinterschneidung)的阶梯形成。底部凹口或阶梯通过冲压衬底的底侧制成。底部凹口在封装芯片时用灌注料进行填充,由此实现期望的锚固效果。为了产生足够的效应需要最小的片材厚度,因此底部凹口具有足够的深度,该深度构成容纳灌注料的相应的自由空间。最小片材厚度限定了电子模块的最小总厚度,在涉及到已知衬底时实际上不可以低于该最小总厚度,且不影响芯片载体的可靠性能。

本发明基于如下任务,即提供一种用于制造芯片载体的条带形衬底,该条带形衬底使由芯片载体制造的电子模块的总厚度减小成为可能。本发明还基于如下任务,即提供一种具有芯片载体的电子模块、一种具有这种模块的电子设备、特别是芯片卡以及一种用于制造衬底的方法。

根据本发明,这些任务针对条带形衬底通过权利要求1所述的主题、针对电子模块通过权利要求9所述的主题、针对电子设备通过权利要求10所述的主题并且针对用于制造衬底的方法通过权利要求11所述的主题得以解决。替代地,关于衬底的任务通过并列的权利要求12的主题得以解决。

本发明基于这样一种想法,即提供一种用于制造芯片载体的由具有多个单元的片材制成的条带形衬底。每个单元具有用于紧固半导体芯片的芯片岛、用于电连接半导体芯片的电极以及用于构造单元的穿孔。至少一个穿孔形成用于封装半导体芯片的灌注料的锚固边。将片材的邻近穿孔的表面部分弯折以形成锚固边。锚固边突出到片材的布置芯片岛的侧面上。

根据本发明,通过弯曲使锚固边成型,即弯折,来代替通过减小材料厚度产生的已知的底部凹口。这具有的优势在于,片材厚度不是产生锚固效果的限制性因素。确切地说,通过弯折邻近穿孔的表面部分产生片材的成形部(Profilierung),该成形部在封装半导体芯片时在模具罩(Mold-Kappe)或灌注料和衬底之间提供所期望的可靠的连接,确切地说与衬底厚度或片材厚度无关。

为了锚固,锚固边突出到在片材的布置芯片岛的侧面之上。经此,锚固边在封装半导体芯片时被埋入灌注料中,从而在衬底和灌注料之间产生可靠的机械连接。经过弯折的表面部分具有另一个优势,即芯片载体或通常是芯片载体的区域被机械地稳固。

总而言之,相对于现有技术而言,本发明使减小片材厚度成为可能,且在这种情况下不影响灌注料与衬底的可靠的锚固以及由衬底制造的芯片载体的稳定性。

锚固边可以简易地进行弯折。然后将弯折的表面部分构造成平的,弯曲边除外。替代地,可使锚固边成形。例如,弯折的表面部分可以具有L型轮廓。其它轮廓是可能的。

优选地,片材的厚度为15μm至35μm。在特别优选的实施形式中,片材厚度约为20μm。利用上述值,在使用由衬底制造的芯片载体的情况下电子模块的总厚度可以减小到约200μm,该电子模块也可以称为封装件。

在特别优选的本发明的实施形式中,片材由钢构成,特别由奥氏体不锈钢构成。不同于现有技术通常使用的铜合金,钢在极高的强度下仍具有足够的成型能力。优选地,所使用的钢涉及冷轧的奥氏体不锈钢。术语不锈钢被理解成根据EN10020的具有特殊纯度的合金钢或非合金钢,例如,硫和磷含量各不超过0.025%的钢。例如根据DIN267第11部分,奥氏体组织形成不锈耐酸钢。替代地,片材可以由铜或铜合金制成。但相比之下,钢在较好的成型能力下具有高强度的优势。

在另一个优选的实施形式中,片材的弯折的表面部分和另一个表面之间的弯折角度为30°至60°,特别为40°至50°。在特别优选的实施形式中,弯折角度约为45°。在上述范围的弯折角度能实现将锚固边充分地埋入灌注料中,其中灌注料可以流动到弯折的表面部分之下并且完全包围该表面部分。

有利地,弯折的表面部分是平直的。从而实现特别好地将片材稳定或避免了将不期望的机械应力引入片材中。平直的表面部分笔直地且平行于片材的表面延伸。

至少一个弯折的表面部分可以具有用于减小机械应力的梳形轮廓。附加地或替代地,至少一个弯折的表面部分可以具有平滑的外边缘。

穿孔可以具有用于减小机械应力的无弯折的弯曲部和/或无弯折的凹口。在此,邻近穿孔的弯曲区域的表面部分被构造成与片材的另一表面齐平,从而产生无弯折的布置。经此简化了衬底的制造。材料中的机械应力被减小。

为了使芯片岛稳固,至少邻近芯片岛的穿孔,特别是其内侧具有锚固边。因此不但机械地稳固了芯片岛,而且实现了灌注料在半导体芯片的直接区域中的特别良好的锚固。

此外,本发明还涉及一种具有芯片载体的电子模块,该芯片载体具有芯片岛以及紧固在其上的半导体芯片、用于电连接半导体芯片的,特别是通过压焊引线电连接半导体芯片的电极以及用于构造芯片载体的穿孔。至少一个穿孔形成用于灌注料的锚固边,该灌注料封装半导体芯片。邻近穿孔的芯片载体的表面部分被弯折以便形成锚固边。锚固边突出到芯片载体的布置芯片岛的侧面之上。锚固边被埋入灌注料中。

根据本发明形成的模块或封装件基于如同根据本发明的衬底一样的想法,并且具有邻近穿孔的、弯折的表面部分以形成锚固边,于是该锚固边突出到芯片载体的布置有芯片岛的侧面上。在模块中,半导体芯片被装配在芯片岛上,并且被埋入灌注料中。为了较好地将灌注料与芯片载体机械连接,锚固边被埋入灌注料中。为此,根据本发明这样设置,即将形成锚固边的表面部分弯折。

半导体芯片的电连接可以不通过压焊引线而通过其它连接装置来实现。

此外,本发明还包括电子设备,特别是芯片卡、医保卡、银行卡、公共交通的票卡、酒店房卡、纸片类的卡例如入场券、或具有根据本发明的模块的身份证或护照。

在用于制造具有多个芯片载体单元的条带形衬底的方法的范围中,分别通过形成穿孔来构造单元。构造例如可以通过冲压或切割来实现。各个单元的邻近穿孔的表面部分被弯折以便形成锚固边。

在现有技术中,通常使用铜合金来制造条带形衬底。本发明令人意外地展示了使用由钢,特别由具有15μm至35μm厚度的奥氏体不锈钢制成的金属片材会产生足够的稳定性,特别是在通过弯折片材的邻近各个穿孔的表面部分产生锚固边这种情况下。

下面,参考根据实施例的示意性附图利用其它细节对本发明进行更详细的阐述。其中

图1示出了根据现有技术的用于制造芯片载体的具有多个单元的条带形衬底;

图2示出了具有根据本发明形成的锚固边的根据本发明的实施例的条带形衬底的一部分;

图3示出了根据图2沿着线A-A的衬底的截面;

图4示出了根据图2沿着线B-B的衬底的截面;

图5示出了具有平滑的锚固边、无模具罩的根据本发明的实施例的衬底的俯视图;

图6示出了根据图5的衬底的上侧的透视视图;

图7示出了根据图5的具有半导体芯片和模具罩的衬底的透视视图;

图8示出了根据图6的衬底的一部分;并且

图9示出了锚固边的一种变型。

在图1中示出的条带形衬底的基本结构也可以在本发明范围中实现。本发明尤其通过构造锚固边而不同于图1中示出的衬底,该锚固边在图1中未详细描述。

本发明不限于图1中示出的基本结构,特别是不限于衬底的结构。本发明还包括利用其它几何形状来构造的衬底。例如可以设置用于减小机械应力的其他减压裂隙,当其他减压裂隙布置在浇铸料或灌注料的区域中时,其可以具有根据本发明构造的锚固边。

根据图1的条带形衬底是半成品,其被进一步加工成封装件或电子模块。引入衬底的锚固边也存在于进一步加工的模块中或在成品中,例如在芯片卡中或一般在电子设备中。

具体而言,根据图1的条带形衬底按如下方式构成。下面的描述明确地在本发明或本申请的所有实施例的背景下进行了公开。

条带形衬底由柔性片材1制成。优选地,该柔性片材是钢片材,特别是由冷轧的奥氏体不锈钢制成的片材。该片材具有多个单元2,这些单元在随后的方法步骤中被分开以便制造电子模块。单元2各自被构造为相同的。每个单元2具有芯片岛3,在该芯片岛上可紧固半导体芯片。

各自的实施形式可考虑作为半导体芯片。这些实施形式可以包括电子存储器、任何电子电路(集成电路-IC)或者也包括LED。

在本发明中,无半导体芯片的条带形衬底和具有半导体芯片的条带形衬底均要求保护。在图1中,也如同在图2中一样,示出了在配备状态下的,即具有半导体芯片17的衬底。

衬底包括的单元2比图1中示出的多。通常,衬底在横向于示出的三个单元2的方向上延伸。衬底可以被涂覆或者已涂覆。

每个单元2包括用于电连接各个半导体芯片17的电极4。电极4分别在两个面上围绕芯片岛3。芯片岛3是电中性的。每个电极4被细分为两个分区,确切地说是被细分为焊盘5或焊接连接面5,其被用于借助压焊引线(未示出)来电接触半导体芯片。其它电连接是可能的。各个电极4的第二分区是外部接触面,例如天线板6,在其上可以连接例如天线(未示出)或电源供给(未示出)。

条带形衬底设有穿孔7、8、9、10,借助于这些穿孔构造各个单元2且将前面提到的单元2的功能区域彼此隔开。

第一穿孔7被构造在芯片岛3的侧向。第一穿孔7被构造成大体上为四边形,特别是正方形。其它几何形状是可能的。

单元2包括第二穿孔8,其界定芯片岛3且大体确定芯片岛的形状和大小。第二穿孔8镜像对称地布置在芯片岛3的两侧。第二穿孔8被构造成大体上为U形。每个第二穿孔8具有布置成横向于单元2的纵向方向的横向边,其决定了芯片岛3的宽度。布置在单元2的纵向方向上的穿孔8的两个纵向边短于芯片岛3的纵向侧边,从而使第二穿孔8的纵向边的端部彼此间隔。

第一穿孔7布置在第二穿孔8之间。

根据图2的衬底还具有第三穿孔9和第四穿孔10,它们将焊盘5从天线板6分离。在第三穿孔和第四穿孔9、10之间形成连接梁24,其建立焊盘5和天线板6的电连接。

第三穿孔9是部分弯曲的且在第二穿孔8的拐角区域中延伸。

第四穿孔10布置成平行于第二穿孔8的横向边。可以在芯片岛3的各个边上各自设置两个穿孔10来替代图2示出的唯一的第四穿孔10,如图1所示。

根据图2的单元2还具有穿孔23,其布置在灌注料的外部并从而不具有锚固边。无锚固边的穿孔23将天线板6与在图1中示出的片材的剩余区域19隔开。在穿孔23之间各自构造了梁20,其在功能性检测之前被去除且在加工时有助于操纵衬底。这同样适用于第二穿孔和第三穿孔8、9之间的梁20。

每个单元的剩余区域19包围电极4以及芯片岛3,并且在加工时负责衬底的机械接合。电极4和芯片岛3构成由衬底制造的电模块的一部分。剩余区域19以及运输条21在制造中被去除。制造方法在DE 20 2012 100694U1的段落[0078]至[0084]中被详细描述,这些段落在此处被明确地援引。

为了保护且为了固定半导体芯片17,该半导体芯片被埋入灌注料18中。灌注料18包围半导体芯片17和压焊引线,并且至少部分地延伸到电极4上,特别是延伸到焊接连接面或焊盘5上。对于模块或由其制造的组件的安全运行重要的是,灌注料18或由其构成的模具罩与条带形衬底或在分开各个单元2之后与芯片载体牢固地连接。

对此,穿孔7、8、9、10具有锚固边11,该锚固边在封装半导体芯片时与灌注料18共同作用。锚固边11的结构在图3、图4和图8中示出。具有成形的锚固边的变型在图9中示出。如在图3、图4和图9中可较好看到的,锚固边11通过弯折邻近各个穿孔7、8、9、10的表面部分12形成。

弯折被理解为片材的成型,其中限定各个穿孔7、8、9、10的片材的边缘区域被弯曲。具体地,邻近的表面部分12被向上,即以如下方式被弯曲或被弯折,使得锚固边11突出在片材1的侧面之上,在该侧面上布置了芯片岛3。锚固边11稍微向外突出于周围片材1的表面之上。这种布置在图3、图4和图9中是较好识别的。

在片材1的弯折的表面部分12与包围该弯折的表面部分12的另一表面13之间形成的弯折角度在图3、图4中约为45°,条件是锚固边是非成形的,即平坦的。弯折角度可以在30°至60°,特别是40°至50°的范围中变动。在图4中,弯折角度用参考标记a标注。片材1的另一表面13在根据图3、图4的附图中在水平线上延伸。弯折的表面部分12关于片材1的另一表面13向上倾斜或一般地倾斜。

如在图9中看到的,成形的锚固边的最大弯折角度可以是约90°。在这里也可能是角度范围,其中下限可以是诸如40°或45°或更大。

弯折的表面部分12的宽度被这样设计,使得在用灌注料18封装半导体芯片17时实现足够的锚固效果。如在图3、图4中识别的,弯折的表面部分12的宽度可以大致这样设计,使得弯折的表面部分12的上边缘大致布置在半导体芯片17的上边缘的高度上或大致布置在其下面。

如在图2和图5中可较好识别的,弯折的表面部分12是平直的,即它们被构造在穿孔的平直边上。弯折的表面部分12沿着穿孔的平直边延伸。一般来说,仅穿孔的平直边被弯折。

邻近穿孔的弯曲区域的表面部分与片材1的另一表面13齐平。也涉及穿孔无弯折的弯曲部14。换言之,在弯曲区域上,特别是在所有弯曲区域上的表面部分14未被弯折或未被弯曲。此外,如在图2和图5中看到的,无弯折的凹口16被构造在第二穿孔8的拐角处,该无弯折的凹口消除在芯片岛3的区域中的机械应力。凹口16形成倒圆,该倒圆各自位于第二穿孔8的在单元2的纵向方向上延伸的纵向边的内侧上。在图2和图5示出的实施例中,相应的无弯折的凹口16设置在第二穿孔8的四个拐角上。

如在图2和图4中较好看到的,锚固边仅构造在灌注料18的区域中。

为了稳固芯片岛3,弯折的表面部分12被构造在第二穿孔8的内侧15上。通过片材的这种成形部稳固芯片岛3。第二穿孔8的内侧15的弯曲区域无弯折。

如在图2和图5中较好看见的,弯折的表面部分12或一般的锚固边11设置在第四穿孔10的内侧。锚固边11被构造在第三穿孔9的内侧的平直区域上。第二穿孔8不仅在内侧15的平直区域上,而且在外侧的平直区域上各自具有锚固边11或弯折的表面部分12。这同样适用于第一穿孔7。

与图2中的半导体芯片17被封装的视图不同,在根据图5的视图中的半导体芯片17被布置成暴露的。在图5中较好看到锚固边的位置。

根据图2的实施例和根据图5的实施例的另一个区别在于,在图2中锚固边11被成形为梳状的。根据图2的梳状的成形部在锚固边11的纵向方向上延伸。弯折的表面部分12具有成形的外边缘。成形的外边缘由大量沿着外边缘布置的相同形状的刻槽或开口形成。由此产生梳状的轮廓。示出的刻槽大体上为四边形。其它几何形状是可能的。

在根据图5的实施例中,锚固边是平滑的。该锚固边具有连续的、平直的外边缘。外边缘是未中断的,如图2。根据图2的实施例与根据图5的实施例的组合是可能的。

图6对应于根据图5的中间状态。由于根据图6的透视图,弯折的表面部分12的布置可以较好地看到。在图7中,根据图6的半导体芯片17被浇铸到形成模具罩的灌注料18中。

图8示出了根据图6的细节部分。其中,锚固边的形状可较好地识别。如在第一穿孔7中可以看到的那样,锚固边可以具有平坦的端面。锚固边11的其它形状是可能的,如在第二穿孔8中所示。其中可以看到,锚固边11具有弯曲的端面,该弯曲的端面连续地并入穿孔8的内侧15。

图9示出了锚固边11的一种变型。锚固边11被横向于锚固边11的纵向延伸部分成形。弯折的表面部分12具有第一柄部25,其垂直于片材的另一个邻近的表面13延伸,该表面未弯曲。第一柄部25转入第二柄部26,该第二柄部26垂直于第一柄部25延伸且形成弯折的表面部分12的外边缘。由此产生锚固边11的L形轮廓。如果加上片材的另一表面13,则总体上产生Z形轮廓。该轮廓沿着各个穿孔的一侧延伸。该轮廓能牢固地锚固灌注料18。

其它轮廓是可能的。不同的轮廓可以组合。

如在图9中示出的,使用成型工具27来进行制造。在工序中将材料深冲压(下凹(downsetten))。材料厚度减小。

在实施例中使用的片材是由冷轧的奥氏体不锈钢制成的金属片材。片材的厚度是15μm至35μm,具体而言为20μm左右。由此可将封装件或电模块的总厚度减小到200μm。灌注料18的可靠的固定通过向上弯折的表面部分12来实现。

使用根据图2至图8的载体衬底来制造电子模块按如下方式进行:首先分别将半导体芯片17放置在每个单元2的各自的芯片岛3的上侧并紧固在那里。例如,半导体芯片17可以被粘贴上。随后用压焊引线(未示出)将半导体芯片17与焊盘5连接。在这之后将半导体芯片17与压焊引线通过涂覆浇铸料或灌注料18诸如环氧树脂的方式固定住。在这一过程中,灌注料流动到弯折的表面部分12之下,由此将弯折的表面部分埋入。在灌注料18硬化之后,灌注料便与衬底牢固地锚固了。

这样产生的结构在图2至图4以及图7中示出。

随后将该结构进行电子冲压。在此将机械且导电连接电极4与剩余区域19的梁20去除。这涉及在穿孔23之间的梁20以及在第二穿孔和第三穿孔8、9之间的梁20。在第三穿孔和第四穿孔9、10之间的连接梁24保持不变。

第一穿孔和第二穿孔7、8之间的梁20使衬底的结构足够稳定地相连,从而可对该衬底进行进一步加工。随后进行功能性检测,以便可以分拣出有缺陷的模块。

在这之后,通过将第一穿孔和第二穿孔7、8之间的梁20去除这种方式将模块从片材1分离出来。随后,通过例如将作为天线或电导线的引线或导线与外部的连接面或天线板6相连接的方式可以对如此制造的电子模块进行安装。

参考标记列表

1 片材(金属片材)

2 单元

3 芯片岛

4 电极

5 焊盘

6 天线板

7 第一穿孔

8 第二穿孔

9 第三穿孔

10 第四穿孔

11 锚固边

12 弯折的(第一)表面部分

13 片材的另一表面

14 (第二)表面部分

15 穿孔的内侧

16 无弯折的凹口

17 半导体芯片

18 灌注料

19 剩余区域

20 梁

21 运输带

22 运输开口

23 无锚固边的穿孔

24 连接梁

25 25第一柄部

26 第二柄部

27 成型工具

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1