量子点太阳能电池的制作方法

文档序号:11161553阅读:1253来源:国知局
量子点太阳能电池的制造方法与工艺

本发明涉及利用了量子点的太阳能电池。



背景技术:

近年来,提出了在太阳能电池、半导体激光器等光电变换装置中利用量子点。量子点通常是以尺寸为10nm左右的半导体材料作为主成分的纳米粒子,通过将半导体材料微小化,从而在三个维度对电子进行限制,并且使态密度具有δ函数式的离散能级。因此,当在量子点内生成载流子时,载流子会集中在呈能带构造离散的能级,因此能够吸收与多个带隙对应的波长的光(太阳光)。其结果是,可以认为,当在太阳能电池中使用量子点时,能够吸收宽度更宽的波长的光,因此可提高光电变换效率。

已知量子点的带隙取决于构成量子点的材料组成、尺寸,但是本申请人以前认识到,当减小量子点的粒径的偏差度时,量子点之间的波动函数会重叠,能够提高载流子的输送效率(例如,参照专利文献1)。

图8(a)是示意性地示出专利文献1的量子点太阳能电池的剖视图,图8(b)是图8(a)的量子点太阳能电池示出的光吸收特性的一个例子。在图8(a)中,附图标记101是量子点,附图标记103是量子点层,附图标记105是透明导电膜,附图标记107是玻璃基板,附图标记109是金属电极。

在先技术文献

专利文献

专利文献1:日本特开2013-229378号公报



技术实现要素:

发明要解决的课题

然而,在专利文献1的量子点中,如图8(a)、图8(b)所示,当使量子点101为粒径一致的状态时,相邻的光吸收峰成为分开的状态,能够吸收的光的波长区域会更离散,因此不能吸收光的波长区域会增加。因此,存在包含离散的能级的全波长区域中的光吸收量仍低的问题。

本发明是鉴于上述课题而完成的,其目的在于,提供一种光吸收量多的量子点太阳能电池。

用于解决课题的技术方案

本发明的量子点太阳能电池具备包含多个量子点的量子点层,在所述量子点太阳能电池中,所述量子点层具有:第一量子点层,在将所述量子点的平均粒径设为x并将所述量子点的标准偏差设为σ时,表示粒径的偏差度的指标σ/x为5%以上。

发明效果

根据本发明,能够得到光吸收量多的量子点太阳能电池。

附图说明

图1(a)是示出量子点太阳能电池的一个实施方式的剖面示意图,图1(b)是示出指标σ/x=10%时的量子点太阳能电池的光吸收特性的一个例子。

图2是示出指标σ/x=20%时的量子点太阳能电池的光吸收特性的一个例子。

图3是示出量子点太阳能电池中的电压-电流特性的示意图。

图4是量子点的外观示意图,图4(a)是球状的情况,图4(b)是多面体状的情况,图4(c)是柱状的情况,图4(d)是椭球状的情况,以及图4(e)是四脚体状的情况。

图5是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层的光的入射面侧具备第二量子点层的量子点太阳能电池的剖面示意图,第二量子点层包含量子点的平均粒径和粒径的偏差度比第一量子点层小的量子点。

图6(a)是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层的光的出射面侧具备第二量子点层的量子点太阳能电池的剖面示意图,图6(b)是示出图6(a)所示的量子点太阳能电池的能带构造的示意图。

图7是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层的光的入射面侧和出射面侧具备第二量子点层的量子点太阳能电池的剖面示意图。

图8(a)是示意性地示出现有的量子点太阳能电池的剖视图,图8(b)是图8(a)的量子点太阳能电池示出的光吸收特性的一个例子。

具体实施方式

图1(a)是示出量子点太阳能电池的一个实施方式的剖面示意图,图1(b)是示出指标σ/x=10%时的量子点太阳能电池的光吸收特性的一个例子。图1(b)中的用附图标记a表示的光吸收系数的曲线是基于各种能带间跃迁的光吸收系数的曲线,用附图标记A表示的光吸收系数的曲线是将附图标记a的光吸收曲线进行叠加时的光吸收曲线。

本实施方式的量子点太阳能电池具备包含多个量子点1的量子点层3。在图1(a)中,示出在量子点层3的光的入射面3b侧层叠了透明导电膜5和玻璃基板7且在相反的一侧的光的出射面3c侧设置了金属电极9的构造,但是这只是作为一个例子示出的。

本实施方式中的量子点层3具有第一量子点层3A,在第一量子点层3A中,在将量子点1的平均粒径设为x并将量子点1的标准偏差设为σ时,表示粒径的偏差度的指标σ/x为5%以上。

在量子点层3应用了像上述那样具有特定以上的粒径的偏差度的第一量子点层3A的情况下,光吸收特性与图8所示的具有粒径一致的量子点101的现有的量子点太阳能电池的情况相比较,对光的波长的吸收峰离散的状态得到缓解,如图1(b)所示,变宽到与相邻的光吸收系数的峰重叠的程度。其结果是,不能吸收光的波长区域减少,因此能够增大将各光吸收系数的峰相加的整体的光吸收量。由此,能够提高量子点太阳能电池的短路电流(Isc)。另外,根据在光吸收系数的曲线A的不同波长的位置存在多个峰,能够判定光吸收系数的曲线A是附图标记a的光吸收曲线叠加而成的。

图2是示出指标σ/x=20%时的量子点太阳能电池的光吸收特性的一个例子。图3是示出量子点太阳能电池中的电压-电流特性的示意图。它们是由PbS形成量子点1时的图,且是形状为多面体状时的图。在图3中,将电压为0V时成为最大的电流值作为短路电流(Isc),将电流值为0A时成为最大的电压作为开路电压(Voc)。此外,在描绘电压-电流特性的曲线的内侧,将电压与电流之积的最大值作为最大输出(Pmax)。

在该情况下,当将指标σ/x增大至20%时,如图2所示,在对光进行吸收的波长区域之中,尤其能够提高长波长侧的光吸收系数,因此能够得到在更宽的波长范围示出高光吸收系数的量子点太阳能电池。从像这样可提高长波长侧的光吸收系数的方面考虑,指标σ/x为21%以上为宜。图2的纵轴是对数表示,波长为500~900nm的范围中的光吸收系数落在10000~100000之间,其光吸收系数的变化宽度至少抑制在80000以内。

另外,从在缓解光吸收系数的峰离散的状态的同时减少不能吸收光的波长区域的方面考虑,使量子点1具有粒径的偏差度为宜,但是当量子点1的粒径的偏差度增大时,存在各波长的光吸收系数的绝对值降低的趋势,因此短路电流(Isc)的降低会增大。从这一点考虑,作为指标σ/x,优选为35%以下。

对使用透射电子显微镜拍摄量子点层3的断裂面而得到的照片进行图像解析,从而求出量子点1的平均粒径(x)和粒径的偏差度(σ/x)。平均粒径(x)以如下方式求出,即,在照片中绘制出包含20~50个量子点1的圆,在求出各量子点1的轮廓的面积之后换算为直径,并求出其平均值。粒径的偏差度(σ/x)以如下方式求出,即,根据求出平均粒径(x)的数据来求出标准偏差σ,并通过计算求出σ/x。

在此,在本实施方式的量子点太阳能电池中,作为量子点1,例如能够应用外形形状不同的各种量子点1。在图4中示出量子点1的外形形状。图4(a)是球状的情况,图4(b)是多面体状的情况,图4(c)是柱状的情况,图4(d)是椭球状的情况,以及图4(e)是四脚体状的情况。在该情况下,在量子点层3中,在将量子点1的外形形状区分为例如球状、多面体状、柱状、椭球状以及四脚体状时,优选以大致统一为上述的形状中的一种的状态配置在整个量子点层3。此外,在该量子点太阳能电池中,优选作为量子点1的一部分而包含轮廓的一部分不同的异形量子点1a。

在量子点层3作为基底而包含具有大致统一的外形形状的量子点1的情况下,能够形成量子点1的轮廓一致的致密的量子点层3,从而能够得到载流子移动的导带的连续性高的量子点层3。而且,当量子点层3还包含轮廓的一部分不同的形状的异形量子点1a时,由于在量子点层3中包含粒径(表面积)与异形量子点1a以外的量子点1不同的异形量子点1a,因此能够使在整个膜中能够吸收光的波长的宽度变得更宽。这样,能够进一步提高整体的光吸收量。

在此,对异形量子点进行说明,在量子点1的外形形状为如图4(a)所示的球状的情况下,作为异形量子点1a,能够举出在表面具有凹部DS的球状的异形量子点1a。在该情况下,可以包含凹部DS的开口处的最大长度LAS不同的异形量子点1a。

例如,在拍摄量子点层3的断裂面而得到的照片中,指定包含大约50个量子点1(在包含异形量子点1a的情况下将其包含在内)的给定范围的区域,在其中测定形成于异形量子点1a的各个凹部DS的开口处的最大长度LAS。而且,包含凹部DS的开口处的最大长度LAS不同的异形量子点1a是指,评价的最大长度LAS的偏差度为10%以上的情况。

另外,在本实施方式的量子点太阳能电池中,第一量子点层3A中包含的量子点1可以由表面具有凹部DS且凹部DS的开口处的最大长度LAS不同的球状的多个量子点1构成。

在量子点1的外形形状为如图4(b)所示的多面体状的情况下,作为异形量子点1b,能够举出在表面具有面积不同的平坦面Aph的异形量子点1b。

在此,在对量子点层3进行观察时,测定量子点1和异形量子点1b可见的平坦面Aph的一边的长度Lph,从而对平坦面Aph的面积进行评价。

例如,在拍摄量子点层3的断裂面而得到的照片中,指定包含大约50个量子点1(在包含异形量子点1b的情况下将其包含在内)的给定范围的区域,测定形成于量子点1(包含异形量子点1b)的平坦面Aph的一边的长度Lph。而且,在多面体状的量子点1中,平坦面Aph的面积不同是指,评价的一边的长度Lph的偏差度为10%以上的情况。

在量子点1的外形形状为如图4(c)所示的柱状的情况下,作为异形量子点1c,能够举出轴向的长度Lp不同的异形量子点1c。在该情况下,柱状意味着,也包括如长轴/短轴之比(长宽比(Lp/Dp))为10以上的那样的所谓的纳米线的形状。在此,在观察量子点层3时,测定量子点1的长度Lp,从而对柱状的量子点1的长度Lp进行评价。例如,在拍摄量子点层3的断裂面而得到的照片中,指定包含大约50个量子点1的给定范围的区域,测定各量子点1各自的长度Lp。另外,在量子点1弯曲的情况下,测定量子点1的两端间的直线距离作为Lp。而且,在柱状的量子点1中,长度Lp不同是指,评价的长度Lp的偏差度为10%以上的情况。

在量子点1的外形形状为如图4(d)所示的椭球状的情况下,作为异形量子点1d,能够举出长轴DL不同的异形量子点1d。在此,在观察量子点层3时,对量子点1测定其长轴DL,从而对椭球状的量子点1的长轴DL进行评价。例如,在拍摄量子点层3的断裂面而得到的照片中,指定包含大约50个量子点1的给定范围的区域,求出量子点1各自的长轴DL。而且,在椭球状的量子点1中,长轴DL不同是指,评价的长度DL的偏差度为10%以上的情况。

在量子点1的外形形状为如图4(e)所示的四脚体状的情况下,作为异形量子点1e,能够举出最大直径LT不同的异形量子点1e。在此,在观察量子点层3时,对各四脚体状的量子点1测定长度最大之处作为最大直径LT,从而对四脚体状的量子点1的LT进行评价。例如,在拍摄量子点层3的断裂面而得到的照片中,指定包含大约50个量子点1的给定范围的区域,在各量子点1中,测定长度最大之处的长度,作为最大直径LT。而且,在四脚体状的量子点1中,最大直径LT不同是指,评价的最大直径LT的偏差度为10%以上的情况。

作为上述的构成量子点太阳能电池的量子点1(在该情况下,包含异形量子点1a、1b、1c、1d以及1e(以下,有时标记为1a~1e。)。),优选由以半导体粒子为主体的量子点构成,且具有0.15~2.0eV的带隙(Eg)的量子点。作为具体的量子点1的材料,优选使用从锗(Ge)、硅(Si)、镓(Ga)、铟(In)、砷(As)、锑(Sb)、铜(Cu)、铁(Fe)、硫(S)、铅(Pb)、碲(Te)以及硒(Se)之中选出的任一种或者它们的化合物半导体。其中,优选从Si、GaAs、InAS、PbS、PbSe、CdSe、CdTe、CuInGaSe、CuInGaS、CuZnGaSe以及CuZnGaS的组之中选出的一种,在这些半导体材料之中,作为量子点1和异形量子点1a的形状为球状体的例子,能够举出Si、GaAs、InAs、CuInGeSe、CuInGaS、CuZnGaSe以及CuZnGaS,作为多面体状的量子点1的例子,能够举出PbS、PbSe以及CdSe。此外,作为柱状的量子点1的例子,能够举出Si、GaAs以及InAs,作为椭球状的量子点1的例子,能够举出Si、GaAs、InAs、CuInGaSe、CuInGaS、CuZnGaSe以及CuZnGaS,进而,作为形状为四脚体状的例子,能够举出CdTe。

在该情况下,作为量子点1和异形量子点1a~1e的尺寸(在此设为最大直径,在纳米线的情况下设为相对于轴的方向垂直的方向上的长度(直径)。),例如优选最大直径为2nm~10nm。

另外,在量子点1的周围具有势垒层的情况下,作为势垒层的材料,优选与量子点1和异形量子点1a~1e相比较具有大约2倍以上且15倍以下的带隙的材料,优选具有1.0~10.0ev的带隙(Eg)的材料。作为势垒层的材料,优选包含从Si、C、Ti、Cu、Ga、S、In以及Se之中选出的至少一种元素的化合物(半导体、碳化物、氧化物、氮化物)。

图5是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层3A的光的入射面3b侧具备第二量子点层3B的情况的剖面示意图,第二量子点层3B由平均粒径(x)和粒径的偏差度(指标σ/x)比第一量子点层3A的量子点1小的量子点1构成。

在本实施方式的量子点太阳能电池中,在将图1所示的量子点太阳能电池作为基本构造时,当设为相对于粒径的偏差度大的量子点1的粒子组(在此为第一量子点层3A)而在其光的入射面3b侧配置了由量子点1的平均粒径(x)和粒径偏差度(σ/x)比第一量子点层3A的量子点1小的量子点1构成的第二量子点层3B的构造时,将成为在光的入射面3b侧配置了带隙更大的量子点层(在此为第二量子点层3B)的构造。由此,能够提高受带隙支配的电压-电流特性中的开路电压(Voc)。其结果是,能够提高量子点太阳能电池的最大输出(Pmax)。在该情况下,作为具有粒径的偏差度(σ/x)大的量子点1的第一量子点层3A与具有粒径的偏差度(σ/x)小的量子点1的第二量子点层3B的粒径的偏差度之差(在此为指标σ/x之差),优选为3%以上。此外,平均粒径之差优选为0.5nm以上。

图6(a)是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层3A的光的出射面3c侧具备第二量子点层3B的情况的剖面示意图,图6(b)是示出图6(a)所示的量子点太阳能电池的能带构造的示意图。

与图5所示的量子点太阳能电池的情况不同,在第一量子点层3A的光的出射面3c侧配置了量子点1的粒径的偏差度(σ/x)小的第二量子点层3B的情况下,如图6(b)所示,第二量子点层11的带隙(Eg)比第一量子点层3A的带隙(Eg)大,因此与第一量子点层3A相比,第二量子点层3B的带隙(Eg)增大。因此,第二量子点层3B在能量上成为势垒,所以阻碍在第一量子点层3A内生成的电子e向光的出射面3c侧的移动。由此,能够使在第一量子点层3A中生成的电子e选择性地向光的入射面3b侧移动,能够提高量子点太阳能电池的短路电流(Isc)。

图7是示出量子点太阳能电池的另一个方式的图,是示出在第一量子点层3A的光的入射面3b侧和光的出射面3c具备第二量子点层3B的情况的剖面示意图。

如图7所示,当设为在第一量子点层3A的光的入射面3b侧和出射面3c侧的双面配置了第二量子点层3B的构造时,能够使第二量子点层3B兼具分别在图5和图6示出的构造的效果,因此能够得到开路电压(Voc)和短路电流(Jsc)两者均高的量子点太阳能电池。在该情况下,还能够提高曲线因子(FF)。

接下来,对制造本实施方式的太阳能电池的方法进行说明。

首先,准备玻璃基板7,在其表面形成以ITO为主成分的透明导电膜5。关于量子点1,例如使用通过对上述的半导体材料照射特定波长的光而使微粒从半导体材料溶出的方法为宜。通过照射的光的波长和输出对成为量子点1的半导体微粒的平均粒径(x)、粒径的偏差度(σ/x)进行调整。在形成轮廓的一部分不同的形状的异形量子点1a~e的情况下,进行调整,以使得所照射的光的波长具有宽度,且波长每隔一定时间变化。

接着,将调制的半导体微粒涂敷在形成于玻璃基板7的表面的透明导电膜5的表面,进行致密化处理。作为涂敷的方法,优选选择旋涂法、沉积法等对包含半导体微粒的溶液进行涂敷。在致密化处理中,可采用如下方法,即,在透明导电膜的表面涂敷半导体微粒之后,进行加热或加压,或者同时进行加热、加压。量子点层的厚度通过堆积的半导体微粒的量进行调整。在使量子点层3多层化的情况下,使平均粒径(x)、粒径的偏差度(σ/x)不同的半导体微粒重叠地进行涂敷为宜。

最后,在量子点层1的上表面侧形成金属电极9,并根据需要使基材抵接而进行粘接,从而能够得到如图1(a)所示的本实施方式的量子点太阳能电池。以上,以图1(a)所示的量子点太阳能电池为例进行了说明,但是图5~图7所示的量子点太阳能电池也能够通过同样的制法得到。

以下,使用表1所示的各种半导体材料具体制作了图1的构成的量子点太阳能电池,并进行了评价。

首先,准备玻璃基板,在其表面形成以ITO为主成分的透明导电膜。

接着,使用旋涂法将预先调制的半导体微粒涂敷到形成于玻璃基板的表面的透明导电膜的表面,并进行加热来进行致密化处理,从而制作了量子点层。此时,量子点层的厚度调整为大约0.5μm。关于量子点,使用了对各半导体材料照射特定波长的光而使微粒从半导体材料溶出的方法。此时,进行调整以使得所照射的光的波长具有宽度且波长每隔一定时间变化,从而制作了包含轮廓的一部分不同的形状的异形量子点1a~1e的量子点1。

最后,在量子点层的上表面侧使用蒸镀法形成了Au的金属电极。这样,制作了表面的面积为10mm×10mm的量子点太阳能电池。各试样的个数设为3个,进行了表1所示的评价。

根据通过透射电子显微镜对制作的量子点层的断裂面进行观察而得到的照片,求出量子点的平均粒径(x)及其偏差度(σ/x)。此时,绘制出包含大约50个量子点的圆,根据各量子点的轮廓求出换算为圆的直径,并导出其平均值(x)。此外,根据相同的换算为圆的直径求出标准偏差(σ),并计算出偏差度(指标σ/x)。

进而,从相同的观察照片之中提取量子点的外形形状或轮廓的一部分不同的异形量子点。对于球状的量子点,测定凹部DS的最大长度LAS,并根据其偏差度求出是否具有异形量子点。此外,对于多面体状的量子点,测定平坦面Aph的一边的长度Lph,并根据偏差度求出是否具有异形量子点,对于柱状的量子点,测定长度Lp,并根据偏差度求出是否具有异形量子点,对于椭球状的量子点,测定长轴DL,并根据偏差度求出是否具有异形量子点,对于四脚体状的量子点,测定最大直径LT,并根据偏差度求出是否具有异形量子点。

在表1所示的试样之中,关于具有粒径的偏差度(σ/x)为5%以上的量子点的试样,对于球状的量子点,凹部DS的最大长度LAS具有10~12%的偏差度,对于多面体状的量子点,平坦面Aph的长度Lph具有10~12%的偏差度,对于柱状的量子点,长度Lp具有10~12%的偏差度,对于椭球状的量子点,长轴DL具有10~12%的偏差度,进而,对于四脚体状的量子点,最大直径LT具有10~12%的偏差度。

使用分光器对波长为300~1100nm的范围评价了光吸收系数,并根据光吸收系数的变化求出了波长宽度。

使用太阳仿真器作为短路电流密度测定了短路电流(Isc)。

[表1]

#:VLS法(气相-液相-固相生长法)

##:在量子点为线状的情况下为长度。

*光吸收系数的变化在1decade以内的波长宽度

根据表1的结果可知,与量子点的粒径的偏差度(指标σ/x)小于5%的试样(试样No.1、No.3)相比较,在具有粒径的偏差度(指标σ/x)为5%以上的量子点的试样(试样No.2、No.4~No.18)中,光吸收系数的波长宽度均为270nm以上,在宽的波长范围示出高的光吸收特性。

附图标记说明

1:量子点;

3:量子点层;

3A:第一量子点层;

3B:第二量子点层;

3b:光的入射面;

3c:光的出射面;

5:透明导电膜;

7:玻璃基板;

9:金属电极。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1