使用比例式热流体输送系统的基板载具的制作方法

文档序号:11161497阅读:689来源:国知局
使用比例式热流体输送系统的基板载具的制造方法与工艺

本发明的实施例涉及微电子制造工业,且更特定而言,涉及用于在等离子体处理期间支撑工件的温度受控支撑件。



背景技术:

在半导体芯片的制造中,硅晶片或其他基板暴露于不同处理腔室中的多种不同工艺。腔室可将晶片暴露于等离子体、化学蒸气、金属、激光蚀刻以及多种沉积与酸蚀工艺以便在晶片上形成电路系统及其他结构。在这些工艺期间,硅晶片可通过静电卡盘(electrostatic chuck;ESC)、载具、底座或多种其他结构而固持到位。ESC通过产生静电场以将晶片背侧夹持至卡盘的平坦表面或定位盘表面(puck surface)而固持晶片。其他载具使用真空压力、黏合剂或其他技术。

随着等离子体处理设备(如经设计以执行微电子器件等的等离子体蚀刻的那些等离子体处理设备)的制造技术进步,处理期间晶片的温度变得更为重要。ESC已经被设计以跨基板表面提供特定热分布,该基板有时被称为工件。ESC也已经被设计以精确调节工件的温度。

ESC使用液体冷却以吸收等离子体功率热并从卡盘移除该热。ESC也可使用液体加热卡盘。这允许不同的工艺及等离子体条件下的更宽的工艺窗口。热交换器用以在液体经泵送通过卡盘之前加热或冷却液体,然后阀控制经泵送通过卡盘的热流体与冷流体的流速及混合物。更精确的热性能允许在晶片上更精确形成的结构。



技术实现要素:

一种基板载具被描述,该基板载具使用比例式热流体输送系统。在一个示例中,装置包括热交换器,以向基板载具的流体通道提供热流体并且接收来自流体通道的热流体,流体通道中的热流体用以在基板处理期间控制载具的温度。比例阀控制从热交换器至流体通道的热流体的流速。温度控制器接收来自载具的热传感器的测得温度,且响应于该测得温度而控制比例阀以调整流速。

附图说明

本发明的实施例通过示例而非限制的方式在附图的各图中进行说明,在这些附图中:

图1是根据本发明的实施例的温度调节系统的示图,该系统使用晶片支撑件的比例式流体流控制;

图2是根据本发明的实施例的用于温度调节的替代性配置,该替代性配置使用比例式流体流;

图3是根据本发明的实施例的用于工件的等离子体处理装置的替代性示图,该等离子体处理装置使用底座及比例阀流体控制系统。

具体实施方式

在下文的描述中,介绍众多个细节,然而,对本领域技术人员而言,将显而易见的是,本发明可在没有这些特定细节的情况下得以实施。在一些情况下,众所周知的方法及设备以框图形式示出,而非详细示出,以避免使本发明含义模糊不清。本说明书全文中对“实施例”或“一个实施例”的引用意味着联系该实施例描述的特定特征、结构、功能或特性被包含在本发明的至少一个实施例中。由此,词组“在实施例中”或“在一个实施例中”在本说明书全文中多处的出现并非一定是指本发明的同一个实施例。此外,特定特征、结构、功能或特性可在一个或更多个实施例中以任何适合的方式组合。例如,第一实施例可与第二实施例在与该两个实施例相关联的特定特征、结构、功能或特性并不互斥的任何情况下组合。

如本发明的说明书及所附权利要求书中所使用,单数形式“一(a)”、“一(an)”及“所述(the)”意欲也包括复数形式,除非上下文中明确指示并非如此。还将理解,如本文中所使用的术语“和/或”是指并包含相关列出项目中的一者或更多者的任何及全部可能的组合。

术语“耦接”和“连接”及其衍生词可在本文中用以描述部件之间的功能关系或结构关系。应理解,这些术语并非意欲作为彼此的同义词。相反,在特定实施例中,“连接”可用以指示两个或多于两个的要素彼此处于直接的实体接触、光学接触或电接触。“耦接”可用以指示两个或多于两个的要素彼此处于直接或间接(它们之间有其他中间要素)的实体接触、光学接触或电接触,和/或两个或多于两个的要素彼此配合或相互作用(例如以因果关系相互作用)。

如本文中所使用的术语“上方(over)”、“下方(under)”、“之间(between)”及“之上(on)”是指一个部件或材料层相对于其他部件或层的相对位置(在这种实体关系显著的情况下)。例如,在材料层的上下文中,安置于另一层上方或下方的一个层可直接接触该另一层或可具有一个或更多个中间层。此外,安置于两个层之间的一个层可直接接触该两个层或可具有一个或更多个中间层。相较而言,位于第二层“之上”的第一层与该第二层直接接触。部件组件的上下文中将进行类似区分。

诸如静电卡盘(electrostatic chuck;ESC)或真空卡盘等基板支撑件的温度可使用比例式流体输送系统来控制。脉冲流体输送系统使流体阀的打开和关闭迅速循环。打开占空比决定流向卡盘的流体量。这不如比例式控制系统准确或可靠。比例阀所允许的流速满足利用高偏压射频(RF)功率的等离子体工艺的冷却需求。这些工艺包括用于高深宽比蚀刻结构的那些工艺。在没有闭合回路温度控制系统的情况下,在晶片处理期间,卡盘温度将随着高射频功率的引入而稳定增长。所述的闭合回路系统提供稳态温度控制,从而将在晶片正在处理的同时改良蚀刻形状性能。

图1是用于晶片支撑件的温度调节系统的示图,该晶片支撑件如ESC或真空卡盘,如上所述。系统具有用于热流体的源108及回流道109。回流道将流体馈送回到热交换器160,该热交换器160加热流体至预定温度或加热达一调节量,且在压力下将流体提供至供应线路108。流体温度可被固定或基于控制信号而调整。同样,系统具有用于冷流体的源110及回流道111。第二热交换器162接收冷回流并将该回流冷却至预定温度或冷却达一定调节量。第一及第二热交换器可以是单一单元或是两个单独装置。热交换器可以是恒温控制的,或它们可基于有或没有任何特定控制的设计而施加固定量的加热或冷却。如下所述,通过基板载具122循环的冷却剂120的温度部分由所供应的热流体108及冷流体110的温度控制,但也由热流体及冷流体的流速及混合物控制。系统提供泵送至载具122的流体输出管线120及使流体从载具回流的回流管线124。

向三向阀126提供热流体供应,该阀打开或关闭来自热交换器的热流体的流。类似地,向同一三向阀提供冷流体供应,该阀打开或关闭来自第二热交换器的冷流体的流。在载具供应管线120中向基板载具122提供允许通过此阀的流体,以加热或冷却该基板载具。存在另外的三向阀128,该三向阀耦接至热回流管线109及冷回流管线111。来自基板载具的流体在载具回流管线124中回流至此阀128,且被允许穿过此阀以返回该流体所来自的相应的热交换器。三向阀在耦接至该两个阀的温度控制器102的控制下操作。

温度控制器102接收来自诸如光学温度探针等热传感器164的温度信号,该热传感器164附接至工艺腔室中的基板或基板载具122以直接或间接地确定基板温度。基于该所接收的温度,控制器打开和关闭热阀及冷阀,且控制穿过基板载具122的流速。控制器102使用探针164温度以确定与温度设定点的误差并使用例如比例积分微分(Proportional Integral Derivative;PID)控制器产生输出电压。

控制器102确定将在基板载具流体通道120中使用的流速及冷却介质(也即热流体108或冷流体110)。在一些实施例中,由冷的热交换器提供的流体在约0℃,且由热的热交换器提供的流体在约55℃。依据载具的当前温度,这些流体中的任一流体被输送至流体通道。如若载具温度在设定点以上,则使用来自冷的冷却器的流体。如若温度在设定点以下,则使用来自热的冷却器的流体。流体输送系统使用可变流量阀106以将温度受控介质120控制在适当温度范围内。流体输送系统还在等离子体处理期间控制温度倾斜上升及突增。

为了控制流速,温度控制器102产生阀控制信号,例如模拟电压,且将该信号提供至压力调节器104。压力调节器基于阀控制信号产生压力并将该压力提供至流量控制阀106。流量控制阀打开或关闭自热交换器160、162至基板载具122的通路达一定量,该量依据所供应的压力而定。因此,加热流体或冷却流体穿过载具的流速由流量控制阀106控制。因此,流量控制阀控制施加至基板载具的加热或冷却的量。更高流速允许流体向载具或从载具传递更多热。载具热耦合至处理腔室中的基板。因此,冷流体的更高流速将从载具移除更多热。热流体的更高流速将向载具传递更多热。

在图示的示例中,温度控制器102耦接至电动气动调节器104。以受控制及通常恒定的压力向这种调节器供应压缩干燥空气(Compressed Dry Air;CDA)输入112。调节器响应于来自热控制器的电控制信号166而调节输入CDA以产生精确的气动空气压力信号168。如若向调节器提供无级模拟信号,则调节器可提供也以无级方式变化的调节器空气压力。该经调节气动控制压力被施加于压力调节阀106的顶部。

在一些实施例中,CDA被施加给调节器104的供气电磁阀。随着输入控制电压166增大,电磁阀打开。经由供气阀释放的压力由传感器测得并馈送至控制电路。调整供气阀直至测得压力与控制信号指示的压力一致。提供排气电磁阀以将调节器内压力缓解回至CDA供应。

压力调节阀106响应于来自压力调节器104的控制压力168而提供比例式流体控制。这允许对来自三向阀126穿过载具122的流体流120进行无级控制。与脉冲阀相比,该阀移动极微。这提供更长硬件寿命,需要更少维修。此外,对温度变化的响应更平滑。在等离子体处理期间,通过使用没有连续流体断开时间的可变流速,温度响应更平滑,温度振荡减少。

在一些实施例中,压力调节阀在阀主体中具有上部腔室,该上部腔室具有上部隔膜,该隔膜响应于供应至上部腔室的空气压力而移动。上部腔室中的上部隔膜经由轴耦接至位于阀主体的下部腔室中的下部阀闸或隔膜。上部隔膜响应于空气压力,抵抗弹簧而移动,以通过连接轴移动下部闸或隔膜。下部腔室在入口接收来自三向阀126的流体,然后基于闸或下部隔膜的位置而改变前往出口的流速。通过使用流量计172,控制反馈回路可用以提供穿过比例阀的希望的流速。

热流体回流阀140允许加热流体自热供应装置绕过基板载具122流至热回流装置。类似的冷流体回流阀142允许冷却流体自冷供应装置直接流至冷回流装置,无需穿过载具。当由于三向阀126、128的设置而未向载具提供热供应或冷供应时,热流体及冷流体回流阀140、142允许流体流经对应的热交换器,而不流经载具。这允许对应的热交换器建立稳定温度并将流体的供应保持在希望的温度。

如图所示,这些流体旁通阀140、142也可以是由经调节压缩干燥空气(Compressed Dry Air;CDA)源112或由未调节打开/关闭CDA控制的比例阀。这些阀也可由温度控制器控制以结合三向阀提供希望的流。

温度调节系统还可包括多个压力传感器132、134、136、138及流量计172。这些可耦接至系统控制器170,该系统控制器170控制温度控制器102、热交换器160、162、基板载具122、以及在基板上执行的工艺的其他方面。热供应装置及冷供应装置中的每一个上的压力传感器132、136允许测量热交换器的操作。CDA输入中的每一个上的压力传感器134允许测量CDA压缩并相应地加以调整。

穿过载具的流体管线122、124中的流量计172允许测量流速。如果需要,测得流速可随后使用比例阀106来调整。管线中的压力也可利用压力传感器138测得,并使用比例阀调整。在图示的示例中,在回流管线124中测量来自载具的流速及压力。这允许在系统处于操作中时核查穿过载具的系统操作。将观测到任何流或压力损失,且也可测量改变比例阀位置的效应。

所描述的温度调节系统允许将流经基板载具中的通道的流体的温度控制在一定范围内,该范围例如0℃至55℃。基板载具可具有一个以上的热流体通道,在该情况下,图1的系统可经复制以支持每一额外通道。因为可独立控制进入压力调节阀106的混合物和通过压力调节阀的流速,因此单一热的热交换器及单一冷的热交换器可用以向一个以上的通道提供流体。

图2图示基板载具(如ESC 280)的示例配置,该基板载具具有外部热流体通道282及内部热流体通道284。外部通道及内部通道可用以补偿基板不同位置上的不同条件。对于晶片等离子体处理而言,例如,晶片外缘比晶片内部趋于更快加热,因为晶片外缘具有暴露于腔室的更多表面区域。在此类示例中,可向外部流体通道提供比向内部流体通道更多的冷却流体流,以使得晶片的整个表面可维持在更一致的温度下。图2的原理可应用于其他类型的ESC及其他类型的基板载具,在这些基板载具中,对一个以上的流体通道使用独立控制。

冷供应热交换器202向冷供应管线206提供冷却的热流体。冷供应经由旁通阀218馈送至冷回流歧管220,该歧管使冷供应回流穿过冷回流管线210以到达冷的热交换器。旁通阀218可使用压力传感器216来控制。当冷供应管线206中的压力高时,旁通阀由压力传感器打开,以缓解管线中的压力。当冷供应管线中的压力低时,旁通阀关闭以确保有充足的压力以支持系统的操作。冷回流管线中的冷流量计222提供另一传感器,该传感器与压力传感器216组合,可由热控制器(未图示)或系统控制器(未图示)使用以确保正确的系统操作。

旁通阀218可以是隔膜阀,该阀可手动操作或由外部控制器控制。旁通阀是基于压力而部分自调节的,且也可由压力传感器控制。用于冷供应的该旁通阀及用于热回流212的另一旁通阀226有助于在所有操作模式期间确保流速的平滑变化和持续的流。

类似地,热供应热交换器204向热供应管线208提供加热的热流体。热供应管线经由由压力传感器224控制的热旁通阀226而馈送,以将热供应馈送回到回流歧管228。该回流歧管中的热的热流体被馈送至热回流管线并返回热供应热交换器204。热回流管线也具有流量计230以测量回流管线中来自所有源的流。

冷及热的热流体供应被馈送至第一三向阀240,该三向阀选择冷或热的热流体或两者一起以用于外部冷却通道282。同一冷及热的热流体供应也被馈送至第二三向阀242,该三向阀选择冷或热的热流体或两者一起以用于ESC 280的内部冷却通道284。来自每一三向阀的输出的流速由相应的比例阀260、262控制,如由如上所述的压力调节阀控制。然而,在图1的示例的情况下,也可使用任何其他类型的比例阀。每一比例阀具有相应的阀控制器250、252,如上文所述的压力调节器。压力调节器被耦接至CDA源286及来自热控制器的控制信号(未图示)。两个比例阀提供对穿过每一冷却通道的流速的独立控制。通过使用图2的配置,穿过每一冷却通道的热流体的温度及流速得以独立控制,同时共享热交换器。

流速及温度受控的流体从外部通道比例阀260被提供至外部通道供应管线270,以到达ESC 280的外部通道282。该流体流动穿过ESC的外部通道以到达外部回流管线274。同样,流速及温度受控的流体从内部通道比例阀262被提供至内部通道供应管线272,以到达ESC 280的内部通道284。该流体流动穿过ESC的内部通道以到达内部回流管线276。

ESC回流管线274、276被馈送回到热交换器以待依据流体源而冷却或加热。外部回流274穿过流量计258,然后穿过压力传感器254到达三向阀244。三向阀将回流流体引导至热交换器202、204的回流歧管220、228,该热流体来自该热交换器202、204。同样,内部回流管线276穿过流量计268及压力传感器256以到达不同的三向阀246。该三向阀也耦接至回流歧管220、228,以使流体从内部通道回流至对应的热交换器202、204。

四个三向阀240、242、244、246可全部被温度控制器控制,以确保按照需求将热流体引导至供应或回流管线。当热交换器中的一个未耦接至任何供应管线时,可打开对应的旁通阀218、226。整个系统的流量及压力传感器允许在所有时间在不同点处监测系统,以确保正确操作。

图3是依据本发明的实施例的等离子体蚀刻系统10的示意图,该系统包括卡盘组件42。等离子体蚀刻系统10可以是本领域中已知的任何类型的高性能蚀刻腔室,例如但不限于DPSAdvantEdgeTM G3、或MesaTM腔室,上述所有腔室由美国加利福尼亚州应用材料公司制造。其他市售蚀刻腔室也可同样使用本文中描述的卡盘组件。尽管在等离子体蚀刻系统10的上下文中描述示例性实施例,但本文中描述的卡盘组件也适合于其他用以执行任何等离子体制造工艺的处理系统(例如等离子体沉积系统等)。

请参看图3,等离子体蚀刻系统10包括接地腔室5。将工艺气体自连接至腔室的气源29经由质量流量控制器49供应至腔室5的内部。腔室5经由连接至高容量真空泵堆栈55的排气阀51排气。当等离子体功率施加于腔室5时,等离子体在工件10上方的处理区域中形成。等离子体偏压电源25耦接至卡盘组件42中以激励等离子体。等离子体偏压电源25通常具有约2MHz至60MHz之间的低频率,且例如可位于13.56MHz频带中。在示例性实施例中,等离子体蚀刻系统10包括在约2MHz频带操作的第二等离子体偏压电源26,该电源连接至射频匹配电路27。等离子体偏压电源25也耦接至射频匹配电路,且还经由电力导管28耦接至下部电极。等离子体源电源30经由另一匹配电路(未图示)耦接至等离子体产生元件35以提供高频源功率从而以电感方式或电容方式激励等离子体。等离子体源电源30可具有高于等离子体偏压电源25的频率,如在100与180MHz之间的频率,且例如可处于162MHz频带中。

工件10被装载穿过开口15并被夹持至腔室内侧的卡盘组件42。诸如半导体晶片之类的工件10可以是任何晶片、基板或用于半导体处理技术领域中的其他材料,而且本发明并非限定于此。工件10被安置在卡盘组件的介电层或定位盘(puck)的顶表面上,该介电层或定位盘安置在卡盘组件的冷却基座组件44的上方。夹持电极(未示出)嵌入介电层中。在特定实施例中,卡盘组件42可包括两个或多于两个的不同流体通道区域,如内部通道41与外部通道99。每一通道41、99可经独立控制达到相同或不同的温度设定点。

系统控制器70耦接至多个不同系统以控制腔室中的制造工艺。控制器70可包括温度控制器75以执行温度控制算法(例如温度反馈控制),且可以是软件或硬件,或软件与硬件二者的组合。系统控制器70还包括中央处理单元72、内存73与输入/输出接口74。温度控制器75将输出控制信号,该信号影响卡盘组件42与等离子体腔室5外部的热源和/或散热器之间针对多个流体通道41、99的热传递速率。温度控制器75可耦接至一个或更多个温度探针43,这些探针可处于基板载具之中或之上,耦接至流体供应管线,或处于任何其他所希望的位置。

热流体区域可包括分离的、独立控制的热流体热传递回路,这些回路具有单独的流量控制,该流量控制基于如上所述的区域特定温度反馈回路而控制。在示例实施例中,温度控制器75耦接至第一热交换器(heat exchanger;HTX)/冷却器77,且可取决于特定实现而按照需要进一步耦接至第二HTX/加热器78及更多热交换器(未示出)。穿过卡盘组件42中的导管的热传递流体或冷却剂的流速由如上所述的比例阀系统86控制。

比例阀系统86由温度控制器75控制以独立控制热流体或热传递流体到达每一不同流体通道的流速。温度控制器也可控制每一热交换器所使用的温度设定点,以冷却或加热热流体。因此,每一热交换器可使其各自的冷却剂通道的热流体变化至不同温度,然后再将该热流体返回提供至流体通道。

热传递流体可以是液体,例如但不限于去离子水/乙二醇、氟化冷却剂,如购自3M公司的或苏威苏莱克斯公司的或任何其他适合的介电流体,如包含全氟化惰性聚醚的那些流体。尽管本说明书在等离子体处理腔室的上下文中描述ESC,但本文中描述的ESC可用于多种不同的腔室及多种不同的工艺。取决于特定实现,不同基板载具可用于替代ESC。

将理解,以上描述意欲进行说明,而非限制。例如,尽管附图中的流程图图示由本发明的某些实施例执行的操作的特定次序,但应理解,这种次序并非必需(例如,替代性实施例可以不同次序执行操作,组合某些操作,重叠某些操作,等等)。此外,本领域技术人员在阅读及理解以上描述之后,许多其他实施例将显而易见。尽管已参考特定示例性实施例描述了本发明,但将认可,本发明并非限定于已描述的实施例,而是可在所附权利要求的精神及范围内实践修改和变化。因此,应参考所附的权利要求及这些权利要求权利覆盖的等同内容的完整范围来确定本发明的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1