二次电池用活性物质、二次电池用电极、二次电池、电池组、电动车辆、蓄电系统、电动工具及电子装置的制作方法

文档序号:11636382阅读:426来源:国知局
二次电池用活性物质、二次电池用电极、二次电池、电池组、电动车辆、蓄电系统、电动工具及电子装置的制造方法

本技术涉及用于二次电池的活性物质、各自使用活性物质的电极和二次电池,电池组、电动车辆、蓄电系统、电动工具、和电子装置,其各自使用二次电池。



背景技术:

各种电子装置如手机和个人数字助理(pda)已被广泛使用,并且它已被要求进一步减小电子装置的尺寸和重量以及实现它们的更长寿命。因此,已开发了电池,尤其是小型轻质二次电池,其能够实现高能量密度,作为用于电子装置的电源。

二次电池的应用不限于上文描述的电子装置,并且还考虑将二次电池应用于各种其他应用。上述其他应用的实例可以包括:可拆卸地安装在例如电子装置上的电池组;电动车辆如电动汽车;蓄电系统如家用电力服务器;以及电动工具如电钻。

已经提出了二次电池,其利用各种充电和放电原理来获得电池容量。尤其是,已关注二次电池,其利用电极反应物的嵌入(insertion)和取出(脱嵌,extraction),以及二次电池,其利用电极反应物的沉积和溶解,其使得可以实现比其他电池如铅酸电池和镍镉电池更高的能量密度。

二次电池包括电极和电解液。电极包括参与充放电反应的活性物质。活性物质的构成对电池特性施加很大的影响。因此,已经对活性物质的构成进行了各种研究。

更具体地,为了改善充放电循环特性,使用了由li1+ymo2(m是元素如ni和al。)表示的含锂复合氧化物(例如,参考专利文献1)。为了抑制在充电期间的气体发生,使用了由liaalxob表示的锂铝氧化物和锂镍氧化物的复合物(例如,参考专利文献2)。为了抑制内阻的增加,使用了由linixcoyalzo2表示的锂过渡金属复合氧化物(例如,参考专利文献3)。为了实现优越的循环特性,使用了由lixni1-y-zcoymnzo2表示的锂复合氧化物(例如,参考专利文献4)。为了改善吸湿后的电池特性,连同正极活性物质一起使用了由lixmyo2(m是元素如al)表示的添加剂(例如,参考专利文献5)。

现有技术文献

专利文献

专利文献1:国际公开第2012/086273号小册子

专利文献2:日本特开2012-015110号公报

专利文献3:日本特开2003-017056号公报

专利文献4:日本特开2011-023121号公报

专利文献5:日本特开2014-026819号公报



技术实现要素:

与上文描述的电子装置和其它装置的更高性能和更多的多功能相关联,更频繁地使用电子装置和其它装置,并且其使用环境扩大。为此,仍有改善二次电池的电池特性的余地。

因此,希望提供二次电池用活性物质、二次电池用电极、二次电池、电池组、电动车辆、蓄电系统、电动工具、和电子装置,其各自使得可以实现卓越的电池特性。

根据本技术的一种实施方式的二次电池用活性物质包括:正极,其包括(a)主相和副相(亚相,sub-phase),(b)主相含有由以下化学式(1)表示的第一锂化合物,以及(c)副相含有第二锂化合物,其含有锂(li)、铝(al)、和氧(o)作为构成元素;负极;以及电解液。

lianibmcaldoe...(1)

(m是以下的一种或多种:钴(co)、铁(fe)、锰(mn)、铜(cu)、锌(zn)、铬(cr)、钒(v)、钛(ti)、镁(mg)、和锆(zr)。a至e满足0.8<a<1.2、0.45≤b≤1、0≤c≤1、0≤d≤0.2、0<e≤1.98、(c+d)>0、以及(b+c+d)≤1。)

根据本技术的一种实施方式的二次电池用电极包括活性物质,以及活性物质具有与根据本技术的前述实施方式的二次电池用活性物质的构成类似的构成。

根据本技术的一种实施方式的二次电池包括:正极;负极;和电解液,以及正极具有与根据本技术的前述实施方式的二次电池用电极的构成类似的构成。

根据本技术的各实施方式的电池组、电动车辆、蓄电系统、电动工具、和电子装置各自包括二次电池,以及二次电池具有类似于根据本技术的前述实施方式的二次电池的构成的构成。

根据本技术的实施方式的二次电池用活性物质在这里是一种材料(非混合材料),其包括主相和副相(如上所述)。换句话说,根据本技术的实施方式的二次电池用活性物质不是具有对应于主相的组成的组成的一种或多种材料和具有对应于副相的组成的组成的一种或多种材料的混合物。

为了确认,活性物质是一种包括主相和副相的材料,例如,可以借助于使用,例如,x射线吸收精细结构(xafs)法来分析活性物质,以检查是否存在主相以及是否存在副相。此外,为了检查主相的组成和副相的组成,例如,可以借助于使用,例如,x射线衍射(xrd)方法来分析活性物质。

按照本技术的各个实施方式的二次电池用活性物质、二次电池用电极、和二次电池,活性物质满足上述条件(a)至(c),其使得可以实现卓越的电池特性。此外,在本技术的各个实施方式的各个电池组、电动车辆、蓄电系统、电动工具、和电子装置中,类似的效果是可以实现的。

注意,这里描述的效果是非限制性的。通过本技术所实现的效果可以是本技术中描述的一种或多种效果。

附图说明

[图1]是根据本技术的一种实施方式的二次电池(圆柱型)的构造的截面图。

[图2]图1所示的螺旋卷绕电极体的部分的截面图。

[图3]是根据本技术的实施方式的另一二次电池(层合膜型)的构造的透视图。

[图4]是沿着图3所示的螺旋卷绕电极体的线iv-iv所获得的截面图。

[图5]是二次电池的应用实例(电池组:单电池)的构造的透视图。

[图6]是示出图5所示的电池组的构造的框图。

[图7]是示出二次电池的应用实例(电池组:组装电池)的构造的框图。

[图8]是示出二次电池的应用实例(电动车辆)的构造的框图。

[图9]是示出二次电池的应用实例(蓄电系统)的构造的框图。

[图10]是示出二次电池的应用实例(电动工具)的构造的框图。

[图11]是示出利用x射线衍射法所获得的正极活性物质的分析结果的示意图。

具体实施方式

在下文中,参照附图,详细描述了本技术的一些实施方式。值得注意的是,按以下顺序给出说明。

1.二次电池用活性物质

2.二次电池用电极和二次电池

2-1.锂离子二次电池(圆柱型)

2-2.锂离子二次电池(层合膜型)

2-3.锂金属二次电池

3.二次电池的应用

3-1.电池组(单电池)

3-2.电池组(组装电池)

3-3.电动车辆

3-4.蓄电系统

3-5.电动工具

<1.二次电池用活性物质>

首先,说明根据本技术的一种实施方式的二次电池用活性物质(在下文中,简称为“活性物质”)。

在这里描述的活性物质可以用于,例如,二次电池如锂离子二次电池。然而,使用活性物质的二次电池的种类不限于锂离子二次电池。此外,活性物质可以用作正极活性物质或负极活性物质。

[活性物质的整体构成]

活性物质包括主相和副相。换句话说,活性物质是一种材料(非混合材料),其包括主相和副相(如上所述),并且不是混合物。混合物是指具有对应于主相的组成的组成的一种或多种材料和具有对应于副相的组成的组成的一种或多种材料的混合物。

对于确认,“混合物”是指两种或更多种材料的混合物;因而,借助于使用一些方法,可以将混合物分离成两种或更多种材料。相比之下,“非混合材料”本质上是一种材料;因此,即使借助于使用一些方法,也不可能将非混合材料分离成两种或更多种材料。

[主相]

主相含有由以下式(1)表示的一种或多种化合物(第一锂化合物)。

lianibmcaldoe...(1)

(m是以下的一种或多种:钴(co)、铁(fe)、锰(mn)、铜(cu)、锌(zn)、铬(cr)、钒(v)、钛(ti)、镁(mg)、和锆(zr)。a至e满足0.8<a<1.2、0.45≤b≤1、0≤c≤1、0≤d≤0.2、0<e≤1.98、(c+d)>0、以及(b+c+d)≤1。)

第一锂化合物是锂复合氧化物,其含有,作为构成元素,镍(ni)、铝(al)、和除了镍和铝之外的金属元素(另外的金属元素:m)。并具有分层岩盐晶体结构。

如可以依据值的范围看出,a可能采取(a>0.8)以及b可能采取(b≥0.45),第一锂化合物含有锂(li)和镍作为构成元素。相比之下,如可以依据值的范围看出,c可能采取(c≥0),第一锂化合物可以或可以不含有另外的金属元素。类似地,如可以依据值的范围看出,d可能采取(d≥0),第一锂化合物可以或可以不含有铝作为构成元素。然而,如可以依据值的范围看出,(c+d)可能采取((c+d)>0),第一锂化合物含有一种或两种另外的金属元素并且铝作为构成元素。

如可以依据值的范围看出,e可能采取(e≤1.98),e的值,其确定氧(o)的原子比,是小于2。换句话说,在第一锂化合物的晶体结构中,所谓的晶体缺陷(氧原子缺陷)是由连同主相一起包括副相所引起的。在使用包括主相和副相的活性物质的二次电池中,改善了在重复充电和放电以后的热稳定性。

尤其是,前述e可以优选满足1.61≤e≤1.98,以及更优选满足1.75≤e≤1.98,其允许进一步改善在充电和放电以后的二次电池的热稳定性。

没有特别限定另外的金属元素(m)的种类,只要另外的元素是以下的一种或多种:上面提到的元素如钴。尤其是,另外的金属元素可以优选是元素如钴、锰、钛、和镁,其允许进一步改善二次电池在充电和放电以后的热稳定性。

没有特别限定第一锂化合物的种类,只要第一锂化合物是具有由式(1)表示的组成的化合物。第一锂化合物的具体实例可以包括lini0.8co0.15al0.05o1.98、lini0.45co0.2mn0.3al0.05o1.98、lini0.8co0.15mg0.05o1.98、和lini0.8co0.15ti0.05o1.98。

值得注意的是,使用一种或多种现有的分析方法使得有可能指定活性物质是否是一种包括主相和副相的材料。更具体地,例如,可以借助于使用方法如xafs方法来分析活性物质,以检查是否存在主相以及是否存在副相(如上所述)。

此外,使用一种或多种现有的分析方法使得有可能指定主相的组成。更具体地,例如,可以借助于使用方法如xrd法来分析活性物质(如上所述)。

[副相]

副相含有一种或多种化合物(第二锂化合物),其含有锂、铝、和氧(o)作为构成元素。副相的部分或全部和主相形成固溶体。

第二锂化合物是含锂铝氧化物,并且没有特别限定锂、铝、和氧的各自的原子比。第二锂化合物可以或可以不含有一种或多种其他元素(不包括锂、铝、和氧)作为构成元素。

没有特别限定第二锂化合物的种类,只要第二锂化合物是含有锂、铝、和氧的化合物。第二锂化合物的具体实例可以包括lialo2和li5alo4。

值得注意的是,例如,可以借助于使用方法如xafs方法来分析活性物质以检查是否存在副相(如上所述),从而确定活性物质是否包括副相。

另外,使用一种或多种现有的分析方法使得有可能指定副相的组成。更具体地,例如,可借助于使用方法如xrd法来分析活性物质(如上所述)。

[物理特性]

包括主相和副相的前述活性物质可以优选具有以下物理特性。

首先,借助于使用xrd法来分析包括主相和副相的活性物质。因此,检测到由主相(空间群r-3m)的(003)平面造成的一个或多个峰(第一峰)以及由副相造成的一个或多个峰(第二峰)。

在这种情况下,最大强度i2相对于最大强度i1的比率ip可以优选满足0.001≤ip≤1,其中最大强度i1是一个或多个第一峰的强度的最大值(最大强度)以及最大强度i2是一个或多个第二峰的强度的最大值(最大强度)。这使得主相和副相的存在比率适当的,从而进一步改善二次电池在充电和放电发后的热稳定性。值得注意的是,比率ip是由ip=[i2/i1]×100表示。

其次,镍、另外的金属元素(m)、和铝的平均价数v可以优选满足2.5≤v≤2.9,其使得包括主相和副相的活性物质晶态适当的,从而进一步改善二次电池在充电和放电以后的热稳定性。

为了确定平均价数v,以将在下面描述的程序,可以通过xrd法来分析活性物质,其后,可以基于分析结果(xrd图谱)来进行rietvelt分析。值得注意的是,例如,下面描述了其中本技术的活性物质用作正极活性物质的情况。

首先,可以制备使用本技术的活性物质作为正极活性物质的二次电池。二次电池可以是例如在制造以后尚未经受充电和放电的二次电池,或在制造以后已经受充电和放电的仅一到十个循环的二次电池。后者的二次电池的实例可以包括已商业化的未使用的二次电池。二次电池的使用历史(进行或未进行充电和放电)几乎不对测量和分析产生影响,其将在下文加以描述。

随后,可以充电和放电二次电池。当充电二次电池时,可以在0.1c的电流下进行充电直到电压达到4.2v,以及其后,可以在4.2v的电压下充电二次电池,直到电流达到100ma。当放电二次电池时,可以在0.1c的电流下进行放电,直到电压达到2.5v。注意,“0.1c”是指电流值,在其下,在10小时内,电池容量(理论容量)被完全放电。

接着,可以从处于放电状态的二次电池取出正极,其后,可以从正极收集正极活性物质。随后,可以借助于使用粉末x射线衍射法来分析正极活性物质,其后,可以借助于使用分析软件来进行rietvelt分析。cukα射线可以用作x射线源。分析软件可以是例如rietan2000。

rietvelt分析是一种分析方法,其中主要基于衍射强度,其获自通过xrd法的分析结果(xrd图谱)来精化与晶体结构有关的参数。在此分析方法中,精化与晶体结构有关的各种参数,以使基于假设晶体结构模型并通过计算得出的xrd图谱和实际测得的xrd图谱彼此一致,从而获得xrd图谱的分析结果。

最后,可以依据计算公式sij=(lij/l0)-n并基于通过分析的结果所获得的晶体结构图来计算平均价数v。通过将局部电荷中性的规则应用于在晶体中的阳离子和阴离子的键来得到平均价数。brown和shannon已经将阳离子和阴离子的平均价数表示为实际测得的原子间距离的函数。值得注意的是,i是阳离子,j是阴离子,以及l0和n是通过最小二乘法加以精化的参数,以使平均价数v变成这样的值,其接近在由一对阳离子和阴离子构成的大量的化合物中阳离子的形式电荷。

[活性物质的制造方法]

例如,可以通过以下过程来制造活性物质。

首先,可以混合镍化合物和另外的金属化合物,其后,可以将去离子水加入所得混合物以制备镍水溶液。

镍化合物可以包括例如一种或多种镍化合物如硫酸镍(niso4)和硝酸镍(nino3)。另外的金属化合物的种类可能会有所不同,其取决于另外的金属元素的种类。在其中另外的金属元素是钴的情况下,另外的金属化合物可以包括例如一种或多种金属化合物如硫酸钴(coso4)和硝酸钴(cono3)。在其中另外的金属元素是锰的情况下,另外的金属化合物可以包括例如一种或多种金属化合物如硫酸锰(mnso4)和硝酸锰(mnno3)。在其中另外的金属元素是镁的情况下,另外的金属化合物可以包括例如一种或多种金属化合物如硫酸镁(mgso4)和硝酸镁(mgno3)。在其中另外的金属元素是钛的情况下,另外的金属化合物可以包括例如一种或多种金属化合物如硫酸钛(tiso4)和硝酸钛(tino3)。

随后,可以在碱性条件下并在惰性气体的气氛中将氨水一点一点地加入镍水溶液。惰性气体可以包括例如一种或多种气体如氩气(ar)和氮气(n2)。因此,镍水溶液和氨水可相互反应,从而获得沉积物(氢氧化镍)。

接着,可以将去离子水加入氢氧化镍以制备氢氧化镍水溶液。随后,可以在碱性条件下将铝化合物加入氢氧化镍水溶液。铝化合物可以包括例如一种或多种铝化合物如铝酸钠(naalo2)和磷酸铝(alpo4)。在这种情况下,可以将整个量的铝化合物一起加入氢氧化镍水溶液,其后,可以搅拌氢氧化镍水溶液。因而,氢氧化镍水溶液和铝化合物可相互反应,从而获得沉积的混合物(氢氧化镍和氢氧化铝的混合物)。

接着,可以将锂化合物加入沉积的混合物以获得锂混合物。锂化合物可以包括例如一种或多种锂化合物如氢氧化锂(lioh)和碳酸锂(li2co3)。随后,可以将锂混合物放入混合器,其后,可以制粒锂混合物,同时借助于使用混合器并在惰性气体的气氛中加以充分混合以获得活性物质前体。

最后,可以在氧(o2)气氛中烧结活性物质前体,从而获得活性物质。没有特别限定着火温度。

在这种情况下,主要在制备活性物质的前述过程中,通过将整个量的铝化合物一起加入氢氧化镍水溶液,有意造成在晶体结构中的晶体缺陷(氧原子缺陷)。因而,获得包括主相和副相的前述活性物质。换句话说,主相含有第一锂化合物,以及副相含有第二锂化合物。

[活性物质的作用和效果]

活性物质包括主相,其含有第一锂化合物,以及副相,其含有第二锂化合物,其使得可以改善使用活性物质的二次电池在重复充电和放电以后的热稳定性(如上所述)。因此,可以改善使用活性物质的二次电池的电池特性。

尤其是,在第一锂化合物中,确定氧的原子比的e满足1.75≤e≤1.98,其使得可以实现更高效果。

此外,第二锂化合物含有lialo2和li5alo4的一种或两种,其使得可以实现更高效果。

另外,比率ip满足0.001≤ip≤1,或平均价数v满足2.5≤v≤2.9,其使得可以实现更高效果。

<2.二次电池用电极和二次电池>

接着,说明二次电池用电极和二次电池,其各自使用本技术的前述活性物质。

<2-1.锂离子二次电池(圆柱型)>

图1示出二次电池的截面构造。图2示出图1所示的螺旋卷绕电极体20的部分的截面构造。

在这里描述的二次电池可以是例如锂离子二次电池,其中通过作为电极反应物的锂的嵌入和取出来获得负极22的容量。

[二次电池的整体构造]

二次电池具有所谓的圆柱型电池构造。二次电池可以含有例如一对绝缘板12和13以及螺旋卷绕电极体20,作为在具有大致中空的圆柱形形状的电池壳(batterycan)11内的电池元件,如图1所示。在螺旋卷绕电极体20中,例如,可以借助于其间的隔膜23来堆叠正极21和负极22,以及可以螺旋卷绕正极21、负极22、和隔膜23。可以用例如电解液,其是液体电解质,来浸渍螺旋卷绕电极体20。

电池壳11可以具有例如中空结构,其中电池壳11的一端是闭合的以及电池壳11的另一端是开放的。电池壳11可以制成自以下的一种或多种:例如,铁(fe)、铝(al)、以及它们的合金。值得注意的是,电池壳11的表面可以镀有例如镍。可以如此处置绝缘板对12和13,以致将螺旋卷绕电极体20夹在其间并垂直延伸到螺旋卷绕电极体20的螺旋缠绕的周边表面。

在电池壳11的开端处,可以借助于垫圈17来嵌塞(swage)电池盖14、安全阀机构15、正温度系数器件(ptc器件)16,借此密封电池壳11。电池盖14可以制成自例如类似于电池壳11的材料的材料。安全阀机构15和ptc器件16可以各自被提供在电池盖14的内侧,以及可以通过ptc器件16将安全阀机构15电耦合到电池盖14。在安全阀机构15中,当由于例如内部短路或来自外面的加热的结果,电池壳11的内压达到一定水平或更高时,盘板15a会反转。这会切断在电池盖14和螺旋卷绕电极体20之间的电连接。为了防止由较大电流造成的异常发热,ptc器件16的电阻随温度升高而增加。垫圈17可以制成自例如绝缘材料。垫圈17的表面可以涂布有例如沥青。

例如,可以在螺旋卷绕电极体20的中心嵌入中心销24。然而,可以不将中心销24嵌入在螺旋卷绕电极体20的中心。可以将正极引线25连接到正极21,以及可以将负极引线26连接到负极22。正极引线25可以制成自例如导电材料如铝。例如,可以将正极引线25连接到安全阀机构15,以及可以电耦合到电池盖14。负极引线26可以制成自例如导电材料如镍。例如,可以将负极引线26连接到电池壳11,并且可以电耦合到电池壳11。

[正极]

正极21,其是本技术的二次电池用电极,可以包括例如正极集电体21a和提供在正极集电体21a的两个表面上的正极活性物质层21b,如图2所示。可替换地,可以将正极活性物质层21b提供在正极集电体21a的单表面上。

正极集电体21a可以制成自例如一种或多种导电材料。没有特别限定导电材料的种类,但可以是例如金属材料如铝(al)、镍(ni)、和不锈钢。正极集电体21a可以由单层构成或可以由多层构成。

正极活性物质层21b可以含有,作为正极活性物质,上文提到的本技术的一种或多种活性物质。值得注意的是,除正极活性物质之外,正极活性物质层21b还可以进一步含有一种或多种其他材料如正极粘合剂和正极导体。

值得注意的是,除本技术的活性物质之外,正极活性物质还可以含有任何其他活性物质。其他活性物质可以包括能够嵌入和取出锂的一种或多种正极材料。

正极材料可以优选是含锂化合物(不包括对应于本技术的活性物质的化合物)。更具体地,正极材料可以优选是含锂复合氧化物和含磷酸锂化合物的一种或两种,其使得可以实现高能量密度。

含锂复合氧化物是一种氧化物,其含有锂和排除锂的一种或多种元素(在下文中,被称为“其他元素”),作为构成元素,并且可以具有例如一种或多种晶体结构如分层岩盐晶体结构和尖晶石晶体结构。含磷酸锂化合物是磷酸盐化合物,其含有锂和一种或多种其他元素作为构成元素,并且可以具有例如一种或多种晶体结构如橄榄石晶体结构。

没有特别限定其他元素的种类,只要其他元素是一种或多种任何元素。尤其是,其他元素可以优选是一种或多种元素,其属于在长周期型元素周期表的第2族至第15族。更具体地,其他元素可以更优选地包括以下的一种或多种:镍(ni)、钴(co)、锰(mn)、和铁(fe),其使得可以获得高电压。

具有分层岩盐晶体结构的含锂复合氧化物的实例可以包括由以下式(11)至(13)表示的化合物。

liamn(1-b-c)nibm1co(2-d)fe…(11)

(m1是以下的一种或多种:钴(co)、镁(mg)、铝(al)、硼(b)、钛(ti)、钒(v)、铬(cr)、铁(fe)、铜(cu)、锌(zn)、锆(zr)、钼(mo)、锡(sn)、钙(ca)、锶(sr)、和钨(w)。a至e满足0.8≤a≤1.2、0<b<0.5、0≤c≤0.5、(b+c)<1、-0.1≤d≤0.2、以及0≤e≤0.1。值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及a是处于完全放电状态的值。)

liani(1-b)m2bo(2-c)fd...(12)

(m2是以下的一种或多种:钴(co)、锰(mn)、镁(mg)、铝(al)、硼(b)、钛(ti)、钒(v)、铬(cr)、铁(fe)、铜(cu)、锌(zn)、钼(mo)、锡(sn)、钙(ca)、锶(sr)、和钨(w)。a至d满足0.8≤a≤1.2、0.005≤b≤0.5、-0.1≤c≤0.2、以及0≤d≤0.1。值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及a是处于完全放电状态的值。)

liaco(1-b)m3bo(2-c)fd...(13)

(m3是以下的一种或多种:镍(ni)、锰(mn)、镁(mg)、铝(al)、硼(b)、钛(ti)、钒(v)、铬(cr)、铁(fe)、铜(cu)、锌(zn)、钼(mo)、锡(sn)、钙(ca)、锶(sr)、和钨(w)。a至d满足0.8≤a≤1.2、0≤b<0.5、-0.1≤c≤0.2、以及0≤d≤0.1。值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及a是处于完全放电状态的值。)

具有分层岩盐晶体结构的含锂复合氧化物的具体实例可以包括linio2、licoo2、lico0.98al0.01mg0.01o2、lini0.5co0.2mn0.3o2、lini0.8co0.15al0.05o2、lini0.33co0.33mn0.33o2、li1.2mn0.52co0.175ni0.1o2和li1.15(mn0.65ni0.22co0.13)o2。

值得注意的是,在其中具有分层岩盐晶体结构的含锂复合氧化物包括镍、钴、锰、和铝作为构成元素的情况下,镍的原子比可以优选是50原子%或更大,其使得可以实现高能量密度。

具有尖晶石晶体结构的含锂复合氧化物的实例可以包括由以下式(14)表示的化合物。

liamn(2-b)m4bocfd...(14)

(m4是以下的一种或多种:钴(co)、镍(ni)、镁(mg)、铝(al)、硼(b)、钛(ti)、钒(v)、铬(cr)、铁(fe)、铜(cu)、锌(zn)、钼(mo)、锡(sn)、钙(ca)、锶(sr)、和钨(w)。a至d满足0.9≤a≤1.1、0≤b≤0.6、3.7≤c≤4.1、以及0≤d≤0.1。值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及a是处于完全放电状态的值。)

具有尖晶石晶体结构的含锂复合氧化物的具体实例可以包括limn2o4。

具有橄榄石晶体结构的含磷酸锂化合物的实例可以包括由以下式(15)表示的化合物。

liam5po4...(15)

(m5是以下的一种或多种:钴(co)、锰(mn)、铁(fe)、镍(ni)、镁(mg)、铝(al)、硼(b)、钛(ti)、钒(v)、铌(nb)、铜(cu)、锌(zn)、钼(mo)、钙(ca)、锶(sr)、钨(w)、和锆(zr)。a满足0.9≤a≤1.1。值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及a是处于完全放电状态的值。)

具有橄榄石晶体结构的含磷酸锂化合物的具体实例可以包括lifepo4、limnpo4、life0.5mn0.5po4、和life0.3mn0.7po4。

值得注意的是,含锂复合氧化物可以是例如由以下式(16)表示的化合物。

(li2mno3)x(limno2)1-x...(16)

(x满足0≤x≤1,值得注意的是,锂的组成会变化,其取决于充电和放电状态,以及x是处于完全放电状态的值。)

此外,正极材料可以是例如以下的一种或多种:氧化物、二硫化物、硫属元素化物、和导电聚合物。氧化物的实例可以包括氧化钛、氧化钒、和二氧化锰。二硫化物的实例可以包括二硫化钛和硫化钼。硫属元素化物的实例可以包括硒化铌。导电聚合物的实例可以包括硫、聚苯胺、和聚噻吩。值得注意的是,正极材料可以是不同于上文提到的材料的任何材料。

正极粘合剂可以含有以下的一种或多种:例如,合成橡胶和聚合物材料。合成橡胶的实例可以包括苯乙烯-丁二烯橡胶、氟橡胶、和乙烯丙烯二烯。聚合物材料的实例可以包括聚偏二氟乙烯和聚酰亚胺。

正极导体可以含有以下的一种或多种:例如,碳材料。碳材料的实例可以包括石墨、炭黑、乙炔黑、和科琴黑。可替换地,正极导体可以是任何其它材料如金属材料和导电聚合物,只要正极导体是具有导电性的材料。

[负极]

负极22可以包括例如负极集电体22a和提供在负极集电体22a的两个表面上的负极活性物质层22b,如2图所示。可替换地,可以将负极活性物质层22b提供在负极集电体22a的单表面上。

负极集电体22a可以制成自例如一种或多种导电材料。没有特别限定导电材料的种类,但可以是例如金属材料如铜(cu)、铝(al)、镍(ni)、和不锈钢。负极集电体22a可以由单层构成或可以由多层构成。

负极集电体22a的表面可以优选是粗糙的。这使得可以改善负极活性物质层22b相对于负极集电体22a的粘附性(通过所谓的锚定效应)。在这种情况下,可能只需要至少在面向负极活性物质层22b的区中粗糙负极集电体22a的表面。粗糙化方法的实例可以包括借助于使用电解处理来形成细颗粒的方法。通过电解处理,在电解浴中的负极集电体22a的表面上形成细颗粒,其中通过电解法来使负极集电体22a的表面粗糙。通过电解法制造的铜箔通常被称为电解铜箔。

负极活性物质层22b含有,作为负极活性物质,一种或多种能够嵌入和取出锂的负极材料。值得注意的是,除负极活性物质之外,负极活性物质层22b还可以进一步含有一种或多种其他材料如负极粘合剂和负极导体。

为了在充电中间防止锂金属无意沉积在负极22上,负极材料的充电容量可以优选大于正极21的放电容量。换句话说,能够嵌入和取出锂的负极材料的电化学当量可以优选大于正极21的电化学当量。

负极材料可以是例如一种或多种碳材料。在锂的嵌入和取出期间,碳材料引起其晶体结构的极小变化,其稳定实现高能量密度。另外,碳材料还作为负极导体,其会提高负极活性物质层22b的电导率。

碳材料的实例可以包括可石墨化碳、非石墨化碳、和石墨。在非石墨化碳中(002)平面的间隔可以优选是0.37nm或更大,以及在石墨中(002)平面的间隔可以优选是0.34nm或更小。碳材料的更具体实例可以包括热解碳、焦炭、玻璃碳纤维、有机聚合物化合物烧制体、活性炭、和炭黑。焦炭的实例可以包括沥青焦炭、针状焦炭、和石油焦炭。有机聚合物化合物烧制体是在适当的温度下焙烧的(碳化的)聚合物化合物。聚合物化合物的实例可以包括酚醛树脂和呋喃树脂。不同于上文提到的材料,碳材料可以是低结晶碳,其在约1000℃或更低的温度下经受热处理,或可以是无定形碳。值得注意的是,碳材料的形状可以是以下的一种或多种:纤维状、球形、颗粒状、和鳞片状。

此外,负极材料可以是例如含有一种或多种金属元素和准金属元素作为构成元素的材料(金属类材料)。这使得可以实现高能量密度。

金属类材料可以是单质、合金、或化合物的任何一种,可以是它们的两种或更多种,或可以具有它们的一个或多个相(至少部分地)。值得注意的是,除由两种或更多种金属元素构成的材料之外,合金还包括一种材料,其含有一种或多种金属元素以及一种或多种准金属元素。另外,合金可以含有一种或多种非金属元素。金属类材料的结构的实例可以包括固溶体、共晶晶体(共晶混合物)、金属间化合物、以及其中它们的两种或更多种共存的结构。

上文提到的金属元素和准金属元素可以是例如能够与锂形成合金的一种或多种金属元素和准金属元素。它们的具体实例可以包括镁(mg)、硼(b)、铝(al)、镓(ga)、铟(in)、硅(si)、锗(ge)、锡(sn)、铅(pb)、铋(bi)、镉(cd)、银(ag)、锌、铪(hf)、锆、钇(y)、钯(pd)、和铂(pt)。

尤其是,硅、锡、或两者可以是优选的。硅和锡具有优异的嵌入和取出锂的能力,因此可以实现显着高能量密度。

含有硅、锡、或两者作为构成元素的材料可以是硅的单质、合金、和化合物的任何一种,可以是锡的单质、合金、和化合物的任何一种,可以是它们的两种或更多种,或可以是具有它们的一个或多个相(至少部分地)的材料。在这里描述的单质仅是指在一般意义上的单质(其中可以含有少量的杂质),并且并不一定是指纯度为100%的单质。

硅的合金可以含有例如一种或多种元素如锡、镍、铜、铁、钴、锰、锌、铟、银、钛、锗、铋、锑、和铬作为不同于硅的构成元素。硅的化合物可以含有例如一种或多种元素如碳和氧作为不同于硅的构成元素。值得注意的是,硅的化合物可以含有例如相关于硅的合金所描述的一种或多种元素作为不同于硅的构成元素。

硅的合金和硅的化合物的具体实例可以包括sib4、sib6、mg2si、ni2si、tisi2、mosi2、cosi2、nisi2、casi2、crsi2、cu5si、fesi2、mnsi2、nbsi2、tasi2、vsi2、wsi2、znsi2、sic、si3n4、si2n2o、siov(0<v≤2)、和lisio。值得注意的是,在siov中的v可以是例如在0.2<v<1.4的范围内。

锡的合金可以含有例如一种或多种元素如硅、镍、铜、铁、钴、锰、锌、铟、银、钛、锗、铋、锑、和铬作为不同于锡的构成元素。锡的化合物可以含有例如一种或多种元素如碳和氧作为不同于锡的构成元素。值得注意的是,锡的化合物可以含有例如相关于锡的合金所描述的一种或多种元素作为不同于锡的构成元素。

锡的合金和锡的化合物的具体实例可以包括snow(0<w≤2)、snsio3、lisno、和mg2sn。

尤其是,含有锡(第一构成元素)作为构成元素的材料可以优选是例如这样的材料(含sn材料),其连同锡一起还含有第二构成元素和第三构成元素。第二构成元素可以包括例如一种或多种元素如钴、铁、镁、钛、钒、铬、锰、镍、铜、锌、镓、锆、铌、钼、银、铟、铯(ce)、铪(hf)、钽、钨、铋、和硅。第三构成元素可以包括例如一种或多种元素如硼、碳、铝、和磷(p)。含有第二构成元素和第三构成元素的含sn材料使得可以实现例如高电池容量和优越的循环特性。

尤其是,含sn材料可以优选是含有锡、钴、和碳作为构成元素的材料(含sncoc的材料)。在含sncoc的材料中,例如碳的含量可以是9.9质量%至29.7质量%(包括两端),以及锡和钴的含量的比率(co/(sn+co))可以是20质量%至70质量%(包括两端)。这使得可以实现高能量密度。

含sncoc的材料可以优选具有含有锡、钴、和碳的相。这样的相可以优选是低结晶或无定形。此相是能够与锂反应的反应相。因此,反应相的存在导致的优异特性的实现。在其中cukα射线用作特定的x射线,以及嵌入速率是1°/分钟的情况下,通过此反应相的x射线衍射所获得的衍射峰的半宽(衍射角2θ)可以优选是1°或更大。这使得可以更顺利地嵌入和取出锂,以及降低与电解液的反应性。值得注意的是,在一些情况下,除低结晶相或无定形相之外,含sncoc的材料可以包括这样的相,其含有各构成元素或它们的部分的单质。

在与锂的电化学反应前后,在x射线衍射图之间的比较使得可以容易确定,通过x射线衍射获得的衍射峰是否对应于能够与锂反应的反应相。例如,如果在与锂的电化学反应以后衍射峰的位置不同于在与锂的电化学反应以前的衍射峰的位置,则获得的衍射峰对应于能够与锂反应的反应相。在这种情况下,例如,在20°至50°(包括两端)的2θ的范围内看到低结晶反应相或无定形反应相的衍射峰。这样的反应相可以包括例如上文提到的各构成元素,以及可以认为,主要由于碳的存在,这样的反应相已变成低结晶或无定形。

在含sncoc的材料中,作为它们的构成元素的部分或全部碳可以优选结合于一种或两种金属元素和准金属元素,其是它们的其它构成元素。结合部分或全部碳会抑制例如锡的内聚或结晶。例如,通过x射线光电子能谱(xps),可以确认元素的结合状态。在市售的装置中,例如,al-kα射线或mg-kα射线可以用作软x射线。在其中部分或全部碳结合于一种或两种金属元素和准金属元素的情况下,碳的1s轨道(c1s)的合成波的峰出现在低于284.5ev的区。值得注意的是,如此进行能量校准,以致在84.0ev处获得金原子的4f轨道(au4f)的峰。在这种情况下,通常,在材料表面上存在表面污染碳。因此,表面污染碳的c1s的峰被认为是在284.8ev处,以及此峰被用作能量标准。在xps测量中,c1s的峰的波形获得为一种形式,其包括表面污染碳的峰和在含sncoc的材料中的碳的峰。因此可以彼此分离两个峰,例如,通过借助于使用市售软件的分析。在波形的分析中,在最低结合能侧存在的主峰的位置被视为能量标准(284.8ev)。

含sncoc的材料不限于仅含有锡、钴、和碳作为构成元素的材料(sncoc)。除锡、钴、和碳之外,含sncoc的材料还可以进一步含有以下的一种或多种:例如,硅、铁、镍、铬、铟、铌、锗、钛、钼、铝、磷、镓、和铋作为构成元素。

不同于含sncoc的材料,含有锡、钴、铁、和碳作为构成元素的材料(含sncofec的材料)也可以是优选的。可以采用含sncofec的材料的任何组成。举个例子,在其中铁的含量设定得较小的情况下,碳的含量可以是9.9质量%至29.7质量%(包括两端)、含量铁可以是0.3质量%至5.9质量%(包括两端),以及锡和钴的含量的比率(co/(sn+co))可以是30质量%至70质量%(包括两端)。可替换地,在其中铁的含量设置得较大的情况下,碳的含量可以是11.9质量%至29.7质量%(包括两端),锡、钴、和铁的含量的比率((co+fe)/(sn+co+fe))可以是26.4质量%至48.5质量%(包括两端),以及钴和铁的含量的比率(co/(co+fe))可以是9.9质量%至79.5质量%(包括两端)。这样的组成范围允许高能量密度的实现。值得注意的是,含sncofec的材料的物理特性(如半宽)类似于前述含sncoc的材料的物理特性。

不同于上文提到的材料,负极材料可以是以下的一种或多种:例如,金属氧化物和聚合物化合物。金属氧化物的实例可以包括氧化铁、氧化钌、和氧化钼。聚合物化合物的实例可以包括聚乙炔、聚苯胺、和聚吡咯。

尤其是,出于以下原因,负极材料可以优选含有碳材料和金属类材料。

金属类材料,尤其是,含有硅和锡的一种或两种作为构成元素的材料具有以下担心:这样的材料在充电和放电期间容易和根本地膨胀或收缩,而这样的材料具有高理论容量的优点。相比之下,碳材料具有以下优点:在充电和放电期间,碳材料是不易于膨胀或收缩,而碳材料具有低理论容量的问题。因此,使用碳材料和金属类材料使得可以在充电和放电期间抑制膨胀和收缩,同时实现高理论容量(换句话说,高电池容量)。

可以通过例如涂布方法、气相法、液相法、喷涂方法、和烧制方法(烧结法)的一种或多种来形成负极活性物质层22b。涂布方法可以是例如一种方法,其中在颗粒(粉末)负极活性物质与例如负极粘合剂混合以后,将混合物分散在溶剂如有机溶剂中,然后将生成物施加于负极集电体22a。气相法的实例可以包括物理沉积法和化学沉积法。更具体地,它们的实例可以包括真空蒸发法、溅射法、离子镀法、激光烧蚀法、热化学气相沉积法、化学气相沉积(cvd)法、和等离子体化学气相沉积法。液相法的实例可以包括电解电镀法和化学镀方法。喷涂方法是一种方法,其中将处于熔融状态或半熔融状态的负极活性物质喷涂到负极集电体22a。烧制方法可以是例如一种方法,其中在通过涂布方法将分散在例如溶剂中的混合物施加于负极集电体22a以后,在高于例如负极粘合剂的熔点的温度下,使生成物经受热处理。例如,一种或多种烧制方法如大气烧制方法、反应性烧制方法、和热压烧制方法,可以用作烧制方法。

在二次电池中,如上所述,为了在充电中间防止锂金属无意沉积在负极22上,能够嵌入和取出锂的负极材料的电化学当量可以优选大于正极的电化学当量。此外,在其中处于完全充电状态的开路电压(即,电池电压)是4.25v或更高的情况下,锂的取出量/单位质量是大于在其中开路电压是4.20v的情况下的锂的取出量/单位质量,即使使用了相同的正极活性物质。因此,根据其来调节正极活性物质和负极活性物质的量。因此,实现高能量密度。

[隔膜]

例如,可以将隔膜23提供在正极21和负极22之间,如图2所示。隔膜23分开正极21和负极22,并使锂离子通过,同时防止电流短路,其来自在正极21和负极22之间的接触。

隔膜23可以是例如一种或多种多孔膜如合成树脂和陶瓷的多孔膜。隔膜23可以是层合膜,其中层合两个或更多个多孔膜。合成树脂的实例可以包括聚四氟乙烯、聚丙烯、和聚乙烯。

尤其是,隔膜23可以包括例如前述多孔膜(基层)和提供在基层的单面或两面上的聚合物化合物层。这使得可以改善隔膜23相对于每个正极21和负极22的粘附性,从而抑制螺旋卷绕电极体20的变形。这使得可以抑制电解液的分解反应以及抑制用其浸渍基层的电解液的液体泄漏。因此,即使重复充电和放电,电阻也不易于增加,并抑制电池溶胀。

聚合物化合物层可以含有例如聚合物材料如聚偏二氟乙烯,其具有高物理强度并且是电化学稳定的。聚合物材料可以是不同于聚偏二氟乙烯的任何材料。为了形成聚合物化合物层,例如可以用通过将聚合物材料溶解于例如有机溶剂中所制备的溶液来涂布基层,以及其后,可以干燥基层。可替换地,可以将基层沉浸在溶液中,并且其后,可以干燥基层。

[电解液]

电解液可以含有例如一种或多种溶剂和一种或多种电解质盐。值得注意的是,电解液可以进一步含有一种或多种其他材料如添加剂。

溶剂可以包括一种或多种溶剂如非水溶剂(有机溶剂)。含有非水溶剂的电解液是所谓的非水电解液。

溶剂的实例可以包括环状碳酸酯、链碳酸酯、内酯、链羧酸酯、和腈(单腈),其使得可以实现例如高电池容量、优越的循环特性、和优越的存储特性。

环状碳酸酯的具体实例可以包括碳酸亚乙酯、碳酸亚丙酯、和碳酸亚丁酯。链碳酸酯的具体实例可以包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、和碳酸甲丙酯。内酯的具体实例可以包括γ-丁内酯和γ-戊内酯。链羧酸酯的具体实例可以包括乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、异丁酸甲酯、三甲基乙酸甲酯、和三甲基乙酸乙酯。腈的具体实例可以包括乙腈、甲氧基乙腈、和3-甲氧基丙腈。

不同于上文提到的材料,溶剂的实例可以包括1,2-二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、四氢吡喃、1,3-二氧戊环、4-甲基-1,3-二氧戊环、1,3-二氧杂环己烷、1,4-二氧杂环己烷、n,n-二甲基甲酰胺、n-甲基吡咯烷酮、n-甲基噁唑烷酮、n,n’-二甲基咪唑烷酮、硝基甲烷、硝基乙烷、环丁砜、磷酸三甲酯、和二甲亚砜。这些溶剂使得可以实现类似的优点。

尤其是,碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯、碳酸二乙酯、和碳酸甲乙酯的一种或多种可以是优选的。这些材料使得可以实现例如高电池容量、优越的循环特性、和优越的存储特性。在这种情况下,高粘度(高介电常数)溶剂(具有例如比介电常数ε≥30)如碳酸亚乙酯和碳酸亚丙酯与低粘度溶剂(具有例如粘度≤1mpa·s)如碳酸二甲酯、碳酸甲乙酯、和碳酸二乙酯的组合可以是更优选的。上述组合允许改善电解质盐的解离性能和离子迁移率。

尤其是,溶剂可以包括不饱和环状碳酸酯、卤代碳酸酯、磺酸酯、酸酐、二氰基化合物(二腈)、和二异氰酸酯化合物,其使得可以进一步改善电解液的化学稳定性。

不饱和环状碳酸酯是具有一个或多个不饱和键(碳-碳双键)的环状碳酸酯。不饱和环状碳酸酯的具体实例可以包括碳酸亚乙烯酯(1,3-间二氧杂环戊烯-2-酮)、碳酸乙烯亚乙酯(4-乙烯基-1,3-二氧戊环-2-酮)、亚甲基碳酸亚乙酯(4-亚甲基-1,3-二氧戊环-2-酮)。除此之外,不饱和环状碳酸酯的具体实例可以包括具有苯环的儿茶酚碳酸酯。没有特别限定不饱和环状碳酸酯在溶剂中的含量,但可以是例如0.01重量%至10重量%(包括两端)。

卤代碳酸酯是含有一个或多个卤素作为构成元素的环状或链碳酸酯。卤代碳酸酯的具体实例可以包括4-氟-1,3-二氧戊环-2-酮、4,5-二氟-1,3-二氧戊环-2-酮、氟甲基碳酸甲酯、碳酸二(氟甲基)酯、和二氟甲基碳酸甲酯。没有特别限定卤代碳酸酯在溶剂中的含量,但可以是例如0.01重量%至50重量%(包括两端)。

磺酸酯的具体实例可以包括磺内酯如1,3-丙烷磺内酯和1,3-丙烯磺内酯。没有特别限定磺酸酯在溶剂中的含量,但可以是例如0.5重量%至5重量%(包括两端)。

酸酐的实例可以包括羧酸酐、二磺酸酐、和羧酸-磺酸酐。羧酸酐的具体实例可以包括琥珀酸酐、戊二酸酐、和马来酸酐。二磺酸酐的具体实例可以包括乙二磺酸酐和丙二磺酸酐。羧酸-磺酸酐的具体实例可以包括磺基苯甲酸酐、磺基丙酸酐、和磺基丁酸酐。没有特别限定酸酐在溶剂中的含量,但可以例如0.5重量%至5重量%(包括两端)。

二氰基化合物的具体实例可以包括琥珀腈(nc-c2h4-cn)、戊二腈(nc-c3h6-cn)、己二腈(nc-c4h8-cn)、和邻苯二甲腈(nc-c6h5-cn)。没有特别限定二氰基化合物在溶剂中的含量,但可以是例如0.5重量%至5重量%(包括两端)。

二异氰酸酯化合物的具体实例可以包括ocn-c6h12-nco。没有特别限定二异氰酸酯化合物在溶剂中的含量,但可以是例如0.5重量%至5重量%(包括两端)。

电解质盐的实例可以包括一种或多种锂盐。然而,电解质盐可以含有不同于锂盐的盐。不同于锂的盐的实例可以包括不同于锂的轻金属的盐。

锂盐的实例可以包括六氟磷酸锂(lipf6)、四氟硼酸锂(libf4)、高氯酸锂(liclo4)、六氟砷酸锂(liasf6)、四苯基硼酸锂(lib(c6h5)4)、甲磺酸锂(lich3so3)、三氟甲磺酸锂(licf3so3)、四氯铝酸锂(lialcl4)、六氟硅酸二锂(li2sif6)、氯化锂(licl)、溴化锂(libr)、和双(氟磺酰基)亚胺锂(lin(so2f)2)。

尤其是,六氟磷酸锂、四氟硼酸锂、高氯酸锂、和六氟砷酸锂的一种或多种可以是优选的,以及六氟磷酸锂可以是更优选的。这些锂盐使得可以减小内阻。

没有特别限定电解质盐的含量。然而,尤其是,相对于溶剂,电解质盐的含量可以优选是0.3mol/kg至3.0mol/kg(包括两端),其使得可以实现高离子电导率。

添加剂可以包括例如一种或多种含磷-氟的盐如二氟磷酸锂(lipf2o2)和氟磷酸锂(li2pfo3)。没有特别限定含磷-氟的盐在电解液中的含量。

[二次电池的运行]

例如,二次电池可以如下操作。

当充电二次电池时,从正极21取出锂离子,以及通过电解液,将取出的锂离子嵌入负极22。相比之下,当放电二次电池时,从负极22取出锂离子,以及,通过电解液,将取出的锂离子嵌入正极21。

[二次电池的制造方法]

例如,可以通过以下过程来制造二次电池。

制作正极21时,首先,可以混合含有本技术的前述活性物质的正极活性物质、以及,在必要的基础上,例如,正极粘合剂和正极导体,以获得正极混合物。随后,可以将正极混合物分散于例如有机溶剂以获得糊状正极混合物浆料。接着,可以用正极混合物浆料来涂布正极集电体21a的两面,以及其后,可以干燥涂布的正极混合物浆料以形成正极活性物质层21b。其后,可以借助于使用例如辊压机来压缩模塑正极活性物质层21b,同时加热(在必要的基础上)。在这种情况下,可以压缩模塑正极活性物质层21b多次。

制作负极22时,通过类似于制作正极21的前述程序的程序,可以在负极集电体22a上形成负极活性物质层22b。更具体地,可以混合负极活性物质,以及,在必要的基础上,例如,负极-正极粘合剂和负极导体,以获得负极混合物。随后,可以将负极混合物分散于例如有机溶剂以获得糊状负极混合物浆料。接着,用负极混合物浆料来涂布负极集电体22a的两面,以及其后,可以干燥涂布的负极混合物浆料以形成负极活性物质层22b。最后,可以借助于使用例如辊压机来压缩模塑负极活性物质层22b。

制备电解液时,可以将电解质盐溶解于溶剂。

组装二次电池时,可以通过例如焊接方法,将正极引线25连接到正极集电体21a,以及可以通过例如焊接方法,将负极引线26连接到负极集电体22a。随后,可以借助于在其间的隔膜23来堆叠正极21和负极22。接着,可以螺旋卷绕正极21、负极22、和隔膜23以形成螺旋卷绕电极体20。其后,可以将中心销24嵌入在螺旋卷绕电极体20的中心。

随后,可以将螺旋卷绕电极体20夹在绝缘板对12和13之间,并且可以容纳在电池壳11内。在这种情况下,可以通过例如焊接方法,将正极引线25的末端连接到安全阀机构15,以及,可以通过例如焊接方法,将负极引线26的末端连接到电池壳11。随后,可以将电解液注入电池壳11内,以及可以用注入的电解液来浸渍螺旋卷绕电极体20。最后,可以借助于垫圈17,在电池壳11的开端处嵌塞电池盖14、安全阀机构15、和ptc器件16。因而,完成圆柱型二次电池。

[二次电池的作用和效果]

按照二次电池,正极21含有本技术的活性物质作为正极活性物质。因此,改善了在重复充电和放电以后的热稳定性(如上所述)。更具体地,在重复充电和放电以后,会诱导正极21的恶化,以及会抑制锂金属在负极22中的沉积。因此,在重复充电和放电以后,在异常发生时(在加热时),二次电池的温度不易被过度增加。这使得在异常发生时可以实现高电阻,从而实现卓越的电池特性。不同于上文描述的那些作用和效果的作用和效果是类似于本技术的活性物质的那些作用和效果。

<2-2.锂离子二次电池(层合膜型)>

图3示出另一二次电池的透视构造,以及图4示出沿着图3所示的螺旋卷绕电极体30的线iv-iv获得的截面。值得注意的是,图3示出一种状态,其中螺旋卷绕电极体30和外包装件40是彼此分离的。

在下面的描述中,在适当的情况下,使用已经描述过的圆柱型二次电池的组件。

[二次电池的整体构造]

二次电池可以是具有所谓的层合膜型电池构造的锂离子二次电池。在二次电池中,例如,可以将作为电池元件的螺旋卷绕电极体30容纳在薄膜状外包装件40内,如图3所示。在螺旋卷绕电极体30中,例如,可以借助于在其间的隔膜35和电解质层36来堆叠正极33和负极34,以及可以螺旋卷绕正极33、负极34、隔膜35、和电解质层36。可以将正极引线31连接到正极33,以及可以将负极引线32连接到负极34。可以通过保护带37来保护螺旋卷绕电极体30的最外围。

例如,可以在同一方向上,从内到外地将每个正极引线31和负极引线32引出外包装件40。正极引线31可以制成自例如一种或多种导电材料如铝(al)。负极引线32可以制成自例如一种或多种导电材料如铜(cu)、镍(ni)、和不锈钢。这些导电材料可以具有例如薄板形或网格形状。

外包装件40可以是例如在图3所示的箭头r的方向上可折叠的一种薄膜,以及外包装件40可以具有凹处,用于部分地容纳螺旋卷绕电极体30。外包装件40可以是层合膜,其中,例如顺序层合熔融粘合层、金属层、和表面保护层。在制造二次电池的过程中,可以折叠外包装件40,以致熔融粘合层的部分彼此面对其间的螺旋卷绕电极体30,以及其后可以融熔接合熔融粘合层的部分的外边缘。可替换地,通过例如粘合剂,彼此粘合的两个层合膜可以形成外包装件40。熔融粘合层的实例可以包括制备自聚乙烯、聚丙烯、和其他材料的一种或多种的薄膜。金属层可以包括例如一种或多种铝箔和其他金属材料。表面保护层可以是例如由一种或多种尼龙、聚对苯二甲酸乙二酯、和其他材料制成的薄膜。

尤其是,外包装件40可以优选是铝层合膜,其中顺序层合聚乙烯膜、铝箔、和尼龙膜。然而,外包装件40可以是具有任何其它层合结构的层合膜、聚合物膜如聚丙烯、或金属膜。

例如,可以将用于防止外部空气侵入的粘合膜嵌入在外包装件40和正极引线31之间。此外,例如,可以将前述粘合膜41嵌入在外包装件40和负极引线32之间。粘合膜41可以制成自相对于正极引线31和负极引线32具有粘附性的材料。具有粘附性的材料的实例可以包括聚烯烃树脂。其更具体的实例可以包括聚乙烯、聚丙烯、改性聚乙烯、和改性聚丙烯的一种或多种。

[正极、负极、和隔膜]

正极33可以包括例如正极集电体33a和正极活性物质层33b,以及负极34可以包括例如负极集电体34a和负极活性物质层34b。正极集电体33a、正极活性物质层33b、负极集电体34a、和负极活性物质层34b的构造可以分别类似于例如正极集电体21a、正极活性物质层21b、负极集电体22a、和负极活性物质层22b的构造。换句话说,正极33可以含有本技术的一种或多种前述活性物质作为正极活性物质。隔膜35的构造可以类似于例如隔膜23的构造。

电解质层36可以包括电解液和聚合物化合物。电解液的构造可以类似于例如在圆柱型二次电池中电解液的构造。在这里描述的电解质层36可以是所谓的凝胶电解质,以及可以通过聚合物化合物来保持电解液。凝胶电解质实现高离子电导率(例如,在室温下,1ms/cm或更大),并防止电解液的液体泄漏。值得注意的是,电解质层36可以进一步包括一种或多种其他材料如添加剂。

聚合物材料可以含有例如以下一种或多种:聚丙烯腈、聚偏二氟乙烯、聚四氟乙烯、聚六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚磷腈、聚硅氧烷、聚氟乙烯、聚乙酸乙烯酯、聚乙烯醇、聚(甲基丙烯酸甲酯)、聚丙烯酸、聚甲基丙烯酸、丁苯橡胶、丁腈橡胶、聚苯乙烯、和聚碳酸酯。除此之外,聚合物材料可以是共聚物。上述共聚物可以是例如偏二氟乙烯和六氟丙烯的共聚物。尤其是,聚偏二氟乙烯可以优选作为均聚物,以及偏二氟乙烯和六氟丙烯的共聚物可以优选作为共聚物。这样的聚合物化合物是电化学稳定的。

在是凝胶电解质的电解质层36中,含有在电解液中的溶剂是指广泛的概念,其不仅包括液体材料,而且包括具有能够解离电解质盐的离子电导率的材料。因此,在其中使用具有离子电导率的聚合物化合物的情况下,溶剂还包括聚合物化合物。

值得注意的是,可以使用电解液,因这它代替凝胶电解质层36。在这种情况下,用电解液来浸渍螺旋卷绕电极体30。

[二次电池的运行]

例如,二次电池可以如下操作。

当充电二次电池时,从正极33取出锂离子,以及,通过电解质层36,取出的锂离子被嵌入负极34。相比之下,当放电二次电池时,从负极34取出锂离子,以及,通过电解质层36,取出的锂离子被嵌入正极33。

[二次电池的制造方法]

例如,通过以下三个程序之一,可以制造包括凝胶电解质层36的二次电池。

在第一程序中,可以通过类似于正极21和负极22的制造程序的制造程序来制造正极33和负极34。更具体地,可以通过在正极集电体33a的两面上形成正极活性物质层33b来制造正极33,以及可以通过在负极集电体34a的两面上形成负极活性物质层34b来制造负极34。随后,例如,可以混合电解液、聚合物化合物、和有机溶剂以制备前体溶液。随后,可以用前体溶液来涂布每个正极33和负极34,然后可以干燥涂布的前体溶液,以形成凝胶电解质层36。随后,可以通过例如焊接方法,将正极引线31连接到正极集电体33a,以及可以通过例如焊接方法,将负极引线32连接到负极集电体34a。随后,可以借助于在其间的隔膜35来堆叠正极33和负极34,以及其后,可以螺旋卷绕正极33、负极34、和隔膜35,以制作螺旋卷绕电极体30。其后,可以将保护带37附着在螺旋卷绕体30的最外围上。随后,可以折叠外包装件40以嵌入螺旋卷绕电极体30,以及其后,可以通过例如热熔粘合法来粘合外包装件40的外边缘,以将螺旋卷绕电极体30封闭在外包装件40中。在这种情况下,可以将粘合膜41嵌入在正极引线31和外包装件40之间,以及可以将粘合膜41嵌入在负极引线32和外包装件40之间。

在第二程序中,可以将正极引线31连接到正极33,以及可以将负极引线32连接到负极34。随后,可以借助于其间的隔膜35来堆叠正极33和负极34,并且可以螺旋卷绕以制作螺旋卷绕体,作为螺旋卷绕电极体30的前体。其后,可以将保护带37附着于螺旋卷绕体的最外围。随后,可以折叠外包装件40以嵌入螺旋卷绕电极体30,以及其后,可以通过例如热熔粘合法来粘合不同于外包装件40的一侧的外边缘,以及可以将螺旋卷绕体容纳在形成自外包装件40的袋内。随后,可以混合电解液、为聚合物化合物的原材料的单体、聚合引发剂、以及,在必要的基础上,其他材料如聚合抑制剂以制备电解质组合物。随后,可以将电解质组合物注入形成自外包装件40的袋内。其后,可以通过例如热熔粘合法来密封形成自外包装件40的袋。随后,可以热聚合单体以形成聚合物化合物。因此,可以通过聚合物化合物来保持电解液以形成凝胶电解质层36。

在第三程序中,可以制作螺旋卷绕体,然后以类似于上文描述的第二程序的方式,容纳在形成自外包装件40的袋内,不同之处在于,使用了提供有聚合物化合物层的隔膜35。随后,可以制备电解液,然后注入形成自外包装件40的袋内。其后,可以通过例如热熔粘合法来密封形成自外包装件40的袋的开口。随后,可以加热生成物,同时将重物施加于外包装件40以引起隔膜35紧密连接到正极33(其间具有聚合物化合物层)以及紧密连接到负极34(其间具有聚合物化合物层)。因而,可以用电解液来浸渍每个聚合物化合物层,并且可以凝胶化每个聚合物化合物层。因而,可以形成电解质层36。

在第三程序中,比在第一程序中更多抑制二次电池的溶胀。另外,在第三程序中,例如与第二程序比较,在电解质层36中几乎没剩下非水溶剂和单体(聚合物化合物的原材料)。因此,有利地控制聚合物化合物的形成过程。因此,将每个正极33、负极34、和隔膜35足够地和紧密地连接到电解质层36。

[二次电池的作用和效果]

按照上述二次电池,正极33含有本技术的活性物质作为正极活性物质。因此,出于类似于圆柱型二次电池的原因的原因,可以实现卓越的电池特性。不同于上文描述的那些作用和效果的作用和效果是类似于圆柱型二次电池的那些作用和效果。

<2-3.锂金属二次电池>

在这里描述的二次电池是圆柱型二次电池(锂金属二次电池),其中通过锂金属的沉积和溶解来获得负极22的容量。二次电池具有一种构造,其类似于前述锂离子二次电池(圆柱型)的构造,并通过类似的程序加以制造,不同之处在于,负极活性物质层22b制成自锂金属。

在二次电池中,锂金属用作负极活性物质,从而可以实现高能量密度。在组装时,负极活性物质层22b可以存在,或在组装时,负极活性物质层22b可能不一定存在并且可以制成自在充电期间沉积的锂金属。另外,负极活性物质层22b可以用作集电体,并可以省略负极集电体22a。

例如,二次电池可以如下操作。当充电二次电池时,从正极21取出锂离子,以及,通过电解液,将取出的锂离子沉积为在负极集电体22a的表面上的锂金属。相比之下,当放电二次电池时,锂金属被忽略为来自负极活性物质层22b的锂离子,并通过电解液被嵌入正极21。

按照上述圆柱型锂金属二次电池,正极21含有本技术的活性物质作为正极活性物质。因此,出于原因,其类似于在前述锂离子二次电池中的原因,可以实现卓越的电池特性。

值得注意的是,在这里描述的锂金属二次电池不限于圆柱型二次电池,并且可以是层合膜型二次电池。即使在这种情况下,类似的效果也是可以实现的。

<3.二次电池的应用>

接着,说明上文提到的任何二次电池的应用实施例。

没有特别限定二次电池的应用,只要将二次电池应用于例如机器、装置、仪器、器械、和系统(例如,多个装置的集体性实体),其能够使用二次电池作为驱动电源、用于电力积累的电力存储源、或任何其他源。用作电源的二次电池可以是主电源(优先使用的电源),或可以是辅助电源(用来代替主电源或被切换自主电源所使用的电源)。在其中二次电池用作辅助电源的情况下,主电源的种类不限于二次电池。

二次电池的应用的实例可以包括电子装置(包括便携式电子装置)如视频摄像机、数码相机、手机、笔记本个人电脑、无绳电话、立体声耳机、便携式收音机、便携式电视机、和便携式信息终端。其进一步的实例可以包括:移动生活电器如电动剃须刀;存储装置如备用电源和存储卡;电动工具如电钻和电锯;电池组,用作,例如,笔记本个人电脑,的可附加和可拆卸的电源;医疗电子装置如起搏器和助听器;电动车辆如电动汽车(包括混合动力汽车);以及蓄电系统如用于电力的积累的家用电池系统,用于,例如,紧急情况。不言而喻的是,二次电池可以用于不同于上文提到的应用的应用。

尤其是,二次电池可以有效地适用于例如电池组、电动车辆、蓄电系统、电动工具、和电子装置。在这些应用中,需要卓越的电池特性,以及使用本技术的二次电池使得可以有效地提高性能。值得注意的是,电池组是使用二次电池的电源,并且可以是例如组装电池。电动车辆是使用二次电池作为驱动电源来操作(运行)的车辆,并且可以是汽车(如混合动力汽车),其一起包括不同于二次电池的驱动源(如上所述)。蓄电系统是使用二次电池作为电力存储源的系统。例如,在家用蓄电系统中,将电力积累在是电力存储源的二次电池中,其使得可以使用例如借助于使用积累电力的家用电器产品。电动工具就这样的工具,其中,借助于使用二次电池作为驱动电源,允许移动可移动部(如钻头)。电子装置是这样的器械,借助于使用二次电池作为驱动电源(电力供应源),其执行各种功能。

在下文中,具体描述二次电池的一些应用实施例。值得注意的是,下面所描述的各应用实施例的构造仅仅是实例,并可能会改变(视情况而定)。

<3-1.电池组(单电池)>

图5示出使用单电池的电池组的透视构造。图6示出图5所示电池组的框构造。值得注意的是,图5示出处于分解状态的备用电池。

在这里描述的备用电池是简单电池组,其使用一个二次电池(所谓的软包),并且可以安装在例如由智能手机代表的电子装置中。例如,电池组可以包括电源111,其是层合膜型二次电池,和电路板116,其耦合到电源111,如图5所示。可以将正极引线112和负极引线113连接到电源111。

可以将一对粘合带118和119附着于电源111的两个侧表面。可以在电路板116中形成保护电路模块(pcm)。可以通过翼片114,将电路板116耦合到正极112,以及可以通过翼片115,耦合到负极引线113。此外,可以将电路板116耦合到引线117,其提供有用于外部连接的连接器。值得注意的是,在将电路板116耦合到电源111的同时,可以通过线脚120和绝缘片121从上侧和下侧来保护电路板116。可以附着线脚120以固定例如电路板116和绝缘片121。

此外,例如,电池组可以包括电源111和电路板116,如图6所示。电路板116可以包括,例如,控制器121、开关部122、ptc123、和温度检测器124。通过正极端子125和负极端子127,电源111可连接到外部,并从而通过正极端子125和负极端子127来充电和放电。借助于使用温度检测端(所谓的t端子)126,允许温度检测器124检测温度。

控制器121控制整个电池组(包括电源111的使用状态)的操作,并且可以包括例如中央处理器(cpu)和存储器。

例如,在其中电池电压达到过充电检测电压的情况下,控制器121可以如此引起开关部122被断开连接,以致充电电流并不流入电源111的电流路径。此外,例如,在其中在充电期间大电流流动的情况下,控制器121可以会导致开关部122被断开连接,从而阻断充电电流。

此外,例如,在其中电池电压达到过放电检测电压的情况下,控制器121可以如此引起开关部122被断开连接,以致放电电流并不流入电源111的电流路径。此外,例如,在其中在放电期间大电流流动的情况下,控制器121可以会导致开关部122被断开连接,从而阻断放电电流。

值得注意的是,二次电池的过充电检测电压可以是,例如,4.20v±0.05v,以及过放电检测电压可以是,例如,2.4v±0.1v。

根据来自控制器121的指示,开关部122切换电源111的使用状态(电源111是否可连接到外部设备)。开关部122可以包括例如充电控制开关和放电控制开关。充电控制开关和放电控制开关各自可以是例如半导体开关如使用金属氧化物半导体(mosfet)的场效应晶体管。值得注意的是,可以基于开关部122的导通电阻来检测充电电流和放电电流。

温度检测器124测量电源111的温度,并将测量结果输出到控制器121。温度检测器124可以包括例如温度检测元件如热敏电阻。值得注意的是,可以使用通过温度检测器124的测量结果,例如,在其中在异常发热时控制器121执行充电和放电控制的情况下以及在其中在计算剩余容量时控制器121执行校正处理的情况下。

值得注意的是,电路板116可能不包括ptc123。在这种情况下,可以将ptc元件分别连接到电路板116。

<3-2.电池组(组装电池)>

图7示出使用组装电池的电池组的框构造。例如,电池组可以包括在外壳60内的控制器61、电源62、开关部63、电流测量部64、温度检测器65、电压检测器66、开关控制器67、存储器68、温度检测元件69、电流检测电阻70、正极端子71、和负极端子72。外壳60可以制成自例如塑料材料。

控制器61控制整个电池组的操作(包括电源62的使用状态),并且可以包括例如cpu。电源62包括一个或多个二次电池。电源62可以是例如包括两个或更多个二次电池的组装电池。可以串联、并联、或串并联组合地连接二次电池。举个例子,电源62可以包括6个二次电池,其中彼此并联连接两组串联的三个电池。

根据来自控制器61的指示,开关部63切换电源62的使用状态(电源62是否可连接到外部设备)。开关部63可以包括例如充电控制开关、放电控制开关、充电二极管、和放电二极管。充电控制开关和放电控制开关各自可以是例如半导体开关如使用金属氧化物半导体(mosfet)的场效应晶体管。

电流测量部64借助于使用电流检测电阻70来测量电流,并将测量结果输出到控制器61。温度检测器65借助于使用温度检测元件69来测量温度,并将测量结果输出到控制器61。可以使用温度测量的结果,例如,在其中在异常发热时控制器61执行充电和放电控制的情况下以及在其中在计算剩余容量时控制器61执行校正处理的情况下。电压检测器66测量在电源62中二次电池的电压,对所测得的电压执行模数转换,以及将获得的结果提供到控制器61。

依据输入自电流测量部64和电压检测器66的信号,开关控制器67控制开关部63的操作。

例如,在其中电池电压达到过充电检测电压的情况下,开关控制器67可以如此引起开关部63(充电控制开关)被断开连接,以致充电电流并不流入电源62的电流路径。这使得,通过在电源62中的放电二极管仅可以进行放电。值得注意的是,例如,当在充电期间大电流流动时,开关控制器67可以阻断充电电流。

另外,例如,在其中电池电压达到过放电检测电压的情况下,开关控制器67可以如此引起开关部63(放电控制开关)被断开连接,以致放电电流并不流入电源62的电流路径。这使得,通过在电源62中的充电二极管,仅可以进行放电。值得注意的是,例如,当在期间放电大电流流动时,开关控制器67可以阻断放电电流。

值得注意的是,二次电池的过充电检测电压可以是例如4.20v±0.05v,以及过放电检测电压可以是例如2.4v±0.1v。

存储器68可以是例如eeprom,其是非易失性存储器。存储器68可以保持例如由控制器61所计算的数值和在制造过程中测得的二次电池的信息(如处于初始状态的内阻)。值得注意的是,在其中存储器68保持二次电池的完全充电容量的情况下,允许控制器61理解信息如剩余容量。

温度检测元件69测量电源62的温度,并将测量结果输出到控制器61。温度检测元件69可以是例如热敏电阻。

正极端子71和负极端子72是这样的端子,可以将其耦合到,例如,借助于使用电池组所驱动的外部设备(如笔记本个人电脑)或用于电池组的充电的外部设备(如电池充电器)。通过正极端子71和负极端子72来充电和放电电源62。

<3-3.电动车辆>

图8示出混合动力汽车(其是电动车辆的一个实例)的框构造。电动车辆可以包括例如在由金属制成的外壳73内的控制器74、发动机75、电源76、电动机77、差速器78、发电机79、变速器80、离合器81、逆变器82和83、各种传感器84。不同于上文提到的组件,电动车辆可以包括例如前驱动轴85和前轮86,其被耦合到差速器78和变速器80,和后驱动轴87,以及后轮88。

例如,借助于使用发动机75和电动机77之一作为驱动源,电动车辆可以是可运行的。发动机75是主电源,并且可以是例如汽油发动机。在其中发动机75用作电源的情况下,例如,通过差速器78、变速器80、和离合器81(其是驱动部),可以将发动机75的驱动功率(扭矩)传递到前轮86或后轮88。值得注意的是,还可以将发动机75的扭矩传递到发电机79。借助于使用扭矩,发电机79产生交流电力。通过逆变器83,将生成的交流电力转换成直流电力,并在电源76中积累转换的电力。在其中电动机77(其是转换部分)用作电源的情况下,通过逆变器82,供给自电源76的电力(直流电力)被转换成交流电力,以及借助于使用交流电力来驱动电动机77。例如,通过差速器78、变速器80、和离合器81(其是驱动部),可以将经由电动机77并通过转换电力所获得的驱动功率(扭矩)传递到前轮86或后轮88。

值得注意的是,当通过未示出的制动机构来降低电动车辆的速度时,可以将在速度降低时的电阻传递到电动机77(作为扭矩),以及,通过利用扭矩,电动机77可以产生交流电力。可以优选的是,通过逆变器82,将这种交流电力转换成直流电力,以及在电源76中积累直流再生电力。

控制器74控制整个电动车辆的操作,以及可以包括例如cpu。电源76包括一个或多个二次电池。可以将电源76耦合到外部电源,以及通过接收来自外部电源的电力供应,可以允许电源76积累电力。可以使用各种传感器84,例如,用于控制发动机75的转数以及用于控制未示出的节气门的开度(节气门开度)。各种传感器84可以包括例如速度传感器、加速度传感器、和发动机频率传感器。

值得注意的是,虽然已描述了其中电动车辆是混合动力汽车的情况,但电动车辆可以是仅借助于使用电源76和电动机77而没有使用发动机75来操作的车辆(电动汽车)。

<3-4.蓄电系统>

图9示出蓄电系统的框构造。蓄电系统可以包括例如在房子89如一般住所或商业建筑内的控制器90、电源91、智能电表92、和电力枢纽93。

在此实施例中,可以将电源91耦合到在房子89内提供的电气设备94并且可以允许耦合到停在房子89外面的电动车辆96(例如)。另外,例如,可以通过电力枢纽93,将电源91耦合到在房子89内提供的私人发电机95,以及可以通过智能电表92和电力枢纽93,允许耦合到外部集中电力系统97。

值得注意的是,电气设备94可以包括例如一个或多个家用电器产品。家用电器产品的实例可以包括冰箱、空气调节机、电视机、和热水器。私人发电机95可以包括例如太阳能发电机、风力发电机、和其他发电机的一种或多种。电动车辆96可以包括例如电动汽车、电动摩托车、混合动力汽车、和其它电动车辆的一种或多种。集中电力系统97可以包括例如热电厂、原子能发电厂、水力发电厂、风力发电厂、和其他发电厂的一种或多种。

控制器90控制整个蓄电系统的操作(包括电源91的使用状态),并且可以包括例如cpu。电源91包括一个或多个二次电池。智能电表92可以是电力仪表,其兼容与网络并且提供在要求电力的房子89中,并且可以与电力供应商通信(例如)。因此,例如,当智能电表92与外界相通的同时,智能电表92控制在房子89中在供求之间的平衡,其允许有效和稳定的能源供应。

在蓄电系统中,例如,通过智能电表92和电力枢纽93,可以在电源91中自集中电力系统97(其是外部电源)积累电力,以及,通过电力枢纽93,可以在电源91中自私人发电机95(其是独立电源)积累电力。根据来自控制器91的指示,将积累在电源91中的电力提供给电气设备94和电动车辆96。这允许电气设备94是可操作的,并且允许电动车辆96是可充电的。换句话说,蓄电系统是这样的系统,其使得借助于使用电源91可以在房子89中积累和供给电力。

允许可选地使用积累在电源91中的电力。因此,例如,可以在半夜当电价便宜时,在电源91中自集中电力系统97积累电力,以及可以在白天当电费昂贵时,使用积累在电源91中的电力。

值得注意的是,可以将前述蓄电系统提供给每个家庭(每个家庭单位),或可以提供给多个住户(多个家庭单位)。

<3-5.电动工具>

图10示出电动工具的框构造。电动工具可以是例如电钻,并且可以包括在由塑料材料制成的工具体98内的控制器99和电源100(例如)。可以以可操作(可旋转的)方式(例如),将钻孔部分101(其是可移动部)连接到工具体98。

控制器99控制整个电动工具的操作(包括电源100的使用状态),并且可以包括例如cpu。电源100包括一个或多个二次电池。依据操作开关的操作,控制器99允许将来自电源100的电力供给到钻孔部分101。

实施例

下文将详细描述本技术的实施例。

(实验例1-1至1-12)

通过以下过程来制作图1和图2所示的圆柱型锂离子二次电池。值得注意的是,为了简化,第一锂化合物被称为“第一锂化合物”,以及第二锂化合物被称为“第二锂化合物”。

正极21制作如下。首先,混合91质量份的包括主相和副相的正极活性物质、6质量份的正极粘合剂(聚偏二氟乙烯)、和3质量份的正极导体(石墨)以获得正极混合物。主相(第一锂化合物)的组成、副相(第二锂化合物)的组成、比率ip、和平均价v数是如表1所示。值得注意的是,指定组成的方法,以及计算例如比率ip的方法是如上所述。随后,将正极混合物分散于有机溶剂(n-甲基-2-吡咯烷酮)以获得正极混合物浆料。随后,借助于使用涂布装置,用正极混合物浆料来涂布条状正极集电体21a(厚度为15μm的铝箔)的两面,以及其后,干燥正极混合物浆料,以形成正极活性物质层21b。最后,借助于使用辊压机来压缩模塑正极活性物质层21b。

制造包括主相和副相的正极活性物质的程序是如下面所描述的(实验例1-2至1-10)。

首先,混合镍化合物(niso4)和另外的金属化合物(coso4)以获得混合物。在这种情况下,调节混合比以使镍和钴的摩尔比率成为镍:钴=0.8:0.15。随后,将去离子水加入混合物以制备镍-钴水溶液。接着,在氩气气氛中,将氨水一点一点地滴入镍-钴水溶液。在这种情况下,温度是40℃至60℃(包括两端),以及ph是11至13(包括两端)。因而,获得为沉积物的镍-钴氢氧化物(ni0.8co0.15(oh)2)。

接着,将去离子水加入镍-钴氢氧化物以制备镍-钴氢氧化物水溶液。随后,将铝化合物(naalo2)加入镍-钴氢氧化物水溶液。在这种情况下,调节混合比以使铝与所有的镍、钴、和铝的摩尔比率成为铝:(镍+钴+铝)=0.05:1。此外,使用硫酸(h2so4)以使ph为9至9.5(包括两端)。尤其是,将所有量的铝化合物一起加入镍-钴氢氧化物水溶液,其后,搅拌镍-钴水溶液。因而,获得镍-钴氢氧化物和氢氧化铝的混合物(ni0.8co0.15al0.05(oh)2)作为沉积的混合物。

接着,将锂化合物(lioh)加入沉积的混合物以获得锂混合物。在这种情况下,调节混合比,以使锂与所有的镍、钴、和铝的摩尔比率成为锂:(镍+钴+铝)=1:1。随后,将锂混合物放入混合器,以及其后,制粒锂混合物,同时在氩气气氛中借助于使用混合器加以充分混合,以获得活性物质前体。

最后,在氧气气氛中焙烧活性物质前体以获得包括主相和副相的正极活性物质。在这种情况下,着火温度是700℃。

当制造包括主相和副相的正极活性物质时,通过改变条件如用于搅拌镍-钴水溶液的时间来改变第一锂化合物的组成,即,在式(1)中所示的e的值。e的值表示在第一锂化合物的晶体结构中晶体缺陷(氧原子缺陷)的量。

值得注意的是,为了比较,制造了第一锂化合物(lini0.8co0.15al0.05o2),其中在晶体结构中并未发生晶体缺陷,以及第一锂化合物用作正极活性物质(实验例1-1)。在这种情况下,并不将所有量的铝化合物一起加入镍-钴氢氧化物水溶液,以及将铝化合物一点一点地滴入镍-钴氢氧化物水溶液。正极活性物质仅包括主相(第一锂化合物),并且不包括副相(第二锂化合物)。

此外,为了比较,通过前述程序制造了第一锂化合物(lini0.8co0.15al0.05o2),其中在晶体结构中并未发生晶体缺陷,以及其后,将添加剂(lialo2或li5alo4)加入第一锂化合物,以获得正极活性物质(实验例1-11和1-12)。正极活性物质是第一锂化合物和添加剂的混合物。因此,正极活性物质并不包括副相。

负极22制作如下。首先,混合90质量份的负极活性物质(人造石墨)和10质量份的负极粘合剂(聚偏二氟乙烯)以获得负极混合物。随后,将负极混合物分散于有机溶剂(n-甲基-2-吡咯烷酮)以获得负极混合物浆料。随后,用负极混合物浆料来涂布带状负极集电体22a(厚度为15μm的电解铜箔)的两面,以及其后,干燥负极混合物浆料以形成负极活性物质层22b。最后,借助于使用辊压机来压缩模塑负极活性物质层22b。

电解液制备如下。将电解质盐(lipf6)溶解于溶剂(碳酸亚乙酯和碳酸二乙酯)。在这种情况下,溶剂的混合比(重量比)是碳酸亚乙酯:碳酸二乙酯=50:50,以及,相对于溶剂,电解质盐的含量是1mol/kg。

二次电池组装如下。首先,通过焊接,将由铝制成的正极引线25连接到正极集电体21a,以及,通过焊接,将由镍制成的负极引线26连接到负极集电体22a。随后,借助于在其间的隔膜23(厚度为25μm的微孔聚乙烯薄膜)来堆叠正极21和负极22,以及螺旋缠绕所得堆叠体。其后,借助于使用粘合带来固定所得螺旋卷绕体的卷绕端部以制作螺旋卷绕电极体20。随后,将中心销24嵌入在螺旋卷绕电极体20的中心。随后,将螺旋卷绕电极体20夹在绝缘板对12和13之间,并容纳在由镀镍铁制成的电池壳11内。在这种情况下,通过焊接,将正极引线25的末端连接到安全阀机构15,以及,通过焊接,将负极引线26的末端连接到电池壳11。随后,通过减压法,将电解液注入电池壳11内,并用电解液来浸渍螺旋卷绕电极体20。最后,借助于垫圈17,在电池壳11的开端处,嵌塞电池盖14、安全阀机构15、和ptc器件16。因而,完成二次电池。

值得注意的是,当制作二次电池时,调节正极活性物质层21b的厚度以防止锂金属沉积在处于完全充电状态的负极22上。

当检查循环特性和加热特性作为每个二次电池的电池特性时,获得表1所示的结果。

循环特性检查如下。首先,在环境温度环境(23℃)下,对二次电池,进行充电和放电的一个循环,以稳定二次电池的电池状态,以及其后,在相同的环境下,对二次电池进一步进行充电和放电的一个循环,以测量在第二循环时的放电容量。随后,在相同的温度环境下,反复充电和放电二次电池,直到总循环次数达到100个循环,以测量在第100次循环时的放电容量。依据这些结果来计算容量维持率(%)=(在第100次循环时的放电容量/在第二循环时的放电容量)×100。

当充电二次电池时,在1c的电流下进行充电,直到电压达到4.2v,以及其后,在4.2v的电压下,进一步进行充电,直到电流达到100ma。当放电二次电池时,在5c的电流下,进行放电,直至电压达到2v。值得注意的是,“1c”是指电流值,在其下,在1小时内,电池容量(理论容量)被完全放电,以及“5c”是指电流值,在其下,在0.2小时内,电池容量被完全放电。

加热特性检查如下。首先,为了故意恶化二次电池,在低温环境(10℃)下,反复充电和放电二次电池,直到容量保持率达到30%,以及其后,再次充电二次电池。充电和放电条件是类似于在检查循环特性的情况下的那些充电和放电条件。随后,在高温环境(120℃)中,存储保持在充电状态下的二次电池(1小时),以及其后,目视确认二次电池是否爆炸。在其中二次电池没有爆炸的情况下,增加环境温度5℃,然后重复存储二次电池并通过类似的程序加以检查。因而,在其下二次电池没有爆炸的环境温度(℃)的最高值被认为是极限温度(℃)。

[表1]

在其中正极活性物质包括副相(第二锂化合物)以及主相(第一锂化合物)(实验例1-2至1-10)的情况下,与其中正极活性物质仅包括主相(第一锂化合物)(实验例1-1)的情况比较,极限温度显著增加。

此外,在其中正极活性物质包括主相和副相的情况下,当与第一锂化合物的组成有关的条件(在式(1)中e的值)满足0<e≤1.98时,获得高容量维持率。在这种情况下,尤其是,当满足1.61≤e≤1.98时,获得更高的容量维持率,以及当满足1.75≤e≤1.98时,则获得还要更高的容量维持率。

值得注意的是,在其中正极活性物质含有添加剂(实验例1-11和1-12)的情况下,获得较高容量维持率,但极限温度仍然较低。

在这里,借助于使用xrd法,图11示出正极活性物质的分析结果(xrd图谱)。在图11中,折线表示实验例1-1的xrd图谱,以及实线表示实验例1-4的xrd图谱。

在其中在第一锂化合物(实验例1-1)中没有发生晶体缺陷的情况下,正极活性物质包括主相,但不包括副相。因此,在xrd图谱中,检测到由主相的(003)平面造成的峰p5,但未检测到由副相造成的峰,如图11所示(折线)。

相比之下,在其中在第一锂化合物(实验例1-4)中发生晶体缺陷的情况下,正极活性物质包括主相和副相。因此,在xrd图谱中,检测到由主相的(003)平面造成的峰p1,以及检测到由副相造成的峰p2至p4,如11图所示(实线)。峰p2是由lialo2造成的峰,以及峰p3和p4是由li5alo4造成的峰。

(实验例2-1至2-11以及3-1至3-11)

以类似的程序,制作二次电池并检查二次电池的电池特性,不同之处在于,改变了为主相的第一锂化合物的组成,如表2和3所示。

当制造表2所示的包括第一锂化合物的正极活性物质时,新使用另外的金属化合物(mnso4),调节混合比以使镍、钴、和锰的摩尔比率成为镍:钴:锰=0.45:0.2:0.3。此外,当制造表3所示的包括第一锂化合物的正极活性物质时,不使用铝化合物,但新使用镁化合物(mnso4),以及调节混合比以使镍、钴、和镁的摩尔比率成为镍:钴:镁=0.8:0.15:0.05。

[表2]

[表3]

即使在其中改变了第一锂化合物的组成的情况下,也获得类似于表1的那些结果的结果。换句话说,在其中正极活性物质包括主相(第一锂化合物)和副相(第二锂化合物)的情况下,会显著增加极限温度,以及获得高容量维持率,其取决于第一锂化合物的组成(e的值)。

如从表1至表3所示的结果可以看出,当正极活性物质包括主相(第一锂化合物)和副相(第二锂化合物)时,改善了加热特性,并且在一些情况下,还改善了循环特性。因此,在二次电池中实现了卓越的电池特性。

虽然上文已参照一些实施方式和实施例描述了本技术,但本技术不限于此,并且可以以各种方式加以改进。

例如,已经参照实施例给出了描述,其中电池结构具有圆柱型和层合膜型,以及电池元件具有螺旋缠绕结构。然而,电池结构和电池元件结构不限于此。本技术的二次电池还类似地适用于这样的情况,其中采用其它电池结构如方型、硬币型、或按钮式。此外,本技术的二次电池还类似地适用于这样的情况,其中电池元件具有其它结构如堆叠结构。

另外,本技术的二次电池用电解液可以适用于不同于二次电池的任何应用。其他应用的实例可以包括电容器。

注意,在本说明书中描述的效果是说明性和非限制性的。本技术可以具有不同于在本说明书中描述的那些效果的效果。

值得注意的是,本技术可以具有以下构造。

(1)

一种二次电池,包括:

正极,其含有正极活性物质,其包括(a)主相和副相,(b)主相含有由以下式(1)表示的第一锂化合物,以及(c)副相,其含有第二锂化合物,其含有锂(li)、铝(al)、和氧(o)作为构成元素;

负极;以及

电解液,

lianibmcaldoe...(1)

(m是以下的一种或多种:钴(co)、铁(fe)、锰(mn)、铜(cu)、锌(zn)、铬(cr)、钒(v)、钛(ti)、镁(mg)、和锆(zr)。以及a至e满足0.8<a<1.2、0.45≤b≤1、0≤c≤1、0≤d≤0.2、0<e≤1.98、(c+d)>0、以及(b+c+d)≤1。)

(2)

按照(1)的二次电池,其中满足1.75≤e≤1.98。

(3)

按照(1)或(2)的二次电池,其中第二锂化合物含有lialo2和li5alo4的一种或两种。

(4)

按照(1)至(3)中任一项的二次电池,其中

通过x射线衍射法,检测到由主相的(003)平面造成的一个或多个第一峰以及由副相造成的一个或多个第二峰,以及

第二峰的最大强度i2相对于第一峰的最大强度i1的比率ip(ip=[i2/i1]×100)满足0.001≤ip≤1。

(5)

按照(1)至(4)中任一项的二次电池,其中在第一锂化合物中镍(ni)、m、和铝(al)的平均价数v满足2.5≤v≤2.9。

(6)

按照(1)至(5)中任一项的二次电池,其中二次电池是锂离子二次电池。

(7)

一种二次电池用电极,包括:

活性物质,其包括(a)主相和副相,(b)主相,其含有由以下式(1)表示的第一锂化合物,以及(c)副相,其含有第二锂化合物,其含有锂(li)、铝(al)、和氧(o)作为构成元素,

lianibmcaldoe...(1)

(m是以下的一种或多种:钴(co)、铁(fe)、锰(mn)、铜(cu)、锌(zn)、铬(cr)、钒(v)、钛(ti)、镁(mg)、和锆(zr)。以及a至e满足0.8<a<1.2、0.45≤b≤1、0≤c≤1、0≤d≤0.2、0<e≤1.98、(c+d)>0、以及(b+c+d)≤1。)

(8)

一种二次电池用活性物质,包括:

(a)主相和副相,(b)主相,其含有由以下式(1)表示的第一锂化合物,以及(c)副相,其含有第二锂化合物,其含有锂(li)、铝(al)、和氧(o)作为构成元素,

lianibmcaldoe...(1)

(m是以下的一种或多种:钴(co)、铁(fe)、锰(mn)、铜(cu)、锌(zn)、铬(cr)、钒(v)、钛(ti)、镁(mg)、和锆(zr)。a至e满足0.8<a<1.2、0.45≤b≤1、0≤c≤1、0≤d≤0.2、0<e≤1.98、(c+d)>0、以及(b+c+d)≤1。)

(9)

一种电池组,包括:

按照(1)至(6)中任一项的二次电池;

控制器,其控制二次电池的运行;以及

开关部,根据来自控制器的指令切换二次电池的运行。

(10)

一种电动车辆,包括:

按照(1)至(6)中任一项的二次电池;

转换器,其将由二次电池供应的电力转换成驱动力;

驱动部,其依据驱动力运行;以及

控制器,其控制二次电池的运行。

(11)

一种蓄电系统,包括:

按照(1)至(6)中任一项的二次电池;

一个或多个电气设备,其由二次电池供应电力;以及

控制器,其控制由二次电池向一个或多个电气设备供应电力。

(12)

一种电动工具,包括:

按照(1)至(6)中任一项的二次电池;以及

可移动部,其由二次电池供应电力。

(13)

一种电子装置,包括按照(1)至(6)中任一项的二次电池作为电力供应源。

本申请是基于2014年12月1日向日本专利局提交的日本专利申请号2014-243162并要求其优先权,其全部内容以引用方式结合于本文。

本领域技术人员应该理解,可能会发生各种修改、组合、子组合和更改,其取决于设计要求和其他因素,只要它们是在所附权利要求或其等同物的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1