芯片封装结构与其制作方法与流程

文档序号:12478306阅读:324来源:国知局
芯片封装结构与其制作方法与流程

本发明涉及一种封装结构与其制作方法,尤其涉及一种芯片封装结构与其制作方法。



背景技术:

近年来,随着电子产品的需求朝向高功能化、信号传输高速化及电路组件高密度化,半导体相关产业也日渐发展。以半导体芯片为例,半导体芯片经制成后,需与导电结构共同形成芯片封装结构,方能发挥电路功能,而应用于电子产品中。另外,芯片封装结构亦可搭配无源组件增加其操作效能。

一般来说,在芯片封装结构中,芯片与承载器(例如线路基材)可利用打线、凸块接合、引脚接合等方式达成电性连接的目的。上述电性连接方式(例如凸块)可制作于芯片的表面上,而后在芯片配置于承载器上时进一步连接至承载器上的对应接点。类似地,芯片封装结构所需无源组件亦通过适用方式(例如焊接)而另外配置在承载器上。如此,不仅增加了承载器的使用面积,不利于电子产品体积精简化,相对的亦增加整体成本。



技术实现要素:

本发明提供一种芯片封装结构与其制作方法,其通过改变无源组件的配置方式而具有良好的操作效能。

本发明的芯片封装结构包括芯片、线路层、无源组件材料以及基材。线路层配置于芯片的表面上,其中线路层包括多个凸块与多个无源组件电极,凸块与无源组件电极具有相同材质,且具有相同厚度,而无源组件电极电性连接至部分凸块。无源组件材料配置于无源组件电极之间,使无源组件电极与无源组件材料构成无源组件,而无源组件位于芯片的表面上。芯片配置于基材上,并以表面面对基材,使芯片与无源组件藉由凸块电性连接至基材,且无源组件与凸块位于芯片与基材之间。

本发明的芯片封装结构的制作方法包括下列步骤:形成线路层于芯片的表面上,其中线路层包括多个凸块与多个无源组件电极,凸块与无源组件电极具有相同材质,且具有相同厚度,而无源组件电极电性连接至部分凸块。涂布无源组件材料于无源组件电极之间,使无源组件电极与无源组件材料构成无源组件,而无源组件位于芯片的表面上。将芯片配置于基材上,并以表面面对基材,使芯片与无源组件藉由凸块电性连接至基材,且无源组件与凸块位于芯片与基材之间。

在本发明的一实施例中,上述的芯片的表面具有主动区与位于主动区外围的周边区。凸块配置于周边区,无源组件电极连接至部分凸块,并从周边区延伸至主动区内,使由无源组件电极与无源组件材料构成的无源组件位于主动区内。

在本发明的一实施例中,上述的芯片封装结构还包括底金属层,配置于芯片的表面与线路层间,且底金属层的轮廓对应于凸块与无源组件电极的轮廓。

在本发明的一实施例中,上述的无源组件电极包括彼此对向设置的两条状电极,而无源组件材料配置于条状电极之间。

在本发明的一实施例中,上述的无源组件电极包括彼此交错排列的两梳状电极,而无源组件材料配置于梳状电极之间。

在本发明的一实施例中,上述的无源组件包括电容组件、电阻组件或电感组件。

在本发明的一实施例中,上述的无源组件材料包括介电陶瓷材料、电阻膏或电感膏。

在本发明的一实施例中,上述的电容组件的电容值为纳米法拉(nanofarad,nF)等级。

在本发明的一实施例中,上述的线路层的材质包括金、银、铜或含有前述材质的合金。

在本发明的一实施例中,上述的线路层的厚度介于10微米(micrometer,μm)至15微米之间。

在本发明的一实施例中,上述的线路层的凸块与无源组件电极的形成于同一步骤中完成。

在本发明的一实施例中,上述的芯片封装结构的制作方法还包括下列步骤:形成底金属层于芯片的表面与线路层间,且底金属层的轮廓对应于凸块与无源组件电极的轮廓。

在本发明的一实施例中,上述的芯片封装结构的制作方法还包括下列步骤:低温烧结涂布于无源组件电极之间的无源组件材料。

基于上述,在本发明的芯片封装结构与其制作方法中,具有相同材质与相同厚度的多个凸块与多个无源组件电极(为同一线路层的不同局部)配置于芯片的表面上,而无源组件材料配置于无源组件电极之间,从而在芯片的表面上构成无源组件,而后芯片配置于基材上,使芯片与无源组件藉由凸块电性连接至基材。藉此,本发明的芯片封装结构与其制作方法通过改变无源组件的配置方式而具有良好的操作效能。

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。

附图说明

图1是本发明的一实施例的芯片封装结构的侧视示意图;

图2至图3是图1的芯片封装结构的制作示意图;

图4是本发明的另一实施例的芯片封装结构的示意图。

附图标记:

100、200:芯片封装结构

110:芯片

112:表面

120、220:线路层

122、222:凸块

124、224:无源组件电极

124a、124b:梳状电极

130、230:无源组件材料

140:基材

150、250:无源组件

160:底金属层

224a、224b:条状电极

R1:主动区

R2:周边区

t:厚度

具体实施方式

图1是本发明的一实施例的芯片封装结构的侧视示意图。请参考图1,在本实施例中,芯片封装结构100包括芯片110、线路层120、无源组件材料130以及基材140。线路层120配置于芯片110的表面112上,其中线路层120包括多个凸块122与多个无源组件电极124,凸块122与无源组件电极124具有相同材质,且具有相同厚度t,而无源组件电极124电性连接至部分凸块122。再者,无源组件材料130配置于无源组件电极124之间,使无源组件电极124与无源组件材料130构成无源组件150,而无源组件150位于芯片110的表面112上。此外,芯片110配置于基材140上,并以芯片表面112面对基材140,使芯片110与无源组件150藉由凸块122电性连接至基材140,且无源组件150与凸块122位于芯片110与基材140之间。其中,图1显示两个凸块122与两个无源组件电极124用于示意,实际上凸块122与无源组件电极124的数量、排列方式以及芯片封装结构100中的各构件的尺寸比例(如厚度或宽度)应可依据需求调整,本发明不以图1所显示的结构为限制。以下将进一步搭配图2至图3详细说明本实施例的芯片封装结构100的具体结构与其制作方法。

图2至图3是图1的芯片封装结构的制作示意图。为使图式更为清楚易懂,图2至图3的芯片封装结构省略显示图1的基材140。请参考图1至图3,在本实施例中,芯片封装结构100的制作方法包括下列步骤:首先,在本实施例中,形成线路层120于芯片110的表面112上(如图2所示),其中线路层120包括多个凸块122与多个无源组件电极124,凸块122与无源组件电极124具有相同材质,且具有相同厚度t,而无源组件电极124电性连接至部分凸块122。更进一步地说,所述芯片110的表面112具有主动区R1与位于主动区R1外围的周边区R2(显示于图2)。凸块122配置于周边区R2,无源组件电极124连接至部分凸块122,并从周边区R2延伸至主动区R1内。 藉此,无源组件电极124与部分凸块122彼此电性连接。

由此可知,在本实施例中,凸块122与无源组件电极124是同一线路层120的不同局部,故线路层120的凸块122与无源组件电极124的形成于同一步骤中完成,而因此具有相同材质与相同厚度t。其中,所述线路层120的材质包括金、银、铜或含有前述材质的合金,而线路层120的厚度t介于10微米至15微米之间,但本发明不以此为限制,其可依据需求调整。

另外,在本实施例中,芯片封装结构100的制作方法还包括下列步骤:形成底金属层160于芯片110的表面112与线路层120间,且底金属层160的轮廓对应于凸块122与无源组件电极124的轮廓。换言之,在形成线路层120于芯片110的表面112上的步骤之前,可依据需求先形成底金属层160于芯片110的表面112上,而后才藉由电镀制程或者其他适用制程在底金属层160上形成线路层120,使底金属层160位于芯片110的表面112与线路层120间。所述底金属层160有助于线路层120的形成,即线路层120形成于芯片110的表面112上配置有底金属层160之处,故底金属层160的轮廓与线路层120的轮廓大致上彼此对应。藉此,芯片封装结构100还包括底金属层160,配置于芯片110的表面112与线路层120间,且底金属层160的轮廓对应于凸块122与无源组件电极124的轮廓。然而,本发明并不限制底金属层160的配置与否,其可依据需求调整。

接着,在本实施例中,在形成线路层120于芯片110的表面112上的步骤之后,涂布无源组件材料130于无源组件电极124之间(如图3所示),并更进一步低温烧结涂布于无源组件电极124之间的无源组件材料130,使无源组件电极124与无源组件材料130构成无源组件150,而无源组件150位于芯片110的表面112上。另外,由于无源组件电极124连接至部分凸块122,并从周边区R2延伸至主动区R1内,故由无源组件电极124与配置于无源组件电极124之间的无源组件材料130所构成的无源组件150亦位于主动区R1内,且无源组件150电性连接至部分凸块122。

具体来说,在本实施例中,无源组件电极124包括彼此交错排列的两梳状电极124a与124b,而所述无源组件材料130例如是介电陶瓷材料。无源组件材料130涂布于梳状电极124a与124b之间,并经由低温烧结,使无源组件电极124与无源组件材料130构成无源组件150,而所述无源组件150可 为电容组件,且其电容值为纳米法拉(nanofarad,nF)等级。其中,所述介电陶瓷材料例如是陶瓷粉末,其可采用低介电常数的陶瓷材料,例如是二氧化钛(TiO2),使无源组件150为NPO型电容组件,亦可采用中介电常数的陶瓷材料,例如是钛酸钡(BaTiO3)或其他以钛酸钡为基底的陶瓷粉末,使无源组件150为X7R型电容组件或者Y5V型电容组件。然而,本发明并不限制无源组件电极124、无源组件材料130与其所构成的无源组件150的种类,其可依据需求调整。

此外,请参考图1与图3,在本实施例中,在涂布无源组件材料130于无源组件电极124之间使其构成无源组件150的步骤之后,将芯片110配置于基材140上,并以表面112面对基材140,使芯片110与无源组件150藉由凸块122电性连接至基材140,且无源组件150与凸块122位于芯片110与基材140之间。详细来说,所述基材140例如是软性印刷线路板(flexible printed circuit board,FPC),但本发明不以此为限制。基材140上配置有多条未显示的连接线路,而芯片110藉由已形成无源组件150与凸块122的表面112(如图3所示)面对基材140而配置于基材140,使无源组件150与凸块122位于芯片110与基材140之间,而芯片110可据此通过凸块122电性连接至基材140。另外,由于无源组件150的无源组件电极124连接至部分凸块122,故无源组件150亦可通过凸块122电性连接至基材140。换言之,凸块122的排列位置大致上对应于基材140上未显示的连接线路,而可用于将芯片110与无源组件150电性连接至基材140。

基于上述,本实施例的芯片封装结构100将无源组件150形成于芯片110的表面112,且构成无源组件150所需的线路(即无源组件电极124)与芯片110连接至基材140所需的凸块122是同一线路层120的不同局部,而在同一制作步骤中一并形成,而后才将无源组件材料130配置于无源组件电极124之间而构成无源组件150。由此可知,本实施例是将无源组件150形成于芯片110上,而非将已制作完成的现有无源组件配置在芯片110上。藉此,芯片封装结构100可在形成无源组件150的过程中调整相关参数(如材质),据此提升无源组件150的操作效能。即相较于将电容组件作为无源组件配置在基材140上的现有技术,本实施例的芯片封装结构100具有更佳的操作效能。

图4是本发明的另一实施例的芯片封装结构的示意图。为使图示更为清楚易懂,图4的芯片封装结构省略显示基材140,但有关基材140的相关说明可参考图1及前述内容。请参考图4,在本实施例中,芯片封装结构200与前述芯片封装结构100具有类似的结构与作法,其主要差异在于线路层220的设计与无源组件材料230的种类。藉此,在芯片封装结构200的线路层220与无源组件材料230经由前述制作步骤形成于芯片110的表面112,并使线路层220的无源组件电极224与无源组件材料230构成无源组件250之后,芯片110可进一步以表面112面对基材140而配置于基材140上,使芯片110与无源组件250藉由凸块222电性连接至基材140,且无源组件250与凸块222位于芯片110与基材140之间,类似于图1所示。并且,线路层220与芯片110的表面112之间亦可形成前述底金属层160。据此,有关芯片110、基材140、底金属层160等结构以及芯片封装结构200的制作方法可参考前述内容,在此不多加赘述。

具体来说,在本实施例中,芯片封装结构200的线路层220配置于芯片110的表面112上,其中线路层220包括凸块222与无源组件电极224,凸块222与无源组件电极224具有相同材质,且具有相同厚度t(其侧视示意图请参考图1的凸块122与无源组件电极124),而无源组件电极224电性连接至部分凸块222。更进一步地说,凸块222配置于周边区R2,无源组件电极224连接至部分凸块222,并从周边区R2延伸至主动区R1内。藉此,凸块222与无源组件电极224是同一线路层220的不同局部,故凸块222与无源组件电极224的形成于同一步骤中完成,并因此具有相同材质与相同厚度t。

另一方面,在本实施例中,无源组件电极224与前述无源组件电极124的主要差异在于,前述无源组件电极124包括彼此交错排列的两梳状电极124a与124b,而本实施例的无源组件电极224包括彼此对向设置的两条状电极224a与224b,其中条状电极224a与224b连接至部分凸块222,而无源组件材料230配置于条状电极224a与224b之间。藉此,在低温烧结涂布于无源组件电极224之间的无源组件材料230之后,无源组件材料230与无源组件电极224构成无源组件250,而无源组件250位于芯片110的表面112上,且电性连接至部分凸块222。其中,无源组件材料230可以是电阻膏或电感膏,从而使无源组件250作为电阻组件或电感组件。然而,本发明并不限制 无源组件电极224、无源组件材料230与其所构成的无源组件250的种类,其可依据需求调整。

基于上述,本实施例的芯片封装结构200将无源组件250形成于芯片110的表面112,且构成无源组件250所需的线路(即无源组件电极224)与芯片110连接至基材140所需的凸块222是同一线路层220的不同局部,而在同一制作步骤中一并形成,而后才将无源组件材料230配置于无源组件电极224之间而构成无源组件250。藉此,芯片封装结构200可在形成无源组件250的过程中调整相关参数(如材质),据此提升无源组件250的操作效能,即本实施例的芯片封装结构200具有更佳的操作效能。

另外,依据上述实施例,芯片封装结构100与200可依据所需无源组件150与250的种类而选择采用何种类型的无源组件电极124与224与无源组件材料130与230。据此,上述制作方法可适用于形成不同类型的无源组件150与250。

综上所述,在本发明的芯片封装结构与其制作方法中,具有相同材质与相同厚度的多个凸块与多个无源组件电极(为同一线路层的不同局部)配置于芯片的表面上,而无源组件材料配置于无源组件电极之间,从而在芯片的表面上构成无源组件,而后芯片配置于基材上并以所述表面面对基材,使芯片与无源组件藉由凸块电性连接至基材。由此可知,本发明是将无源组件形成于芯片上,而非将已制作完成的现有无源组件配置在芯片或者基材上。藉此,本发明的芯片封装结构与其制作方法通过改变无源组件的配置方式而具有良好的操作效能。

虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的改动与润饰,故本发明的保护范围当视所附权利要求界定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1