一种铝电解质电容器及其制备方法与流程

文档序号:14685556发布日期:2018-06-14 17:41阅读:146来源:国知局

本发明涉及电容器技术,特别涉及一种铝电解质电容器及其制备方法。



背景技术:

导电聚合物是一类具有共轭π键结构的高分子化合物,经过化学或电化学掺杂对阴离子或对阳离子后形成的具有导电性的特殊高分子材料,包括聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚对苯、聚咔唑和聚芴等。导电聚合物的突出优点是既具有金属和半导体材料的光电特性,又具有聚合物良好的稳定性和力学性能,质量相对较轻,并且容易加工。目前工业领域应用最成功的导电聚合物是聚苯胺和聚噻吩,特别是聚噻吩衍生物之中的聚(3,4-乙撑二氧噻吩)(PEDOT),更是因其高电导率、良好的环境稳定性、掺杂状态时透明等优点,而在有机电致显示、有机太阳能电池和超级电容器等电子器件中得到广泛商业应用。

自导电高分子发现以来,无论是电化学方法还是化学方法制备得到的产物一般都是难溶性的导电聚合物粉末,难以加工,因此极大的限制了其应用。直到上世纪80年代拜耳公司在3,4-乙撑二氧噻吩(EDOT)的化学氧化聚合过程中,引入聚对苯乙烯磺酸(PSS)作为电荷平衡掺杂剂,制备出聚(3,4-乙撑二氧噻吩)/聚对苯乙烯磺酸(PEDOT/PSS),其具有优良的水分散性能、涂布成膜性能、高导电性能、光学透明性、环境稳定性等,目前已应用于超级电容器、抗静电涂料、防腐涂层、电致发光材料、传感器、导电油墨等领域。

专利号为200680033112.0的中国发明专利公开了一种电解质电容器的制备方法,所述方法至少包括以下步骤:a)使电极材料的多孔电极体经阳极氧化反应以形成覆盖该电极材料表面的电介质;b)在多孔主体上施加分散体,所述多孔主体至少包括电极材料的多孔电极体和电介质,所述分散体至少包含导电聚合物的颗粒和分散剂;c)为形成完全或部分覆盖电介质表面的固体电解质,至少部分地去除和/或固化分散剂,多孔电极体在阳极氧化期间的最大阳极化电压大于30V,分散体中导电聚合物颗粒的平均粒径为1-100nm。随着电压的升高,多孔阳极的孔径变大,而电压越低,其孔径将越小,孔径愈小则存在出容愈加困难的问题。将上述专利的电解质电容器用于电压低于30V的情况下,其多孔阳极的孔径将大幅度降低,从而无法保证正常出容。



技术实现要素:

本发明所要解决的技术问题是:提供一种可以在电压低的条件下保证孔径处于一定大小,以使出容容易的铝电解质电容器,进一步提供上述铝电解质电容器的制备方法。

为了解决上述技术问题,本发明采用的技术方案为:

一种铝电解质电容器,所述铝电解质电容器的阳极的氧化电压不大于30V,包括分散体,所述分散体包括导电聚合物和分散剂,所述导电聚合物的平均粒径为5-40nm。

本发明还提供一种铝电解质电容器的制备方法,在上述的铝电解质电容器的电极上施加所述分散体,然后将所述分散剂部分或全部去除,或者将所述分散剂进行固化,所述去除或固化的次数为一次或两次以上。

本发明的有益效果在于:

(1)当阳极的氧化电压不大于30V,孔径较小时,控制导电聚合物的平均粒径为5-40nm的设计,达到出容容易的技术效果;

(2)由于导电聚合物的孔径小,容易含浸到电容器中,因此获得的铝电解质电容器具有损耗低、等效串联电阻低以及漏电低的优点。

具体实施方式

为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。

本发明最关键的构思在于:在阳极氧化电压不大于30V的条件下,通过控制导电聚合物的平均粒径为5-40nm,从而达到出容容易的技术效果。

本发明提供一种铝电解质电容器,所述铝电解质电容器的阳极的氧化电压不大于30V,包括分散体,所述分散体包括导电聚合物和分散剂,所述导电聚合物的平均粒径为5-40nm。

本发明还提供一种铝电解质电容器的制备方法,在上述的铝电解质电容器的电极上施加所述分散体,然后将所述分散剂部分或全部去除,或者将所述分散剂进行固化,所述去除或固化的次数为一次或两次以上。

从上述描述可知,本发明的有益效果在于:

(1)当阳极的氧化电压不大于30V,孔径较小时,控制导电聚合物的平均粒径为5-40nm的设计,达到出容容易的技术效果;

(2)由于导电聚合物的孔径小,容易含浸到电容器中,因此获得的铝电解质电容器具有损耗低、等效串联电阻低以及漏电低的优点。

进一步的,所述导电聚合物包括聚噻吩衍生物,所述聚噻吩衍生物包括具有下述通式I和/或通式II组成的重复单元,所述通式I的结构式为:

所述通式II的结构式为:

所述通式I的结构式和通式II的结构式中,A为任选取代的碳原子数为1-5的亚烷基;R为任选取代的碳原子数为5-12的直连或支链环烷基、任选取代的碳原子数为6-14的直链或支链芳基、任选取代的碳原子数为7-18的直链或支链芳烷基、任选取代的碳原子数为1-4的直链或支链羟烷基或羟基;X为0-8的整数。

在A结合有几个A基团的情况下,这些基团可以相同或不同。

本发明的所述聚噻吩衍生物可以为具有通式I组成的重复单元,也可以为具有通式II组成的重复单元,亦可以为具有通式I和通式II组成的重复单元。

由上述描述可知,聚噻吩衍生物可以是任选被取代的聚噻吩,优选为上述包括具有下述通式I和/或通式II组成的重复单元。上述结构的聚噻吩衍生物可以更好的与阳极孔径大小进行配合,进一步提高出容的容易程度。

进一步的,所述导电聚合物还包括聚吡咯衍生物和聚苯胺衍生物中的至少一种。

进一步的,所述分散体还包括聚合阴离子。优选的,所述聚合阴离子为聚合羧酸阴离子或聚合磺酸阴离子。更为优选的,所述聚合阴离子为聚苯乙烯磺酸阴离子,所述聚苯乙烯磺酸阴离子的分子量为1000-1000000。

由上述描述可知,分散体中添加聚合阴离子,聚阴离子可以做复合离子,与聚噻吩复合然后分散到水中,聚阴离子同时也可以作为掺杂剂,控制聚苯乙烯磺酸阴离子的分子量为1000-1000000,可以使聚噻吩更好的分散在水中。其中,更为优选的,聚苯乙烯磺酸阴离子的分子量为20000-200000。

进一步的,所述分散剂为有机溶剂和/或水。

进一步的,所述分散体还包括交联剂、表面活性剂和添加剂中的至少一种,所述添加剂选自醚、内酯、酰胺基团、内酰胺基团、砜、亚砜、糖、糖衍生物、糖醇、呋喃衍生物、二元醇和多元醇中的至少一种。

由上述描述可知,所述交联剂和表面活性剂可以采用现有技术中的常用交联剂和表面活性剂。加入交联剂、表面活性剂和添加剂分别具有有效交联、降低表面张力的作用。

进一步的,所述分散体的pH值为1.5-7,所述分散体在20℃条件下的粘度不大于500cps。

由上述描述可知,可以对分散体的pH值和粘度进行上述控制,更为优选的,分散体的pH值为2-5,同时可以在60rpm的转速下对其粘度进行测试。

在本发明的铝电解质电容器的制备方法中:

分散体中的pH值可加入酸或碱来调节;所述“施加所述分散体,然后将所述分散剂部分或全部去除,或者将所述分散剂进行固化”的步骤可进行一次或重复两次以上。

本发明的实施例一为:

本实施例的一种铝电解质电容器,所述铝电解质电容器的阳极的氧化电压为25V,包括分散体,所述分散体包括导电聚合物、分散剂和聚合阴离子,还包括添加剂,所述添加剂为醚、内酯、酰胺基团、呋喃衍生物和多元醇的混合物。所述分散体的pH值为1.5,所述分散体在20℃条件下的粘度为500cps。所述导电聚合物的平均粒径为5nm。所述导电聚合物包括聚噻吩衍生物,还包括聚吡咯衍生物。所述聚合阴离子为聚苯乙烯磺酸阴离子,所述聚苯乙烯磺酸阴离子的分子量为1000,所述分散剂为水。所述聚噻吩衍生物包括具有下述通式I组成的重复单元,所述通式I的结构式为:

所述通式I的结构式中,A为任选取代的碳原子数为1的亚烷基;R为任选取代的碳原子数为5的直连或支链环烷基、任选取代的碳原子数为6的直链芳基、任选取代的碳原子数为7的直链芳烷基、任选取代的碳原子数为1的直链羟烷基或羟基;X为0。本发明的实施例二为:

本实施例的一种铝电解质电容器,所述铝电解质电容器的阳极的氧化电压为15V,包括分散体,所述分散体包括导电聚合物、分散剂和聚合阴离子,还包括添加剂,所述添加剂为醚。所述分散体的pH值为7,所述分散体在20℃条件下的粘度为400cps。所述导电聚合物的平均粒径为40nm。所述导电聚合物包括聚噻吩衍生物,还包括聚吡咯衍生物和聚苯胺衍生物。所述聚合阴离子为聚苯乙烯磺酸阴离子,所述聚苯乙烯磺酸阴离子的分子量为1000000,所述分散剂为有机溶剂。所述聚噻吩衍生物包括具有下述通式II组成的重复单元,所述通式II的结构式为:

所述通式II的结构式中,A为任选取代的碳原子数为5的亚烷基;R为任选取代的碳原子数为12的支链环烷基、任选取代的碳原子数为14的支链芳基、任选取代的碳原子数为18的支链芳烷基、任选取代的碳原子数为4的支链羟烷基或羟基;X为8。

本发明的实施例三为:

本实施例的一种铝电解质电容器,所述铝电解质电容器的阳极的氧化电压为5V,包括分散体,所述分散体包括导电聚合物、分散剂和聚合阴离子,还包括添加剂,所述添加剂为酰胺基团。所述分散体的pH值为4,所述分散体在20℃条件下的粘度为200cps。所述导电聚合物的平均粒径为20nm。所述导电聚合物包括聚噻吩衍生物,还包括聚苯胺衍生物。所述聚合阴离子为聚苯乙烯磺酸阴离子,所述聚苯乙烯磺酸阴离子的分子量为800000,所述分散剂为水。所述聚噻吩衍生物包括具有下述通式I和通式II组成的重复单元,所述通式I的结构式为:

所述通式II的结构式为:

所述通式I的结构式和通式II的结构式中,A为任选取代的碳原子数为2的亚烷基;R为任选取代的碳原子数为8的直链环烷基、任选取代的碳原子数为10的直链芳基、任选取代的碳原子数为10的直链芳烷基、任选取代的碳原子数为3的支链羟烷基或羟基;X为4。

本发明的实施例四为:

将100g聚苯乙烯磺酸加入到2000g去离子水中,搅拌30分钟,然后将50g35%的过硫酸钠水溶液,1%的硫酸铁水溶液14.4g与9.1g3,4-二烷氧基噻吩混合均匀加入到上述水溶液中,搅拌24h。反应结束后,向反应体系中加入200g阳离子树脂,200g阴离子树脂搅拌12h,过滤掉树脂,即得到聚(3,4-二烷氧基噻吩)聚阴离子。用高压均质机,在1000bar压力下,均质5次。然后测试固含量1.34%。用粒度测试仪测试粒径在10-35nm。分散体的粘度150cps。

将100g上述方法获得的聚(3,4-二烷氧基噻吩)聚阴离子、5g乙二醇、5g聚乙二醇600、0.5g3-缩水甘油氧基三甲氧基甲硅烷(SilquestA-187)、0.5gDynol604(Airproduct)在玻璃烧杯中用磁力搅拌器混匀,形成分散体B。

分别将4种规格的芯包含上述分散体B,然后于120℃下进行烘干并对其性能进行测试。测试结果如表1。表1为4种规格的芯包含分散体B的性能测试表。

表1

本发明的实施例五为:

将100g实施例1的聚(3,4-二烷氧基噻吩)聚阴离子分散体、5g二甲基亚砜、5g聚乙二醇400、0.5g3-缩水甘油氧基三甲氧基甲硅烷(SilquestA-187)、2g山梨醇、0.5gDynol604(Airproduct)在玻璃烧杯中用磁力搅拌器混匀,形成分散体C。

分别将4种规格的芯包含所述分散体C,然后于120℃下进行烘干并对其性能进行测试。测试结果如表2。表2为4种规格的芯包含分散体C的性能测试表。

表2

本发明的实施例六为:

将100g实施例1的聚(3,4-二烷氧基噻吩)聚阴离子分散体、5g二甲基亚砜、5g聚乙二醇200、0.5g3-缩水甘油氧基三甲氧基甲硅烷(SilquestA-187)、2g木糖醇、0.5gDynol604(Airproduct)在玻璃烧杯中用磁力搅拌器混匀,形成分散体D。

分别将4种规格的芯包含分散体D,然后于120℃下进行烘干并对其性能进行测试。测试结果如表3。表3为4种规格的芯包含分散体D的性能测试表。

表3

由表1-3可知,本发明的铝电解质电容器的电容为219-380μF,DF值为1.4-1.8%,等效串联电阻为5-9mΩ,具有出容容易、损耗低、等效串联电阻低以及漏电低的优点。

综上所述,本发明提供的铝电解质电容器具有出容容易、损耗低、等效串联电阻低以及漏电低的优点。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1