主动式抑制蓝光溢漏的LED结构的制作方法

文档序号:11252789阅读:333来源:国知局
主动式抑制蓝光溢漏的LED结构的制造方法与工艺

本发明是关于一种led结构,特别是关于一种具有光侦测器的主动式抑制蓝光溢漏的led结构。



背景技术:

在生活现代化的同时,人类对地球的破坏也日趋严重。为了地球环保及永续生存的期望,节能光源的使用,开始大量普及,其中尤以电能需求量甚低,而又能提供足够亮度需求的led成长最为快速。

现今使用的led的寿命皆规范为到led发出光线的流明值降至热稳定值的70%时,即表示此led已经不堪使用(业界称为l70)。但在实际使用上,白光led在将要而尚未到达l70时,便会因为发热而造成效率下降,这样的效率下降又会再造成更多热产生,从而导致白光led使用的荧光材料吸收下降,造成大量的蓝光漏出。

另一方面,也由于led的使用量大增,越来越多的研究资料相继揭露了蓝光对人类眼睛结构所具有的强大破坏力,若人们长时间暴露于蓝光的照射之下,甚至极有可能对眼睛造成无法弥补的伤害。

有鉴于此,如何发展出一种简单有效的技术或led结构,可以在白光led大量放热及大量释放出蓝光之前,即将内部的蓝光led关掉,以阻绝蓝光的漏出,避免造成不必要的伤害,又能够因为关掉led,告知了使用者光源需要更换,便成为led产业,甚至整个照明应用产业一个重要的进步,进而能维护眼睛的健康、提升人类整体的生活品质。



技术实现要素:

本发明的目的为提供主动式抑制蓝光溢漏的led结构,其包括:电路基板;至少一个蓝光晶粒;光侦测器;以及波长转换层,其中,电路基板的电路接收光侦测器的侦测信号并据以关闭蓝光晶粒。借由本发明的实施,当led结构到达使用寿命时,主动式抑制蓝光溢漏的led结构可以关闭蓝光晶粒,避免led结构释放出大量蓝光对使用者造成伤害。

本发明的目的及解决其技术问题是采用以下技术方案来实现的。本发明是提供一种主动式抑制蓝光溢漏的led结构,其包括:电路基板,其具有上表面;至少一个蓝光晶粒,固设于上表面并与电路基板电性连接;光侦测器,固设于上表面且电性连接于电路基板,光侦测器侦测蓝光晶粒的背向散射光,并产生侦测信号;以及波长转换层,固设于上表面并包覆蓝 光晶粒及光侦测器;其中,电路基板的电路接收侦测信号并据以关闭蓝光晶粒。

本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。

前述的主动式抑制蓝光溢漏的led结构,其中该波长转换层是荧光粉层、量子点层(quantumdotlayer)或光致发光材料所形成的材料层。

前述的主动式抑制蓝光溢漏的led结构,其中该波长转换层是黄色、红绿混合或橘绿混合的荧光粉层。

前述的主动式抑制蓝光溢漏的led结构,其中该光侦测器是接收自该蓝光晶粒发射并自该波长转换层反射的背向散射光。

前述的主动式抑制蓝光溢漏的led结构,其进一步具有封装透镜,固设于该上表面并包覆该波长转换层、该蓝光晶粒及该光侦测器。

本发明的目的及解决其技术问题还采用以下技术方案来实现。本发明又提供一种主动式抑制蓝光溢漏的led结构,其包括:电路基板,其具有上表面;至少一个蓝光晶粒,固设于上表面并与电路基板电性连接;光侦测器,固设于上表面且电性连接于电路基板,光侦测器侦测蓝光晶粒的背向散射光,并产生侦测信号;以及波长转换层,固设并覆盖于蓝光晶粒的出光面;其中,电路基板的电路接收侦测信号并据以关闭蓝光晶粒。

本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。

前述的主动式抑制蓝光溢漏的led结构,其中该波长转换层是荧光粉层、量子点层(quantumdotlayer)或光致发光材料所形成的材料层。

前述的主动式抑制蓝光溢漏的led结构,其中该波长转换层是黄色、红绿混合或橘绿混合的荧光粉层。

前述的主动式抑制蓝光溢漏的led结构,其中该光侦测器是接收自该蓝光晶粒发射并自该波长转换层反射的背向散射光。

前述的主动式抑制蓝光溢漏的led结构,其进一步具有封装透镜,固设于该上表面并包覆该波长转换层、该蓝光晶粒及该光侦测器。

借由本发明的实施,至少可以达到下列进步功效:

第一、不须复杂制程或制造设备,实施成本低廉。

第二、可以即时关闭蓝光晶粒,避免led结构释放出大量蓝光对使用者造成伤害。

第三、主动告知使用者,led结构已经需要更换,具有智慧型应用的功效。

为使任何熟习相关技艺者了解本发明的技术内容并据以实施,且根据本说明书所揭露的内容、申请专利范围及图式,任何熟习相关技艺者可轻易地理解本发明相关的目的及优点,因此将在实施方式中详细叙述本发明的详细特征以及优点。

附图说明

图1是本发明实施例的一种主动式抑制蓝光溢漏的led结构的剖视示意图。

图2是本发明实施例的另一种主动式抑制蓝光溢漏的led结构的剖视示意图。

图3是图1实施例的主动式抑制蓝光溢漏的led结构进一步具有封装透镜的剖视示意图。

图4是图2实施例的主动式抑制蓝光溢漏的led结构进一步具有封装透镜的剖视示意图。

【主要元件符号说明】

100:主动式抑制蓝光溢漏的led结构

200:主动式抑制蓝光溢漏的led结构

10:电路基板11:上表面

20:蓝光晶粒21:出光面

30:光侦测器40:波长转换层

50:封装透镜

具体实施方式

请参考如图1所示,为实施例的一种主动式抑制蓝光溢漏的led结构100,其包括:电路基板10;至少一个蓝光晶粒20;光侦测器30;以及波长转换层40。

如图1所示,主动式抑制蓝光溢漏的led结构100的电路基板10,是可以为一般frp、陶瓷或软性的电路板所形成,电路基板10并且具有上表面11。

如图1所示,至少一个蓝光晶粒20,固设于电路基板10的上表面11并与电路基板10电性连接。蓝光晶粒20为发出蓝光的led晶粒,可以依照亮度等及或需求决定使用的蓝光晶粒20的数量。

同样如图1所示,光侦测器30,是亦固设于电路基板10的上表面11且电性连接于电路基板10,光侦测器30是用以侦测蓝光晶粒20的背向散射光,并产生控制用的侦测信号。其中,电路基板10上或电路基板10内的至少一组电路,接收光侦测器30产生的侦测信号,并可以据以关闭蓝光晶粒20。

再如图1所示,波长转换层40,则固设于电路基板10的上表面11并包覆蓝光晶粒20及光侦测器30。其中波长转换层40是可以为荧光粉层、量子点层(quantumdotlayer)或是一种光致发光材料所形成的材料层。

再者,波长转换层40也可以为黄色荧光粉层、红绿混合的荧光粉层、或是橘绿混合的荧光粉层。

而光侦测器30所接收的背向散射光,是自蓝光晶粒20发射并由波长转换层40反射而照射至光侦测器30的背向散射光。

如此,借由设置于电路基板10上表面11的光侦测器30,随时侦测白光led光源内蓝光晶粒20的背向散射光,当背向散射光大幅减少而低于一个预设基准时,表示白光led光源正处于使用寿命将至,造成波长转换层40温度大幅升高而减少混光效果,并形成蓝光大幅泄漏,光侦测器30便可以产生侦测信号,主动经由电路基板10的电路关闭白光led光源内的蓝光晶粒20,避免对人们造成不必要的伤害。

接着,请参考如图3所示,主动式抑制蓝光溢漏的led结构100可以进一步具有封装透镜50,固设于电路基板10的上表面11,并且包覆波长转换层40、蓝光晶粒20及光侦测器30。

而前述的波长转换层40或封装透镜50固设于上表面11的方式,可以是简单又节省成本的以胶体固着于电路基板10的上表面11。

接下来,请参考如图2所示,为实施例的另一种主动式抑制蓝光溢漏的led结构200,其包括:电路基板10;至少一个蓝光晶粒20;光侦测器30;以及波长转换层40。

如图2所示,主动式抑制蓝光溢漏的led结构200的波长转换层40,则是仅固设并覆盖于蓝光晶粒20的出光面21。

除此之外,主动式抑制蓝光溢漏的led结构200的电路基板10、蓝光晶粒20、及光侦测器30的结构特征及连结关系,皆与主动式抑制蓝光溢漏的led结构100的电路基板10、蓝光晶粒20、光侦测器30相同,于此不再赘述。

而如图4所示,主动式抑制蓝光溢漏的led结构200亦可以进一步具有封装透镜50,固设于电路基板10的上表面11,并且包覆蓝光晶粒20、光侦测器30及波长转换层40。

如图3及图4所示,封装透镜50的使用,不但可以保护其所包覆的波长转换层40、蓝光晶粒20及光侦测器30,经由选择不同形式或功能的封装透镜50,更可以改变主动式抑制蓝光溢漏的led结构100或主动式抑制蓝光溢漏的led结构200所照射出的光线或光束的形状、焦点、波束大小、或角度。

同样的,主动式抑制蓝光溢漏的led结构200借由设置于电路基板10上表面11的光侦测器30,随时侦测白光led光源内蓝光晶粒20的背向散射光,当背向散射光大幅减少而低于一个预设基准时,表示白光led光源正处于使用寿命将至,造成波长转换层40温度大幅升高而减少混光效果, 并形成蓝光大幅泄漏,光侦测器30便可以产生侦测信号,主动经由电路基板10的电路关闭白光led光源内的蓝光晶粒20,避免对人们造成不必要的伤害。

以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1