物体处理装置、曝光装置及曝光方法、以及元件制造方法与流程

文档序号:13109575阅读:191来源:国知局
本专利申请是申请日为2010年8月17日、申请号为201080036901.6、发明名称为“物体处理装置、曝光装置及曝光方法、以及元件制造方法”的中国专利申请的分案申请。技术领域本发明是关于一种物体处理装置、曝光装置及曝光方法、以及元件制造方法,更详言之,是对平板状物体进行既定的处理的物体处理装置、以能量束使前述物体曝光的曝光装置及曝光方法、以及使用前述物体处理装置、前述曝光装置及前述曝光方法的任一者的元件制造方法。

背景技术:
以往,在制造液晶显示元件、半导体元件(集成电路等)等电子元件(微型元件)的光刻过程中,主要使用步进重复方式的投影曝光装置(所谓步进机)、或步进扫描方式的投影曝光装置(所谓扫描步进机(亦称扫描器))等。在此种曝光装置中,作为曝光对象物而于表面涂布有感光剂的玻璃板或晶圆等基板(以下总称为基板)载置于基板载台装置上。之后,通过对形成有电路图案的掩膜(或标线片)照射曝光用光,且将经由该掩膜的曝光用光经由投影透镜等光学系统照射于基板,以将电路图案转印至基板上(参照例如专利文献1(及对应的专利文献2))。近年来,曝光装置的曝光对象物即基板、特别是液晶显示元件用的基板(矩形玻璃基板)的尺寸例如为一边三米以上等,有大型化的倾向,于是,曝光装置的载台装置尺寸亦大型化,其重量亦增大。因此,被期望开发出一种载台装置,是能将曝光对象物(基板)高速且高精度地导引,进而可谋求小型化、轻量化的简单构成。引文列表专利文献[专利文献1]PCT国际公开第2008/129762号[专利文献2]美国发明专利申请公开第2010/0018950号说明书

技术实现要素:
根据本发明的第1态样,是提供一种物体处理装置,是对平板状物体进行既定处理,该平板状物体是沿包含彼此正交的第1及第2轴的既定二维平面配置,该物体处理装置具备:执行装置,是对前述物体一面侧的一部分区域执行既定动作;调整装置,具有从前述物体下方以非接触状态保持前述物体中包含前述部分区域的部分的保持面,调整前述部分在与前述二维平面交叉的方向的位置;以及非接触支承装置,是使支承面对向于前述物体的被前述调整装置保持的部分以外的其他区域,以从下方以非接触方式支承前述物体。根据上述,平板状物体是被非接触支承装置从下方以非接触方式支承。又,通过执行装置对物体的一部分进行既定动作,并且被进行该既定动作的部分是特别被调整装置从下方以非接触方式保持,而调整该部分在与二维平面交叉的方向的位置。因此,能精度良好地对物体进行既定处理。又,调整装置由于仅精确调整物体中被进行既定动作的部分,因此与调整物体整体在与二维平面交叉的方向的位置的情形相较,能使装置构成简单化。根据本发明的第2态样,是提供一种曝光装置,是照射能量束使物体曝光据以将既定图案形成于前述物体上,其具备:定点载台,其包含从前述物体下方以非接触状态保持前述物体的包含被照射前述能量束的一部分区域的部分的构件,以调整前述部分在与前述二维平面交叉的方向的位置,该物体是沿包含彼此正交的第1及第2轴的既定二维平面配置;以及非接触支承装置,是使支承面对向于前述物体的被前述保持面保持的部分以外的其他区域,以从下方以非接触方式支承前述物体。根据上述,平板状物体是被非接触支承装置从下方以非接触方式支承。又,物体中包含被照射前述能量束的一部分区域的部分特别被定点载台从下方以非接触方式保持,而调整该部分在与二维平面交叉的方向的位置。因此,能精度良好地使物体曝光。又,由于定点载台仅精确调整物体中被照射能量束的部分,因此与调整物体整体在与二维平面交叉的方向的位置的情形相较,能使装置构成简单化。根据本发明的第3态样,是提供一种元件制造方法,其包含:使用本发明的物体处理装置或曝光装置使前述物体曝光的动作;以及使前述已曝光的物体显影的动作。此处,通过使用平面面板显示器用的基板作为物体,而提供一种制造平面面板显示器作为元件的制造方法。根据本发明的第4态样,是提供一种曝光方法,是照射能量束使物体曝光据以将既定图案形成于前述物体上,其包含:通过在二维平面内的位置为固定的保持构件,从前述物体下方以非接触状态保持前述物体的包含被照射前述能量束的一部分区域的部分,以调整前述部分在与二维平面交叉的方向的位置的动作,该物体是沿包含彼此正交的第1及第2轴的既定二维平面配置;以及使一支承构件的支承面对向于前述物体的被前述保持构件保持的部分以外的其他区域,以从下方以非接触方式支承前述物体的动作。根据上述,物体是被支承构件从下方以非接触方式支承。又,物体中包含被照射能量束的一部分区域的部分是特别被二维平面内的位置为固定的保持构件从下方以非接触方式保持,而调整该部分在与二维平面交叉的方向的位置。因此,能精度良好地使物体曝光。又,保持构件仅精确调整物体中被照射能量束的部分。根据本发明的第5态样,是提供一种元件制造方法,其包含:使用本发明的曝光方法使前述物体曝光的动作;以及使前述已曝光的物体显影的动作。附图说明图1是显示第1实施形态的液晶曝光装置的概略构成的图。图2是图1的液晶曝光装置所具有的基板载台装置的俯视图。图3是图2的A-A线剖面图。图4是图2的基板载台装置所具有的定点载台的剖面图。图5(A)是放大显示图2的基板载台装置所具有的基板保持框的一部分的俯视图,图5(B)是图5(A)的B-B线剖面图。图6(A)~图6(C)是用以说明对基板进行曝光处理时的基板载台装置的动作的图。图7(A)是第2实施形态相关的基板载台装置的俯视图,图7(B)是图7(A)的C-C线剖面图。图8是第3实施形态相关的基板载台装置的俯视图。图9是第4实施形态相关的基板载台装置的俯视图。图10是图9的D-D线剖面图。图11是第5实施形态相关的基板载台装置的俯视图。图12是图11的E-E线剖面图。图13是第6实施形态相关的基板载台装置的俯视图。图14是第7实施形态相关的基板载台装置的俯视图。图15是从+X侧观看图14的基板载台装置的侧视图。图16是第8实施形态相关的基板载台装置的俯视图。图17是显示第9实施形态相关的基板检查装置的概略构成的图。具体实施方式第1实施形态以下,根据图1~图6(C)说明本发明的第1实施形态。图1是显示第1实施形态相关的平面面板显示器、例如液晶显示装置(液晶面板)等的制造的液晶曝光装置10的概略构成。液晶曝光装置10是以用于液晶显示装置的显示面板的矩形玻璃基板P(以下简称为基板P)为曝光对象物的步进扫描方式的投影曝光装置、亦即所谓扫描器。液晶曝光装置10如图1所示,具备照明系统IOP、保持掩膜M的掩膜载台MST、投影光学系统PL、搭载有上述掩膜载台MST及投影光学系统PL等的机体BD、保持基板P的基板载台装置PST、以及此等的控制系统等。以下的说明中,将在曝光时掩膜M与基板P相对投影光学系统PL分别相对扫描的方向设为X轴方向、将在水平面内与X轴方向正交的方向设为Y轴方向、将与X轴及Y轴正交的方向设为Z轴方向,且将绕X轴、Y轴、及Z轴的旋转(倾斜)方向分别设为θx、θy、及θz方向。照明系统IOP与例如美国发明专利第6,552,775号说明书等所揭示的照明系统为类似构成。亦即,照明系统IOP是将从未图示的光源(例如水银灯)射出的光分别经由未图示的反射镜、分色镜、快门、波长选择过滤器、各种透镜等,作为曝光用照明光(照明光)IL照射于掩膜M。照明光IL是使用例如i线(波长365nm)、g线(波长436nm)、h线(波长405nm)等的光(或者上述i线、g线、h线的合成光)。又,照明光IL的波长可通过波长选择过滤器,依照例如被要求的解析度适当进行切换。于掩膜载台MST上,例如通过真空吸附(或静电吸附)固定有掩膜M,该掩膜M是于其图案面(图1的下面)形成有电路图案等。掩膜载台MST可通过例如未图示的空气轴承以非接触方式悬浮支承于固定于后述机体BD的一部分即镜筒定盘31上面的一对掩膜载台导件35上。掩膜载台MST能通过包含例如线性马达的掩膜载台驱动系统(未图示)在一对掩膜载台导件35上以既定行程被驱动于扫描方向(X轴方向),且分别适当微幅被驱动于Y轴方向及θz方向。掩膜载台MST在XY平面内的位置信息(包含θz方向的旋转信息),是通过包含未图示的激光干涉仪的掩膜干涉仪系统予以测量。投影光学系统PL是在图1的掩膜载台MST下方支承于镜筒定盘31。本实施形态的投影光学系统PL具有与例如美国发明专利第6,552,775号说明书所揭示的投影光学系统类似的构成。亦即,投影光学系统PL包含掩膜M的图案像的既定形状、例如梯形的投影区域配置成交错格子状的多个投影光学系统(多透镜投影光学系统),是发挥与具有以Y轴方向为长边方向的长方形的单一像场的投影光学系统同等的功能。本实施形态中的多个投影光学系统均使用例如以两侧远心的等倍系统形成正立正像者。又,以下将投影光学系统PL的配置成交错格子状的多个投影区域总称为曝光区域IA(参照图2)。因此,在以来自照明系统IOP的照明光IL照明掩膜M上的照明区域后,通过通过投影光学系统PL的第1面(物体面)与图案面大致配置成一致的掩膜M的照明光IL,使该照明区域内的掩膜M的电路图案的投影像(部分正立像)经由投影光学系统PL形成于照明光IL的照射区域(曝光区域IA);该区域IA是与配置于投影光学系统PL的第2面(像面)侧、表面涂布有光刻胶(感应剂)的基板P上的照明区域共轭。接着,通过掩膜载台MST与基板载台装置PST的同步驱动,使掩膜M相对照明区域(照明光IL)移动于扫描方向(X轴方向),且使基板P相对曝光区域IA(照明光IL)移动于扫描方向(X轴方向),藉此进行基板P上的一个照射区域(区划区域)的扫描曝光,以将掩膜M的图案(掩膜图案)转印于该照射区域。亦即,本实施形态中,是通过照明系统IOP及投影光学系统PL将掩膜M的图案生成于基板P上,并且通过照明光IL对基板P上的感应层(光刻胶层)的曝光将该图案形成于基板P上。机体BD是例如美国发明专利申请公开第2008/0030702号说明书等所揭示,具有前述镜筒定盘31与在地面F上自下方分别支承镜筒定盘31的+Y侧、-Y侧端部的一对支承壁32。一对支承壁32分别通过包含例如空气弹簧的防振台34支承于地面F上,机体BD是与地面F在振动上分离。又,于一对支承壁32彼此间架设有与Y轴平行延伸设置的剖面矩形(参照图3)的构件所构成的Y柱33。于Y柱33下面与后述定盘12的上面之间形成有既定的空隙。亦即,Y柱33与定盘12彼此为非接触,在振动上彼此分离。基板载台装置PST具备:设置于地面F上的定盘12、在紧邻曝光区域IA(参照图2)下方以非接触方式从下方支承基板P的定点载台40(参照图2)、设置于定盘12上的多个空气悬浮单元50、保持基板P的基板保持框60、将基板保持框60驱动于X轴方向及Y轴方向(沿XY平面)的驱动单元70。如图2所示,定盘12是由在俯视下(从+Z侧观看)以X轴方向为长边方向的矩形板状构件构成。定点载台40配置于较定盘12上的中央略往-X侧的位置。又,如图4所示,定点载台40具备搭载于Y柱33上的重量抵销器42、支承于重量抵销器42的夹具构件(空气夹具单元)80、用以将空气夹具单元80驱动于与XY平面交叉的方向的致动器(例如多个Z音圈马达(以下简称为Z-VCM))等。重量抵销器42具备例如固定于Y柱33的盒体43、收容于盒体43内最下部的空气弹簧44、支承于空气弹簧44的Z滑件45。盒体43由+Z侧开口的有底的筒状的构件构成。空气弹簧44具有通过橡胶是材料形成的中空构件所构成的伸缩囊44a、配置于伸缩囊44a上方(+Z侧)及下方(-Z侧)的与XY平面平行的一对板体44b(例如金属板)。伸缩囊44a内部是通过从未图示的气体供应装置被供应气体,而成为气压较外部高的正压空间。重量抵销器42以空气弹簧44所产生的向上(+Z方向)的力抵销基板P、空气夹具单元80、Z滑件45等的重量(因重力加速度而产生的向下的(-Z方向)的力),藉以减低对多个Z-VCM的负荷。Z滑件45是由下端部固定于板体44b(配置于空气弹簧44的+Z侧)的与Z轴平行延伸设置的柱状构件构成。Z滑件45经由多个平行板弹簧46连接于盒体43的内壁面。平行板弹簧46具有在上下方向分离配置的与XY平面平行的一对板弹簧。平行板弹簧46是在Z滑件45的+X侧、-X侧、+Y侧、-Y侧的例如共计四处连接Z滑件45与盒体43(在Z滑件45的+Y侧及-Y侧的平行板弹簧46的图示省略)。Z滑件45相对于盒体43的在与XY平面平行的方向的移动是被各平行板弹簧46的刚性(拉伸刚性)限制,但相对于此,在Z轴方向可通过各平行板弹簧46的可挠性,在Z轴方向相对盒体43以微幅行程移动。因此,Z滑件45通过伸缩囊44a内的气体压力被调整,而相对Y柱33上下移动。此外,作为产生用以抵销基板P重量的向上的力的构件并不限于上述空气弹簧(伸缩囊),亦可是例如气缸、线圈弹簧等。又,亦可使用例如轴承面与Z滑件的侧面对向的非接触推力轴承(例如空气轴承等气体静压轴承)等来作为限制Z滑件在XY平面内的位置的构件(参照PCT国际公开第2008/129762号(对应美国发明专利申请公开第2010/0018950号说明书))。空气夹具单元80是包含从基板P下面侧以非接触方式吸附保持基板P的与曝光区域IA对应的部位(被曝光部位)的夹具本体81、以及从下方支承夹具本体81的底座82。夹具本体81的上面(+Z侧的面)是具有在俯视下以Y轴方向为长边方向的长方形(参照图2),其中心与曝光区域IA的中心大致一致。又,夹具本体81上面的面积设定成较曝光区域IA更广,特别是在扫描方向即X轴方向的尺寸设定成较曝光区域IA在X轴方向的尺寸更长。夹具本体81于其上面具有未图示的多个气体喷出孔,通过将从未图示的气体供应装置供应的气体、例如高压空气朝向基板P下面喷出,而将基板P悬浮支承。进而,夹具本体81于其上面具有未图示的多个气体吸引孔。于夹具本体81连接有未图示的气体吸引装置(真空装置),该气体吸引装置是经由夹具本体81的气体吸引孔吸引夹具本体81上面与基板P下面间的气体,并在夹具本体81与基板P之间产生负压。空气夹具单元80通过从夹具本体81喷出至基板P下面的气体的压力、以及吸引在夹具本体81与基板P下面之间的气体时产生的负压的平衡,以非接触方式吸附保持基板P。如此,空气夹具单元80对基板P施加所谓预负荷,因此能提高形成于夹具本体81与基板P间的气体(空气)膜的刚性,即使假设于基板P产生扭曲或翘曲,亦能将基板P中位于紧邻投影光学系统PL下方的被曝光部位确实地沿夹具本体81的保持面加以矫正。但空气夹具单元80由于并不限制基板P在该XY平面内的位置,因此即使基板P是被空气夹具单元80吸附保持的状态,亦可相对照明光IL(参照图1)分别移动于X轴方向(扫描方向)及Y轴方向(步进方向)。此处,如图5(B)所示,本实施形态中,是将从夹具本体81上面喷出的气体的流量或压力及气体吸引装置所吸引的气体的流量或压力,设定成使得夹具本体81的上面(基板保持面)与基板P下面间的距离Da(空隙)成为例如0.02mm程度。此外,气体喷出孔及气体吸引孔可为通过机械加工而形成者,亦可以多孔质材料形成夹具本体81并使用其孔部作为气体喷出孔及气体吸引孔。此种空气夹具单元(真空预负荷空气轴承)的构成、功能的详细内容揭示于例如PCT国际公开第2008/121561号等。返回图4,于底座82的下面中央固定有具半球面状轴承面的气体静压轴承、例如球面空气轴承83。球面空气轴承83嵌合于在Z滑件45的+Z侧端面(上面)形成的半球状凹部45a。藉此,空气夹具单元80于Z滑件45被支承成可相对XY平面摆动自如(于θx及θy方向旋转自如)。此外,作为将空气夹具单元80支承成相对XY平面摆动自如的构造,可是例如PCT国际公开第2008/129762(对应美国发明专利申请公开第2010/0018950号说明书)所揭示的使用了多个空气垫(空气轴承)的拟似球面轴承构造,亦可使用弹性铰链装置。多个本实施形态中为四个的Z-VCM分别于重量抵销器42的+X侧、-X侧、+Y侧、-Y侧各设有一个(-Y侧的Z-VCM参照图3,+Y侧的Z-VCM的图示则省略)。四个Z-VCM虽其设置位置不同但具有相同构成及功能。四个Z-VCM均包含固定在设于定盘12上的底座框85的Z固定件47与固定于空气夹具单元80的底座82的Z可动件48。底座框85包含俯视下形成为圆环状的板状构件所构成的本体部85a与在定盘12上自下方支承本体部85a的多个脚部85b。本体部85a配置于Y柱33上方,并且于形成于其中央部的开口部内插入有重量抵销器42。因此,本体部85a与Y柱33及重量抵销器42分别为非接触的。多支(三支以上)脚部85b分别由与Z轴平行延伸设置的构件构成,脚部85b的+Z侧端部连接于本体部85a,-Z侧端部固定于定盘12。多支脚部85b分别插入于在Y柱中与多支脚部85b分别对应而形成的贯通于Z轴方向的多个贯通孔33a,并且多支脚部85b与Y柱33为非接触的。Z可动件48是由剖面倒U字形的构件构成,于一对对向面分别具有包含磁石的磁石单元49。另一方面,Z固定件47具有包含线圈的线圈单元(图示省略),该线圈单元插入于一对磁石单元49间。供应至Z固定件47的线圈的电流的大小、方向等受到未图示的主控制装置控制,在对线圈单元的线圈供应电流后,通过因线圈单元与磁石单元的电磁相互作用而产生的电磁力(劳伦兹力),将Z可动件48(亦即空气夹具单元80)相对Z固定件47(亦即底座框85)驱动于Z轴方向。未图示的主控制装置是通过同步控制四个Z-VCM,将空气夹具单元80驱动于Z轴方向(使其上下移动)。又,主控制装置是通过适当控制分别对四个Z固定件47所具有的线圈供应的电流大小、方向等,而使空气夹具单元80相对XY平面摆动于任意方向(驱动于θx方向、θy方向)。定点载台40是藉此动作来调整基板P的被曝光部位在Z轴方向的位置、以及在θx、θy方向的位置的至少一个位置。此外,本实施形态的X轴VCM、Y轴VCM、以及Z轴VCM虽均是可动件具有磁石单元的动磁式音圈马达,但并不欲限于此,亦可以是可动件具有线圈单元的动圈式音圈马达。又,驱动方式亦可以是劳伦兹力驱动方式以外的驱动方式。此处,由于四个Z-VCM各自的Z固定件47搭载于底座框85上,因此使用四个Z-VCM将空气夹具单元80驱动于Z轴方向、或θx方向、θy方向时作用于Z固定件47的驱动力的反作用力不会传达至Y柱33。因此,即使使用Z-VCM驱动空气夹具单元80,亦不会对重量抵销器42的动作有任何影响。又,由于驱动力的反作用力亦不会传达至具有Y柱33的机体BD,因此即使使用Z-VCM驱动空气夹具单元80,其驱动力的反作用力亦不会影响投影光学系统PL等。此外,由于Z-VCM只要能使空气夹具单元80沿Z轴方向上下移动及使其相对XY平面摆动于任意的方向即可,因此只要设于例如不在同一直线上的三处,三个Z-VCM38亦可。被Z-VCM驱动的空气夹具单元80的位置信息是使用多个、在本实施形态中例如四个Z感测器86加以求出。Z感测器86是与四个Z-VCM对应地于重量抵销器42的+X侧、-X侧、+Y侧、-Y侧分别各设有一个(+Y侧、-Y侧的Z感测器的图示省略)。藉此,本实施形态中,通过使被Z-VCM驱动的被驱动物(此处指空气夹具单元80)上的Z-VCM的驱动点(驱动力的作用点)与Z感测器86的测量点彼此接近,提高测量点与驱动点之间的被驱动物的刚性,以提高Z感测器86的可控制性。亦即,由Z感测器86输出与被驱动物的驱动距离对应的正确的测量值,以谋求定位时间的缩短。若从提高可控制性的观点来看,最好是Z感测器86的取样周期亦较短。四个Z感测器86均为实质相同的感测器。Z感测器86是与固定于空气夹具单元80的底座82下面的目标物87一起构成求出以Y柱33为基准的空气夹具单元80在Z轴方向的位置信息的例如电容式(或涡电流式)位置感测器。未图示的主控制装置是根据四个Z感测器86的输出持续求出空气夹具单元80在Z轴方向及θx、θy各方向的位置信息,并根据其测量值适当控制四个Z-VCM,藉此控制空气夹具单元80上面的位置。此处,空气夹具单元80的最终位置是控制成通过接近空气夹具单元80上空的基板P的曝光面(例如作为上面的光刻胶表面)持续与投影光学系统PL的焦点位置实质上一致(亦即是在投影光学系统PL的焦深内)。未图示的主控制装置是一边通过未图示的面位置测量系统(自动聚焦装置)监测基板P上面的位置(面位置),一边使用可控制性高的Z感测器86的位置信息来驱动并且控制空气夹具单元80以使该基板P的上面持续位于投影光学系统PL的焦深内(使投影光学系统PL持续与基板P的上面对焦)。此处的面位置测量系统(自动聚焦装置)具有在曝光区域IA内Y轴方向的位置为不同的多个测量点。例如,于各投影区域内配置有至少一个测量点。此情形下,该多个测量点是依据多个投影区域的交错格子状配置在X轴方向分开的两列。是以,可根据该多个测量点的测量值(面位置)求出曝光区域IA部分的基板P表面的Z位置,进而可求出基板P的纵摇量(θy旋转)及横摇量(θx旋转)。又,面位置测量系统亦可与该多个测量点分别地、或进一步地于曝光区域IA的Y轴方向(非扫描方向)外侧具有测量点。此时,通过使用包含该外侧的测量点的位于Y轴方向最外侧的两个测量点的测量值,而能更正确地求出横摇量(θx旋转)。又,面位置测量系统亦可于曝光区域IA外侧于X轴方向(扫描方向)稍微分离的位置具有其他测量点。此情形下,可进行基板P的聚焦/调平的所谓的先读取控制。除此之外,面位置测量系统亦可取代在各投影区域内至少配置有一个的多个测量点或进一步地在自曝光区域IA往X轴方向(扫描方向)分离的位置具有排列于Y轴方向的多个测量点(其配置区域与曝光区域IA在Y轴方向的位置对应)。此情形下,可在曝光开始前,例如对准测量时,进行事前取得基板P的面位置分布的焦点制图。在曝光时,使用以该焦点制图取得的信息进行基板P的聚焦/调平控制。关于基板的焦点制图及使用焦点制图信息的曝光时的基板的聚焦调平控制,已详细揭示于例如美国发明专利申请公开第2008/0088843号说明书等。此外,Z感测器只要能求出空气夹具单元80在Z轴方向及θx、θy各方向的位置信息即可,因此只要设于例如不在同一直线上的三处,三个Z感测器亦可。多个空气悬浮单元50(本实施形态中例如为三十四台)是通过从下方以非接触方式将基板P(在此例中,是前述定点载台40所保持的基板P的被曝光部位以外的区域)支承成基板P维持与水平面大致平行,藉此防止来自外部的振动传达至基板P,或防止基板P因其自身重量而变形(弯曲)及裂开,或抑制因基板P的自身重量而往Z轴方向弯曲所导致产生的基板P在X及Y各方向的尺寸误差(或XY平面内的位置偏移)的产生。多个空气悬浮单元50,除了其配置位置不同以外,为实质相同的空气悬浮单元。本实施形态中,如图2所示于定点载台40的+Y侧及-Y侧配置例如各一台空气悬浮单元50,并且于定点载台40的+X侧及-X侧,沿Y轴方向等间隔排列的例如八台空气悬浮单元50所构成的空气悬浮单元列,是沿X轴方向相隔既定间隔配置有各两列。亦即,多个空气悬浮单元50配置成包围定点载台40周围。以下,为了使说明方便,将四列空气悬浮单元列自-X侧依序称为第1~第4列,且将构成各空气悬浮单元列的八台空气悬浮单元自-Y侧依序称为第1~第8台。各空气悬浮单元50,如图3所示,例如包含对基板P下面喷出气体(例如空气)的本体部51、从下方支承本体部51的支承部52、以及在定盘12上自下方支承支承部52的一对脚部53。本体部51由长方体状构件构成,于其上面(+Z侧的面)具有多个气体喷出孔。本体部51是通过朝向基板P下面喷出气体(空气)而悬浮支承基板P,在基板P沿XY平面移动时导引其移动。多个空气悬浮单元50各自的上面是位于同一XY平面上。此外,可构成为空气悬浮单元自设于外部的未图示气体供应装置被供应气体,空气悬浮单元本身亦可具有例如风扇等送风装置。本实施形态中,如图5(B)所示,是将从本体部51喷出的气体压力及流量,设定成本体部51的上面(空气喷出面)与基板P下面间的距离Db(空隙)成为例如0.8mm左右。此外,气体喷出孔可通过机械加工而形成,或亦可将本体部以多孔质材料形成,并使用其孔部作为气体喷出孔。支承部52是由俯视为长方形的板状构件构成,其下面支承于一对脚部53。此外,分别配置于定点载台40的+Y侧、-Y侧的一对(两台)空气悬浮单元50的脚部构成为不接触于Y柱33(例如脚部形成为倒U字形,横跨Y柱33而配置)。此外,多个空气悬浮单元的数量及其配置不限于上述说明所例示者,亦可因应例如基板P的大小、形状、重量、可移动范围、或空气悬浮单元的能力等来适当变更。又,各空气悬浮单元的支承面(气体喷出面)的形状、相邻的空气悬浮单元间之间隔等亦无特别限定。扼要言之,空气悬浮单元只要配置成能涵盖基板P的整体可移动范围(或略广于可移动范围的区域)即可。基板保持框60如图2所示,具有在俯视下以X轴方向为长边方向的矩形外形形状(轮廓),形成为于中央部具有贯通于Z轴方向的俯视呈矩形的开口部的厚度方向尺寸较小(薄)框状。基板保持框60在Y轴方向相隔既定间隔具有一对以X轴方向为长边方向的与XY平面平行的平板状构件即X框构件61x,并且该对X框构件61x在+X侧、-X侧端部分别通过以Y轴方向为长边方向的与XY平面平行的平板状构件即Y框构件61y连接。从刚性的确保及轻量化的观点来看一对X框构件61x及一对Y框构件61y,均通过例如GFRP(GlassFiberReinforcedPlastics,玻璃纤维强化塑胶)等纤维强化合成树脂材料或陶瓷等形成较佳。于-Y侧的X框构件61x上面固定有于-Y侧的面具有与Y轴正交的反射面的Y移动镜62y。又,于-X侧的Y框构件61y上面固定有于-X侧的面具有与X轴正交的反射面的X移动镜62x。基板保持框60(亦即基板P)在XY平面内的位置信息(包含θz方向的旋转信息),是通过包含对X移动镜62x的反射面照射测距光束的多台(例如两台)的X激光干涉仪63x及对Y移动镜62y的反射面照射测距光束的多台(例如两台)的Y激光干涉仪63y的激光干涉仪系统,以例如0.25nm程度的解析能力持续检测。X激光干涉仪63x、Y激光干涉仪63y分别通过既定的固定构件64x,64y固定于机体BD(图3中未图示,参照图1)。此外,X激光干涉仪63x、Y激光干涉仪63y,其台数及间隔是被设定成分别在基板保持框60的可移动范围内来自至少一个干涉仪的测距光束可照射于对应的移动镜。是以,各干涉仪的台数并不限定于两台,可视基板保持框的移动行程而是例如仅一台或三台以上。又,在使用多个测距光束时,可设置多个光学系统,并且光源或控制单元亦可在多个测距光束间共用。基板保持框60具有从下方真空吸附保持基板P端部(外周缘部)的多个例如四个保持单元65。四个保持单元65是在一对X框构件61x各自彼此对向的对向面在X轴方向分离安装有各两个。此外,保持单元的数目及配置并不限于此,亦可按照基板大小、易弯曲程度等来适当追加额外的保持单元。又,保持单元65亦可安装于Y框构件。由图5(A)及图5(B)可知,保持单元65具有形成为YZ剖面L字形的臂部66。于臂部66的基板载置面,设有用以通过例如真空吸附来吸附基板P的吸附垫67。又,于臂部66的上端部设有接头构件68,该接头构件68连接至管(图示省略)的一端,管的另一端连接于未图示的真空装置。吸附垫67与接头构件68是经由设于臂部66内部的配管构件而彼此连通。于臂部66与X框构件61x的彼此对向的对向面,分别形成有突出成凸状的凸状部69a,在该彼此对向的一对凸状部69a之间,通过多个螺栓69b架设有在Z轴方向分离的一对与XY平面平行的板弹簧69。亦即,臂部66与X框构件61x是通过平行板弹簧而连接。是以,臂部66相对X框构件61x在X轴方向及Y轴方向通过板弹簧69的刚性而限制其位置,相对于此,在Z轴方向(垂直方向)上则能通过板弹簧69的弹性以不旋转于θx方向的方式位移(上下移动)于Z轴方向。此处,臂部66的下端面(-Z侧端面)是较一对X框构件61x及一对Y框构件61y各自的下端面(-Z侧端面)更往-Z侧突出。其中,臂部66的基板载置面的厚度T,设定为较空气悬浮单元50的气体喷出面与基板P的下面间的距离Dp(本实施形态中例如为0.8mm左右)薄(例如设定为0.5mm左右)。因此,在臂部66的基板载置面的下面与多个空气悬浮单元50的上面之间形成有例如0.3mm左右的空隙,在基板保持框60与XY平面平行移动于多个空气悬浮单元50上时,臂部66与空气悬浮单元50彼此不接触。此外,如图6(A)~图6(C)所示,在基板P的曝光动作中,臂部66由于不通过定点载台40的上方,因此臂部66与空气夹具单元80亦不会彼此接触。此外,臂部66的基板载置面部是如上述厚度较薄,因此在Z轴方向的刚性较低,但由于能扩大抵接于基板P的部分(与XY平面平行的平面部)的面积,因此能使吸附垫大型化,提升基板的吸附力。又,能确保臂部本体在与XY平面平行的方向的刚性。驱动单元70如图3所示,具有固定于定盘12上的X导件71、搭载于X导件71且可在X导件71上移动于X轴方向的X可动部72、搭载于X可动部72的Y导件73、以及搭载于Y导件73且可在Y导件73上移动于Y轴方向的Y可动部74。如图2所示,基板保持框60的+X侧的Y框构件61y固定于Y可动部74。X导件71如图2所示,配置于定点载台40的-X侧且是在分别构成第三及第四列的空气悬浮单元列的第四台空气悬浮单元50与第五台空气悬浮单元50之间。又,X导件71较第4列的空气悬浮单元列更往+X侧延伸。此外,图3中为避免图式过于复杂,省略空气悬浮单元50的图示的一部分。X导件71具有以X轴方向为长边方向的与XZ平面平行的板状构件所构成的本体部71a、以及在定盘12上支承本体部71a的多个例如三个支承台71b(参照图1)。本体部71a的Z轴方向的位置设定成其上面位于多个空气悬浮单元50各自的支承部52下方。于本体部71a的+Y侧侧面、-Y侧侧面、以及上面(+Z侧的面)如图1所示分别固定有与X轴平行延伸设置的X线性导件75。又,在本体部71a的+Y侧、-Y侧各自的侧面固定有磁石单元76,该磁石单元76包含沿X轴方向排列的多个磁石(参照图3)。X可动部72如图1所示,由YZ剖面为倒U字形的构件构成,前述X导件71插入于该构件的一对对向面间。于X可动部72的内侧面(顶面及彼此对向的一对对向面)分别固定有形成为剖面U字形的滑件77。滑件77具有未图示的滚动体(例如球体、滚子等),以相对X线性导件75可滑动的状态卡合(嵌合)于X线性导件75。又,于X可动部72的一对对向面分别固定有与固定在X导件71的磁石单元76对向的包含线圈的线圈单元78。一对线圈单元78是构成通过与一对磁石单元76的电磁相互作用将X可动部72在X导件71上驱动于X轴方向的电磁力驱动方式的X线性马达。供应至线圈单元78的线圈的电流大小、方向是受未图示的主控制装置控制。X可动部72在X轴方向的位置信息是通过未图示的线性编码器系统或光干涉仪系统高精度地测量。于X可动部72的上面固定有与Z轴平行的轴79的一端(下端)。轴79如图1所示,是通过构成第四列的空气悬浮单元列的第四台与第五台空气悬浮单元50之间而较各空气悬浮单元50上面(气体喷出面)更往+Z侧延伸。轴79的另一端(上端)固定于Y导件73的下面中央(参照图3)。因此,Y导件73配置于空气悬浮单元50上面的上方。Y导件73是由以Y轴方向为长边方向的板状构件构成,于其内部具有未图示的磁石单元,该磁石单元包含沿Y轴方向排列的多个磁石。此处,由于Y导件73配置于多个空气悬浮单元50上方,因此其下面是被空气悬浮单元50所喷出的空气支承,藉此,可防止Y导件73因例如其Y轴方向两端部的自身重量而下垂。因此,不需确保用以防止上述下垂的刚性,可谋求Y导件73的轻量化。Y可动部74如图3所示,是由在内部具有空间的高度方向尺寸较小(薄)的箱形构件构成,于其下面形成有容许轴79通过的开口部,又,Y可动部74于+Y侧及-Y侧侧面亦具有开口部,Y导件73经由该开口部插入于Y可动部74内。又,Y可动部74,在对向于Y导件73的对向面具有未图示的非接触推力轴承、例如空气轴承,并且可以非接触状态在Y导件73上移动于Y轴方向。由于保持基板P的基板保持框60固定于Y可动部74,因此对前述定点载台40及多个空气悬浮单元50分别为非接触状态。再者,Y可动部74于其内部具有包含线圈的线圈单元(图示省略)。该线圈单元是构成通过与Y导件73所具有的磁石单元的电磁相互作用将Y可动部74在Y导件73上驱动于Y轴方向的电磁力驱动方式的Y线性马达。供应至线圈单元的线圈的电流大小、方向是受未图示的主控制装置控制。Y可动部74在Y轴方向的位置信息是通过未图示的线性编码器系统或光干涉仪系统高精度地测量。此外,上述X线性马达、Y线性马达可以是动磁式及动圈式的任一者,其驱动方式亦不限于劳伦兹力驱动方式,亦可以是可变磁阻驱动方式等其他方式。又,作为将上述X可动部驱动于X轴方向的驱动装置、以及将上述Y可动部驱动于Y轴方向的驱动装置,可视例如被要求的基板的定位精度、产能、基板的移动行程等,使用例如包含滚珠螺杆或齿条与小齿轮等的单轴驱动装置,亦可使用采用例如金属线或皮带等牵引X可动部、Y可动部而将的分别驱动于X轴方向、Y轴方向的装置。除此之外,液晶曝光装置10亦具有用以测量位于紧邻投影光学系统PL下方的基板P表面(上面)的面位置信息(Z轴、θx、θy的各方向的位置信息)的面位置测量系统(图示省略)。可使用例如美国发明专利第5,448,332号说明书等所揭示的斜入射方式者作为面位置测量系统。如上述构成的液晶曝光装置10(参照图1),是在未图示的主控制装置的控制下,通过未图示的掩膜装载器将掩膜M装载于掩膜载台MST,以及通过未图示的基板装载器将基板P装载于基板载台装置PST。其后,通过主控制装置使用未图示的对准检测系统进行对准测量,在对准测量结束后,即进行步进扫描方式的曝光动作。图6(A)~图6(C)是显示上述曝光动作时的基板载台装置PST的动作的一例。此外,以下是说明分别于基板P的+Y侧、-Y侧区域各设定一个以X轴方向为长边方向的矩形照射区域、即所谓单一基板双显示器的情形。如图6(A)所示,曝光动作是从基板P的-Y侧且-X侧的区域朝向基板P的-Y侧且+X侧的区域进行。此时,通过驱动单元70的X可动部72(参照图1等)在X导件71上被驱动往-X方向,而将基板P相对曝光区域IA往-X方向(参照图6(A)的黑箭头)驱动,而对基板P的-Y侧区域进行扫描动作(曝光动作)。其次,基板载台装置PST是如图6(B)所示,通过驱动单元70的Y可动部74在Y导件73上被驱动往-Y方向(参照图6(B)的白箭头),以进行步进动作。此后,如图6(C)所示,通过驱动单元70的X可动部72(参照图1等)在X导件71上被往+X方向驱动,而将基板P相对曝光区域IA往+X方向(参照图6(C)的黑箭头)驱动,而对基板P的+Y侧区域进行扫描动作(曝光动作)。主控制装置在进行如图6(A)~图6(C)所示的步进扫描方式的曝光动作中,是使用干涉仪系统及面位置测量系统持续测量基板P在XY平面内的位置信息及基板P表面的被曝光部位的面位置信息,根据其测量值适当控制四个Z-VCM,以调整(定位)成使基板P中被定点载台40保持的部分、亦即使位于紧邻投影光学系统PL下方的被曝光部位的面位置(Z轴方向、θx及θy各方向的位置)位于投影光学系统PL的焦深内。藉此,本实施形态的液晶曝光装置10所具有的基板载台装置PST中,即使例如假设于基板P表面产生起伏或基板P产生厚度的误差,亦可确实地使基板P的被曝光部位的面位置位于投影光学系统PL的焦深内,而能使曝光精度提升。又,在通过定点载台40调整基板P的面位置时,基板保持框60的臂部66是追随基板P的动作(往Z轴方向的移动或倾斜动作)而位移于Z轴方向。藉此,防止基板P的破损、或臂部66与基板P的偏移(吸附误差)等。此外,多个空气悬浮单元50由于能较空气夹具单元80使基板P更高地悬浮,因此在该基板P与多个空气悬浮单元50间的空气刚性是较空气夹具单元80与基板P间的空气刚性低。是以,基板P可容易地在多个空气悬浮单元50上变化其姿势。又,由于固定有基板保持框60的Y可动部74是以非接触方式支承于Y导件73,因此在基板P的姿势变化量大、臂部66无法追随基板P时,能通过基板保持框60本身的姿势的变化,避免上述吸附误差等。此外,亦可作成使X导件73与X可动部72的连结部刚性较低而使Y导件73整体的姿势与基板保持框60一起变化的构成。又,基板载台装置PST中,被多个空气悬浮单元50悬浮支承成大致水平的基板P是被基板保持框60保持。又,基板载台装置PST中,是通过驱动单元70驱动基板保持框60,藉以使基板P沿水平面(XY二维平面)被导引,且基板P中被曝光部位(曝光区域IA内的基板P的一部分)的面位置是被定点载台40精确控制。如上述,由于基板载台装置PST中,将基板P沿XY平面导引的装置即驱动单元70(XY载台装置)、与将基板P保持成大致水平且进行Z轴方向的定位的装置即多个空气悬浮单元50、以及定点载台40(Z/调平载台装置)是彼此独立的不同装置,因此与在XY二维载台装置上将台构件(基板保持具)(用以将基板P以良好平面度保持,具有与基板P大致相同程度的面积)分别驱动于Z轴方向及倾斜方向(Z/调平载台亦与基板同时地被XY二维驱动)的现有载台装置(参照例如PCT国际公开第2008/129762号(对应美国发明专利申请公开第2010/0018950号说明书))相较,可大幅减低其重量(特别是可动部分的重量)。具体而言,例如使用一边超过3m的大型基板时,相较于现有的载台装置中可动部分的总重量为接近10t,本实施形态中的基板载台装置PST能使可动部分(基板保持框60、X可动部72、Y导件73、以及Y可动部74等)的总重量降为数百kg程度。因此,例如用以驱动X可动部72的X线性马达、用以驱动Y可动部74的Y线性马达可分别为输出较小者,而能减低运转成本。又,电源设备等的基础整备亦较为容易设置。又,由于线性马达的输出较小即可,因此能减低初期成本。又,驱动单元70中,由于保持基板保持框60的Y可动部74以非接触方式被支承于Y导件73,而将基板P沿XY平面导引,因此几乎没有从设置于地面F上的定盘12侧经由空气轴承传达的Z轴方向的振动(干扰)对基板保持框60的控制带来不良影响之虞。因此,基板P的姿势稳定,曝光精度提升。又,由于驱动单元70的Y可动部74以非接触状态被支承于Y导件73而可防止产生灰尘,因此纵使Y导件73及Y可动部74配置于较多个空气悬浮单元50的上面(气体喷出面)更上方,亦不会对基板P的曝光处理带来影响。另一方面,X导件71及X可动部72配置于较空气悬浮单元50更下方,因此即使假设产生灰尘,对曝光处理带来影响的可能性亦低。但,亦可使用例如空气轴承等将X可动部72相对X导件71以非接触状态支承成可移动于X轴方向。又,定点载台40的重量抵销器42及空气夹具单元80,由于是搭载于与定盘12在振动上分离的Y柱33上,因此例如使用驱动单元70驱动基板保持框60(基板P)时产生的驱动力的反作用力或振动等不会传达至重量抵销器42及空气夹具单元80。因此,能以高精度进行使用Z-VCM的空气夹具单元80的位置(亦即基板P的被曝光部位的面位置)控制。又,驱动空气夹具单元80的四个Z-VCM,由于是Z固定件47固定于与Y柱33成非接触的底座框85,因此驱动空气夹具单元80时的驱动力的反作用力不会传至重量抵销器42。是以,能以高精度控制空气夹具单元80的位置。又,由于通过使用了移动镜62x及62y(固定于基板保持框60,亦即接近最终定位控制的对象物即基板P而配置)的干涉仪系统来测量基板保持框60的位置信息,因此能将控制对象(基板P)与测量点间的刚性维持得较高。亦即,由于能将应该知道最终位置的基板与测量点视为一体,因此可提升测量精度。又,由于直接测量基板保持框60的位置信息,因此即使假设于X可动部72及Y可动部74产生直线运动误差,测量结果亦不易受其影响。又,由于空气夹具单元80的本体部81上面(基板保持面)在X轴方向的尺寸设定得较曝光区域IA在X轴方向的尺寸长,因此在基板P的被曝光部位(曝光预定部位)较曝光区域IA位于基板P移动方向的上游侧的状态、特别是扫描曝光开始前一刻,能在使基板P等速移动前的加速阶段,预先调整该基板P的被曝光部位的面位置。是以,能从曝光开始确实地使基板P的被曝光部位的面位置位于投影光学系统PL的焦深内,而能提升曝光精度。又,在基板载台装置PST中,由于是作成多个空气悬浮单元50、定点载台40、驱动单元70以平面排列配置于定盘12上的构成,因此组装、调整、维护等均容易进行。又,由于构件的数目较少且各构件为轻量,因此输送亦为容易。此外,例如当基板P的+X侧或-X侧端部通过定点载台40上方时等,是基板P仅重叠于空气夹具单元80的一部分的状态(空气夹具单元80未完全被基板P覆盖的状态)。此种情况下,由于作用于空气夹具单元80上面的基板P的载重变小,因此失去空气的平衡而空气夹具单元80使基板P悬浮的力变弱,空气夹具单元80与基板P的距离Da(参照图5(B))变得较所欲的值(例如0.02mm)小。此种情况下,主控制装置是视基板P的位置(视基板P与保持面重叠的面积)将空气夹具单元80与基板P下面间的空气压力及/或空气流量(本体部81所喷出及吸引的空气的压力及/或流量)控制成空气夹具单元80的上面与基板P的下面的距离Da随时维持一定的所欲值。视基板P的位置将空气压力及/或流量设定为何种程度,较佳是预先通过实验求出。又,可先沿X轴方向将空气夹具单元80的上面分割成多个区域,并使依各区域被喷出及吸引的空气流量、压力设为可控制。又,亦可视基板P与空气夹具单元80的位置关系(基板P与保持面重叠的面积)使空气夹具单元80上下动,藉此适当调整空气夹具单元80的上面与基板P的下面的距离。第2实施形态其次说明第2实施形态的液晶曝光装置。由于本第2实施形态的液晶曝光装置具有除了保持基板P的基板载台装置的构成不同这点以外,其余则与前述第1实施形态的液晶曝光装置10类似的构成,因此以下仅说明基板载台装置的构成。此处,为了避免重复说明,对具有与上述第1实施形态同等功能的构件,赋予与上述第1实施形态相同的符号,省略其说明。如图7(A)所示,与第2实施形态相关的基板载台装置PST2中,基板保持框260的构成与第1实施形态不同。以下说明相异点。基板保持框260与第1实施形态类似地形成为包围基板P的矩形框状,具有一对X框构件261x与一对Y框构件261y。此外,图7(A)中是省略了X移动镜及Y移动镜的图示(分别参照图2)。第1实施形态的基板保持框60(参照图5(A))是通过剖面L字形的臂部从下方吸附来保持基板P,相较于此,第2实施形态的基板保持框260中,是由通过压缩线圈弹簧263安装于-X侧的Y框构件261y的一对按压构件264、以及通过压缩线圈弹簧263安装于+Y侧的X框构件261x的一个按压构件264,分别将基板P(通过使平行于XY平面的按压力作用于基板P)按压于固定在+X侧的Y框构件261y的一对基准构件266及固定在-Y侧的X框构件261x的一个基准构件266而加以保持。是以,与第1实施形态不同,基板P是收容于框状构件即基板保持框260的开口内(参照图7(B))。基板P如图7(B)所示,其下面配置于与基板保持框260下面大致同一平面上。此外,按压构件及基准构件的数目,可视例如基板的大小等适当变更。又,按压基板的按压构件不限于压缩线圈弹簧,亦可是例如汽缸或使用马达的滑动单元。又,与第2实施形态相关的基板载台装置PST2中,如图7(B)所示,在通过轴79固定于X可动部72的平板状构件即Y导件273上面,固定有在X轴方向相隔既定间隔配置的一对Y线性导件90。又,在一对Y线性导件90之间固定有包含沿Y轴方向排列的多个磁石的磁石单元91。另一方面,Y可动部274是由与XY平面平行的平板状构件构成,于Y可动部274下面固定有形成为剖面倒U字形的多个、例如四个滑件92(参照图7(B),四个滑件92中的+Y侧的两个的图示省略)。四个滑件92分别具有未图示的滚动体(例如球体、滚子等),各两个滑件92以可滑动的状态分别卡合于+X侧、-X侧的Y线性导件90。又,于Y可动部274的下面,与固定于Y导件273的磁石单元91对向固定有包含线圈的线圈单元93(参照图7(B))。线圈单元93与磁石单元91构成通过电磁相互作用将Y可动部274在Y导件273上驱动于Y轴方向的电磁力驱动方式的Y线性马达。此外,构成Y线性马达的线圈单元及磁石单元的配置亦可与上述情形相反。又,第2实施形态中,Y可动部274与基板保持框260是通过铰链装置299连接。铰链装置299是限制Y可动部274与基板保持框260沿水平面(XY平面)的相对移动,另一方面,亦容许与在包含θx方向、θy方向的XY平面平行的绕着既定轴线的方向的相对移动。因此,Y可动部274与基板保持框260是沿XY平面一体移动,相对于此,例如通过定点载台40使基板P相对XY平面倾斜时,由于仅基板保持框260追随于基板P的倾斜而相对XY平面倾斜,因此不会有负荷施加于Y线性导件90及滑件92。由于以上说明的第2实施形态相关的基板载台装置PST2的基板保持框260,包含基板P,都无较X框构件261x及Y框构件261y下面更往下方突出的突出物,因此能使基板保持框260的下面与多个空气悬浮单元50的上面(气体喷出面)较第1实施形态更为接近。藉此,能降低空气悬浮单元50使基板P悬浮的悬浮高度,能减低自空气悬浮单元50喷出的空气的流量。因此能减低运转成本。又,基板保持框260由于其下面无突出物,因此一对X框构件261x及一对Y框构件261y能分别通过空气夹具单元80上。因此,可自由设定例如将基板P导引至未图示的基板更换位置时使用的基板P的移动路径、对准测量位置等。第3实施形态其次说明第3实施形态。由于第3实施形态的液晶曝光装置具有除了保持基板P的基板载台装置的构成不同这点以外,其余则与前述第1、第2实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1、第2实施形态相同类似的构件,赋予与上述第1、第2实施形态相同的符号,省略其说明。如图8所示,本第3实施形态相关的基板载台装置PST3,驱动单元370与上述第1实施形态不同,具有一对X导件71。一对X导件71彼此平行地相隔既定间隔配置于Y轴方向。一对X导件71中的一方(-Y侧)配置于构成第三及第四列的空气悬浮单元列的第二台空气悬浮单元50与第三台空气悬浮单元50之间,另一方(+Y侧)配置于第六台空气悬浮单元50与第七台空气悬浮单元50之间。于一对X导件71上分别搭载有X可动部72(X可动部72在图8中未图示,参照图1及图3)。一对X可动部72是通过未图示主控制装置在对应的X导件71上被同步驱动。又,Y导件73是与第1实施形态类似地通过轴79(轴79在图8中未图示,参照图1及图3)支承于一对X可动部72上,藉此架设于一对X可动部72上。第3实施形态相关的基板载台装置PST3中,由于Y导件73在分离于Y轴方向的两处支承于X可动部72,因此例如Y可动部74位于Y导件73上的+Y侧或-Y侧的端部附近时,可抑制Y导件73端部的一方的下垂等,Y导件73的姿势稳定。因此,在例如加长Y导件73以于Y轴方向较长的行程导引基板P的情形等,特别有效。此外,第3实施形态的基板载台装置PST3中,由于一方的X导件71配置于定点载台40的-Y侧、另一方的X导件71配置于定点载台40的+Y侧,因此一对X导件71亦可均设置成延伸设置至定盘12的-X侧的端部附近(其中,一对X导件71构成为不与Y柱33及定点载台40的+Y侧及-Y侧的空气悬浮单元50接触)。此情形下,可将基板保持框60导引至超过定点载台40的-X侧(亦可导引至例如超过定盘12的-X侧端部的-X侧)。如上述,由于能扩展基板P在XY平面内的可移动范围,因此能使用驱动单元370使基板P移动至与曝光位置不同的位置(例如基板更换位置或对准测量位置等)。此外,本第3实施形态中,虽设有一对(两支)X导件71,但X导件的支数并不限于此,亦可为三支以上。第4实施形态其次,根据图9及图10说明第4实施形态。由于第4实施形态的液晶曝光装置具有除了基板载台装置的构成不同这点以外,其余则与前述第1~第3实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1~第3实施形态类似功能的构件,赋予与上述第1~第3实施形态相同的符号,省略其说明。如图9所示,本第4实施形态相关的基板载台装置PST4的基板保持框460,形成为由一对X框构件61x(以X轴方向为长边方向)与一对Y框构件61y(以Y轴方向为长边方向)构成的框状。又,于-X侧的Y框构件61y的-X侧侧面(外侧面)固定有X移动镜462x,于-Y侧的X框构件61x的-Y侧侧面(外侧面)固定有Y移动镜462y。X移动镜462x及Y移动镜462y是用于通过干涉仪系统测量基板保持框460在XY平面内的位置信息时。此外,当将一对X框构件61x及一对Y框构件61y分别以例如陶瓷形成时,亦可分别对-X侧的Y框构件61y的-X侧侧面(外侧面)及-Y侧的X框构件61x的-Y侧侧面(外侧面)进行镜面加工而作成反射面。驱动单元470与上述第3实施形态的基板载台装置PST3(参照图8)类似地,于一对X可动部72上架设有Y导件73。又,如图9所示,于Y导件73上分别通过Y线性马达(图示省略)以可移动于Y轴方向的方式呈非接触状态支承有一对Y可动部474。一对Y可动部474在Y轴方向相隔既定间隔配置,被Y线性马达同步驱动。此外,图10中,+Y侧的Y可动部474虽相对-Y侧的Y可动部474而隐藏于纸面深侧,但一对Y可动部具有实质上相同的构成(参照图9)。基板保持框460中,+X侧的Y框构件61y固定于一对Y可动部474。以上说明的第4实施形态相关的基板载台装置PST4中,基板保持框460由于在Y轴方向分离的两处被一对Y可动部474支承,因此可抑制其自身重量导致的弯曲(特别是+Y侧及-Y侧端部的弯曲)。又,由于藉此可使基板保持框460在与水平面平行的方向的刚性提升,因此亦可提升基板保持框460所保持的基板P在与水平面平行的方向的刚性,使基板P的定位精度提升。又,在构成基板保持框460的X框构件61x及Y框构件61y的侧面,分别设有移动镜462x及462y、亦即基板保持框460本身具有反射面,因此能使基板保持框460轻量化、小型化,而提升基板保持框460的位置可控制性。又,由于各移动镜462x及462y的反射面在Z轴方向的位置接近基板P表面在Z轴方向的位置,因此能抑制所谓阿贝(Abbe)误差的产生,使基板P的定位精度提升。第5实施形态其次,根据图11及图12说明第5实施形态。由于第5实施形态的液晶曝光装置具有除了基板载台装置的构成不同这点以外,其余则与第1~第4实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1~第4实施形态相同类似的构件,赋予与上述第1~第4实施形态相同的符号,省略其说明。如图11所示,第5实施形态相关的基板载台装置PST5中,于Y导件73,以可通过Y线性马达(图示省略)移动于Y轴方向的方式呈非接触状态支承有一个Y可动部574。又,如图12所示,Y可动部574是于-X侧侧面具有由XZ剖面形成为U字形的构件构成的一对保持构件591。一对保持构件591是沿Y轴方向相隔既定间隔配置。一对保持构件591分别在彼此对向的一对对向面具有例如空气轴承等非接触推力轴承。又,基板保持框560具有+X侧的形成为XZ剖面为L字形的Y框构件561y,并且该Y框构件561y的+X侧端部插入于一对保持构件591各自的一对对向面间,藉此非接触保持于Y可动部574。此外,设于一对保持构件591的非接触推力轴承可使用例如磁气轴承等。于Y可动部574的上面,如图11所示通过固定构件575固定有一个Y固定件576y与一对X固定件576x。Y固定件576y在俯视下位于一对保持构件591之间。一对X固定件576x是在Y轴方向分离,在俯视下分别位于+Y侧的保持构件591的+Y侧及-Y侧的保持构件591的-Y侧。Y固定件576y及一对X固定件576x分别具有包含线圈的线圈单元(图示省略)。供应至线圈单元的线圈的电流大小、方向是受未图示的主控制装置控制。又,于基板保持框560的+X侧的Y框构件571y的上面,与上述Y固定件576y及一对X固定件576x对应地分别通过固定构件578(参照图12,分别支承一对X可动件577x的固定构件的图示省略)固定有一个Y可动件577y及一对X可动件577x。一个Y可动件577y及一对X可动件577x分别形成为XZ剖面U字形,在彼此对向的一对对向面间插入有对应的Y固定件576y或X固定件576x(参照图12)。一个Y可动件577y及一对X可动件577x,分别在彼此对向的一对对向面具有包含磁石的磁石单元579(参照图12,一对X可动件的磁石单元的图示省略)。Y可动件577y所具有的磁石单元579,构成通过与Y固定件576y所具有的线圈单元的电磁相互作用将基板保持框560微幅驱动于Y轴方向(参照图11的箭头)的电磁力驱动方式的Y音圈马达(Y-VCM)。又,一对X可动件577x所具有的磁石单元,构成通过与分别对应的X固定件576x所具有的线圈单元的电磁相互作用将基板保持框560微幅驱动于X轴方向(参照图11的箭头)的一对电磁力驱动方式的X音圈马达(X-VCM)。基板保持框560与Y可动部574是通过Y-VCM及一对X-VCM所产生的电磁力以电磁方式耦合成非接触状态,而一体沿XY平面移动。此外,基板保持框560与上述第4实施形态类似地,于其侧面分别固定有X移动镜462x及Y移动镜462y。第5实施形态相关的基板载台装置PST5中,主控制装置在例如曝光动作时等,是根据未图示线性编码器系统的测量值,使用X线性马达及Y线性马达控制X可动部72及Y可动部574的位置,藉此进行基板保持框570(基板P)在XY平面的大致的定位,且根据干涉仪系统的测量值,适当控制Y-VCM及一对X-VCM将基板保持框570沿XY平面微幅驱动,藉此进行基板P在XY平面内的最终定位。此时,主控制装置通过适当控制一对X-VCM的输出将基板保持框560亦驱动于θz方向。亦即,基板载台装置PST5中,由一对X导件71、X可动部72、Y导件73、以及Y可动部574构成的XY二维载台装置发挥所谓粗略移动载台装置的功能,通过Y-VCM及一对X-VCM相对Y可动部574被微幅驱动的基板保持框560发挥所谓微动载台装置的功能。如以上所说明,根据第5实施形态相关的基板载台装置PST5,由于能使用轻量的基板保持框570相对Y可动部574高精度地进行基板P在XY平面内的定位,因此提升基板P的定位精度及定位速度。相对于此,由于X线性马达对X可动部72的定位精度及Y线性马达对Y可动部574的定位精度未被要求奈米等级的精度,因此能使用廉价的线性马达及廉价的线性编码系统。又,由于基板保持框560与Y可动部574在振动上分离,因此水平方向的振动及X-VCM、Y-VCM的驱动力的反作用力不会传达至基板保持框560。第6实施形态其次,根据图13说明第6实施形态。由于第6实施形态的液晶曝光装置具有除了基板载台装置的构成不同这点以外,其余则与第1~第5实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1~第5实施形态类似功能的构件,赋予与上述第1~第5实施形态相同的符号,省略其说明。如图13所示,第6实施形态相关的基板载台装置PST6的驱动单元670,于定点载台40的+X侧区域具有与上述第5实施形态类似构成的XY二维载台装置。亦即,由固定于定盘12上的一对X导件71、在X轴方向移动于该一对X导件71上的一对X可动部72(图13中未图示,参照图12)、架设于一对X可动部72上的Y导件73、以及在该Y导件73上移动于Y轴方向的Y可动部574(为了说明方便,称为第一Y可动部574)构成的XY二维载台装置,设于定点载台40的+X侧的区域。第一Y可动部574具有以非接触方式保持与上述第5实施形态类似构成的基板保持框660的一对保持构件591。又,基板保持框660通过三个音圈马达(由与上述第5实施形态类似构成的固定于Y可动部574的Y固定件及一对X固定件及固定于基板保持框660的+X侧的Y框构件661y的Y可动件及一对X可动件构成)(一个Y-VCM与一对X-VCM),相对第一Y可动部574被微幅驱动于X轴方向、Y轴方向、以及θz方向。基板载台装置PST6进一步于定点载台40的-X侧区域,亦具有与上述XY二维载台装置类似(但相对Y轴为对称(在纸面上为左右对称))的构成、亦即由一对X导件71、一对X可动部72(图13中未图示,参照图12)、Y导件73、Y可动部574(为了说明方便,称为第二Y可动部574)构成的另一XY二维载台装置。基板保持框660是具有-X侧的Y框构件661y,该Y框构件661y亦与+X侧的Y框构件661y类似地,形成为剖面L字形(参照图12),并且在-X侧的Y框构件661y是以非接触方式保持于第二Y可动部574所具有的一对保持构件591。又,基板保持框660通过三个音圈马达(由固定于第二Y可动部574的Y固定件及一对X固定件及固定于基板保持框660的-X侧的Y框构件661y的Y可动件及一对X可动件构成)(一个Y-VCM与一对X-VCM),相对第二Y可动部574被微幅驱动于X轴方向、Y轴方向、以及θz方向。未图示的主控制装置根据未图示的线性编码器系统的测量值,同步控制定点载台40的+X侧、-X侧各自的X线性马达、Y线性马达以粗调整基板保持框660在XY平面内的位置,且通过根据干涉仪系统的测量值适当控制基板保持框660(基板P)的+X侧、-X侧各自的Y-VCM及一对X-VCM,将基板保持框微幅驱动于X轴、Y轴、以及θz的各方向,以微调整基板保持框660(基板P)在XY平面内的位置。第6实施形态相关的基板载台装置PST6中,由于基板保持框660在X轴方向的两端部分别支承于XY二维载台装置,因此可抑制因基板保持框660的自身重量导致的弯曲(自由端侧的下垂)。又,由于使音圈马达的驱动力分别从+X侧、-X侧的作用于基板保持框660,因此能使各音圈马达的驱动力作用于由基板保持框660与基板P构成的系统的重心位置附近。是以,能抑制θz方向的力矩作用于基板保持框660。此外,X-VCM亦能以驱动基板保持框660的重心位置的方式,仅于基板保持框660的-X侧与+X侧各配置一个于对角位置(以对角线中心成为基板P的重心附近的方式)。第7实施形态其次,根据图14、图15说明第7实施形态。由于第7实施形态的液晶曝光装置具有除了基板载台装置的构成不同这点以外,其余则与第1~第6实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1~第6实施形态类似功能的构件,赋予与上述第1~第6实施形态相同的符号,省略其说明。如图14所示,基板载台装置PST7将基板保持框760沿XY二维平面驱动的驱动单元770的构成是与上述第1~第6的各实施形态的基板载台装置不同。基板载台装置PST7中,在第一列的空气悬浮单元列与第二列的空气悬浮单元列之间、以及第三列的空气悬浮单元列与第四列的空气悬浮单元列之间,于Y轴方向相隔既定间隔配置有均以Y轴方向为长边方向的一对Y导件771。此等四个Y导件771具有与上述第1~第6的各实施形态的基板载台装置所具有的X导件71(参照图3)类似的功能。又,如图15所示,于四个Y导件771分别搭载有与上述第1~第6的各实施形态的基板载台装置所具有的X可动部72(参照图3)类似功能的Y可动部772(-X侧的两个Y可动部772的图示省略)。四个Y可动部772是通过各Y导件771所具有的Y固定件776(参照图15)与各Y可动件772所具有的Y可动件(图示省略)所构成的电磁力驱动方式的Y线性马达,被同步驱动于Y轴方向。在+Y侧的两个Y可动部772间,如图14所示,通过轴779(参照图15)架设有以X轴方向为长边方向的平板状构件所构成的X导件773。又,在-Y侧的两个Y可动部772间,亦架设有类似的X导件773。于一对X导件773上分别搭载有与例如上述第1实施形态的基板载台装置所具有的Y可动部74(参照图2)相当的构件即X可动部774。一对X可动部774是通过各X导件773所具有的X固定件(图示省略)与X可动部774所具有的X可动件(图示省略)所构成的电磁力驱动方式的X线性马达被同步驱动于X轴方向。一对X可动部774是分别与上述第6实施形态的基板载台装置(参照图13)的Y可动部574所具有的保持构件591类似地,具有使用例如空气轴承等非接触推力轴承(图示省略)以非接触方式保持基板保持框760的保持构件791。通过以上构成,本第7实施形态的基板载台装置PST7,与上述第1~第6实施形态的各基板载台装置相较,能以较长行程使基板保持框760移动于X轴方向。又,基板保持框760是通过配置于其+Y侧的X-VCM及Y-VCM、以及配置于其-Y侧的X-VCM及Y-VCM,适当地被微幅驱动于X轴、Y轴、以及θz的各方向。各X-VCM、Y-VCM的构成与上述第6实施形态的X-VCM、Y-VCM相同。此处,在基板保持框760的+Y侧,X-VCM是配置于Y-VCM的-X侧,在基板保持框760的-Y侧,X-VCM是配置于Y-VCM的+X侧。又,两个X-VCM、两个Y-VCM相对基板保持框760(以对角线中点成为基板P的重心附近的方式)配置于对角位置。因此,与上述第6实施形态类似地,能在重心对基板P进行驱动(使驱动力作用于其重心位置附近而加以驱动)。是以,在使用一对X-VCM及/或一对Y-VCM将基板保持框760微幅驱动于X轴方向、Y轴方向、以及θz方向时,能使基板P以基板保持框760与基板P所构成的系统的重心位置附近为中心旋转。进而,X-VCM及Y-VCM虽均为较基板保持框760的上面更往+Z侧突出的构成(参照图15),但由于X-VCM及Y-VCM是位于投影光学系统PL(参照图15)的+Y侧及-Y侧,因此能在不干涉投影光学系统PL的情况下使基板保持框760通过投影光学系统PL下而移动于X轴方向。又,基板载台装置PST7在定点载台40的+X侧区域且是第四列的空气悬浮单元列的+X侧,具有在Y轴方向相隔既定间隔排列的六台空气悬浮单元50所构成的第五列空气悬浮单元列。又,第四列的空气悬浮单元列的第三~六台空气悬浮单元50及第五列的空气悬浮单元列的第二~四台空气悬浮单元50是如图15所示,具有可移动(上下移动)于Z轴方向的本体部51(参照图15)。以下,为了将上述具有能上下移动的本体部51的各空气悬浮单元50与具有本体部51为固定的其他空气悬浮单元50作出区别,就说明方便的观点是将之称为空气悬浮单元750。多台(在本实施形态中为例如八台)空气悬浮单元750各自的脚部752如图15所示,包含:固定于定盘12上的筒状盒752a;以及轴752b,一端收容于盒752a内部且于另一端固定于支承部52,通过例如汽缸装置等未图示的单轴致动器而相对盒752a被驱动于Z轴方向。返回图14,第7实施形态相关的基板载台装置PST7中,于第四及第五列的空气悬浮单元列的+X侧设定有基板更换位置。对基板P的曝光处理结束后,未图示的主控制装置是在第四及第五列空气悬浮单元列的空气悬浮单元750位于图14所示的基板P下方(-Z侧)的状态下,解除使用基板保持框760的保持单元65对基板P的吸附保持,在该状态下同步控制八台空气悬浮单元750,使基板P从基板保持框760分离而往+Z方向移动(参照图15)。基板P是在图15所示的位置被一个未图示的基板更换装置从基板载台装置PST7搬出,其后一个未图示的新基板被搬送至图15所示的位置。新基板在从下方被以非接触方式支承于八台空气悬浮单元750的状态下,移动于-Z方向后,通过吸附而保持于基板保持框760。此外,在通过基板更换装置搬出或搬入基板P时,或在将基板P移交至基板保持框760时,基板P与空气悬浮单元750可为接触状态,而不是非接触状态。以上说明的基板载台装置PST7中,由于构成为多个空气悬浮单元750的本体部51能移动于Z轴方向,因此能使基板保持框760沿XY平面移动而位于基板更换位置下方,藉此能容易地从基板保持框760分离基板P,并且仅有基板P能移动至基板更换位置。第8实施形态其次,根据图16说明第8实施形态。由于第8实施形态的液晶曝光装置具有除了基板载台装置的构成不同这点以外,其余则与第1~第7实施形态的液晶曝光装置类似的构成,因此以下仅说明基板载台装置的构成。此外,对具有与上述第1~第7实施形态类似功能的构件,赋予与上述第1~第7实施形态相同的符号,省略其说明。如图16所示,第8实施形态相关的基板载台装置PST8的基板保持框860,是具有在Y轴方向相隔既定间隔的一对由以X轴方向为长边方向的板状构件构成的X框构件861x,该对X框构件861x各自的-X侧端部是连接于由以Y轴方向为长边方向的板状构件构成的Y框构件861y。藉此,基板保持框860具有在俯视下在-X侧开口的U字形外形形状(轮廓)。是以,在已解除基板保持框860的多个保持单元65的吸附保持的状态下,通过基板P相对基板保持框860移动于+X方向,而能通过形成于基板保持框860的+X侧端部的开口部。此外,在曝光动作时等将基板保持框860沿XY平面导引的驱动单元770(XY二维载台装置)的构成是与上述第7实施形态相同。又,第8实施形态的基板载台装置PST8,是在定点载台40的+X侧且是第四列空气悬浮单元列的+X侧的区域,具有在Y轴方向相隔既定间隔排列的六台空气悬浮单元50所构成的第五列空气悬浮单元列。又,基板载台装置PST8于地面F(参照图1及图3)上定盘12的+X侧区域,在X轴方向相隔既定间隔具有两列于Y轴方向相隔既定间隔排列的四台空气悬浮单元50所构成的空气悬浮单元列。构成该两列空气悬浮单元列的共计八台的空气悬浮单元50各自的上面(气体喷出面)配置于与定盘12上的多个空气悬浮单元50上面相同的平面上(同一面高)。第8实施形态相关的基板载台装置PST8中,是在已解除基板保持框860的多个保持单元65对基板P的保持的状态下,将基板P从基板保持框860往+X方向引出,而能搬送至例如基板更换位置。作为将基板P搬送至基板更换位置的方法,例如可使多个空气悬浮单元具有将基板P往水平方向搬送(运送)的空气输送带功能,亦可使用机械式的搬送装置。根据第8实施形态相关的基板载台装置PST8,由于能通过使基板P水平移动,而将基板P容易且迅速地搬送至基板更换位置,因此能提升产能。此外,亦可作成在将基板从基板保持框经由开口部引出时,以及将基板通过开口部插入基板保持框内时,能将吸附保持基板的保持单元从基板的移动路径退离的构成(例如能使保持单元移动于上下方向或能收容于构成基板保持框的各框构件内部的构成)。此情形下,能更可靠地进行基板的更换。此外,上述第1~第8实施形态亦可适当地组合。例如亦可将与前述第2实施形态的基板保持框类似构成的基板保持框使用于前述第3~第6实施形态的各基板载台装置。第9实施形态其次,说明第9实施形态。上述第1~第8实施形态的基板载台装置是设于液晶曝光装置,相对于此,如图17所示,本第9实施形态相关的基板载台装置PST9是设于基板检查装置900。基板检查装置900中是具有支承于机体BD的摄影单元910。摄影单元910具有一包含例如均未图示的CCD(电荷耦合元件)等影像感测器、透镜等的摄影光学系统,并且是拍摄配置于紧邻其下方(-Z侧)处的基板P表面。来自摄影单元910的输出(基板P表面的影像数据)输出至外部,根据该影像数据进行基板P的检查(例如图案的缺陷或微粒等的检测)。此外,基板检查装置900所具有的基板载台装置PST9是与上述第1实施形态的基板载台装置PST1(参照图1)的构成相同。主控制装置在基板P的检查时,是使用定点载台40(参照图2)将基板P的被检查部位(紧邻摄影单元910下方的部位)的面位置调整成位于摄影单元910所具有的摄影光学系统的焦深内。因此能取得基板P的鲜明影像数据。又,由于能高速且高精度地进行基板P的定位,因此能提升基板P的检查效率。此外,亦可于基板检查装置的基板载台装置应用上述第2~第8实施形态的其他基板载台装置的任一者。此外,上述第9实施形态中,虽例示了检查装置900为摄影方式的情形,但检查装置不限于摄影方式,亦可是其他方式、绕射/散射检测、或散射测量(scatterometry)等。此外,上述各实施形态中,虽使用基板保持框高速且高精度地控制基板在XY平面内的位置,但当适用于无需以高精度控制基板位置的物体处理装置时,则不一定要使用基板保持框,亦可使例如多个空气悬浮单元具有使用空气的基板水平搬送功能。又,上述各实施形态中,基板虽是被用以驱动于X轴及Y轴的正交两轴方向的驱动单元(XY二维载台装置)沿水平面导引,但只要例如基板上的曝光区域宽度与基板宽度相同,驱动单元仅于单轴方向导引基板即可。又,上述各实施形态中,多个空气悬浮单元虽悬浮支承成使基板与XY平面成平行,但依照作为支承对象的物体种类不同,使该物体悬浮的装置的构成并不限于此,亦可通过例如磁气或静电使物体悬浮。又,定点载台的空气夹具单元亦类似地,依照作为支承对象的物体种类不同,亦可通过例如磁气或静电来支承作为支承对象的物体。又,上述各实施形态中,基板保持框在XY平面内的位置信息虽通过激光干涉仪系统(包含对设于基板保持框的移动镜照射测距光束的激光干涉仪)来求出,但基板保持框的位置测量装置并不限于此,亦可使用例如二维编码器系统。此情形下,可于例如基板保持框设置标尺,并通过固定于机体等的读头求出基板保持框的位置信息,或于基板保持框设置读头,而使用固定于例如机体等的标尺求出基板保持框的位置信息。此外,上述各实施形态中,定点载台可使基板的被曝光区域(或被摄影区域)仅位移于Z轴方向及θx、θy方向中的Z轴方向者。又,上述各实施形态中,基板保持框虽具有俯视呈矩形的外形形状(轮廓)与俯视呈矩形的开口部,但保持基板的构件的形状并不限于此,亦可视例如保持对象即物体的形状进行适当变更(例如物体若是圆板状,则保持构件亦为圆形框状)。此外,上述各实施形态中,基板保持框无需完全包围基板周围,亦可有一部分缺口。又,为了搬送基板,例如基板保持框的用于保持基板的构件并不一定要使用。此情形下,需测量基板本身的位置,并且例如使基板侧面为镜面,通过对该镜面照射测距光束的干涉仪来测量基板的位置。或者,亦可于基板表面(或背面)形成光栅,并通过具备对该光栅照射测量光并接收其绕射光的读头的编码器来测量基板的位置。又,照明光可以是例如ArF准分子激光光(波长193nm)、KrF准分子激光光(波长248nm)等的紫外光、或例如F2激光光(波长157nm)等的真空紫外光。另外,作为照明光,可使用例如谐波,其是以掺有铒(或铒及镱两者)的光纤放大器,将从DFB半导体激光或纤维激光振荡出的红外线区或可见区的单一波长激光光放大,并以非线形光学结晶将其转换波长成紫外光。又,亦可使用固态激光(波长:355nm、266nm)等。又,上述各实施形态中,虽已说明投影光学系统PL是具备多支投影光学系统的多透镜方式的投影光学系统,但投影光学系统的支数不限于此,只要有一支以上即可。又,不限于多透镜方式的投影光学系统,亦可是使用了欧浮纳(Offner)型的大型反射镜的投影光学系统等。又,上述实施形态中,虽是说明使用投影倍率为等倍系统者来作为投影光学系统PL,但并不限于此,投影光学系统亦可是放大系统及缩小系统的任一者。又,上述各实施形态中,虽已说明曝光装置是扫描步进器的情形,但并不欲限于此,亦可将上述各实施形态适用于步进器等静止型曝光装置。又,亦可将上述各实施形态适用于合成照射区域与照射区域的步进接合方式的投影曝光装置。又,上述各实施形态,亦可适用于不使用投影光学系统的近接方式的曝光装置。又,曝光装置用途并不限定于将液晶显示元件图案转印至矩形玻璃板的液晶显示元件用曝光装置,亦可广泛适用于用来制造例如半导体用的曝光装置、用于制造薄膜磁头、微型机器及DNA晶片等的曝光装置。又,除了用于制造半导体元件等的微型元件的曝光装置以外,为了制造用于光曝光装置、EUV曝光装置、X射线曝光装置及电子射线曝光装置等的掩膜或标线片,亦能将上述各实施形态适用于用以将电路图案转印至玻璃基板或硅晶圆等的曝光装置。此外,作为曝光对象的物体并不限玻璃板,亦可以是例如晶圆、陶瓷基板、膜构件、或者空白掩膜等其他物体。此外,上述各实施形态相关的基板载台装置并不限适用于曝光装置,亦可适用于具备例如喷墨式机能性液体沉积装置的元件制造装置。又,于是用与至此为止的说明中所引用的曝光装置等相关的所有公报、PCT国际公开、美国发明专利申请公开说明书及美国发明专利说明书的揭示是分别纳入在此作为参考。元件制造方法接着,说明在光刻步骤使用上述各实施形态的曝光装置的微型元件的制造方法。上述各实施形态的曝光装置中,可通过在板体(玻璃基板)上形成既定图案(电路图案、电极图案等)而制得作为微型元件的液晶显示元件。图案形成步骤首先,是进行使用上述各实施形态的曝光装置将图案像形成于感光性基板(涂布有光刻胶的玻璃基板等)的所谓光光刻步骤。通过此光光刻步骤,于感光性基板上形成包含多数个电极等的既定图案。其后,经曝光的基板,通过经过显影步骤、刻蚀步骤、光刻胶剥离步骤等各步骤而于基板上形成既定图案。彩色滤光片形成步骤其次,形成与R(红)、G(绿)、B(蓝)对应的三个点的组多数个排列成矩阵状、或将R、G、B的三条条纹的滤光器组多个排列于水平扫描线方向的彩色滤光片。单元组装步骤接着,使用在图案形成步骤制得的具有既定图案的基板、以及在彩色滤光片形成步骤制得的彩色滤光片等来组装液晶面板(液晶单元)。例如于在图案形成步骤制得的具有既定图案的基板与在彩色滤光片形成步骤制得的彩色滤光片之间注入液晶,而制造液晶面板(液晶单元)。模组组装步骤其后,安装用以进行已组装完成的液晶面板(液晶单元)的显示动作的电路、背光等各零件,而完成液晶显示元件。此时,在图案形成步骤中,由于是使用上述各实施形态的曝光装置而能以高产能且高精度进行板体的曝光,其结果能提升液晶显示元件的生产性。工业实用性如以上所说明,本发明的物体处理装置适于对平板状物体进行既定处理。又,本发明的曝光装置及曝光方法适于使用能量束使平板状物体曝光。又,本发明的元件制造方法适于生产微型元件。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1