一种新能源用纳米型耐火电缆的制作方法

文档序号:11867837阅读:268来源:国知局
本发明涉及电缆领域,特别是一种新能源用纳米型耐火电缆。
背景技术
:随着汽车行业的发展,汽车尾气的排放成为城市主要污染源之一,随之而来的新能源电动汽车由于具有低能耗、低碳排放、低噪声等优点,受到了各个国家和地方的支持。电动汽车行业的快速发展,对电动汽车充电桩电缆需求量也随之倍增。由于充电桩电缆长期暴露于室外环境,要求负荷电流较大,电缆通电运行中导体易发热,如果未及时发现可能引起火灾,且在使用过程中频繁拖拽移动,易受汽车碾压、日光照晒、空气氧化、湿水环境以及酸碱化合物等因素的腐蚀。因此,对电动汽车充电桩电缆的耐磨、耐候性、耐高温阻燃、高耐酸碱、耐火等性能指标提出更高的要求。目前,一般的低烟无卤耐火电力电缆内部结构主要采用导体外包裹耐火层,以及外护套采用低烟无卤材料以达到耐火、低烟、无毒的性能。但是,现有的电缆在耐火性能上常常耐火时间太短,不能更好地适应高温环境的要求。技术实现要素:针对上述问题,本发明提供了一种新能源用纳米型耐火电缆,该电缆耐火时间长,耐火温度高,适应高温环境需求。本发明采用的技术方案为:一种新能源用纳米型耐火电缆包括:若干绝缘线芯绞合而成的电缆内芯,电缆内芯外依次包覆第一纳米阻燃绝缘层、第一金属带、第二纳米阻燃绝缘层、陶瓷纤维耐火带和阻燃外护套,电缆内芯内绝缘线芯之间填充纳米耐火层,阻燃护套的外壁设有多个防火胶条;每个绝缘线芯包括铜导体以及依次包覆在铜导体外的纳米复合带、第二金属带和绝缘护套。优选地,阻燃护套的外壁上设有多个定位槽,防火胶条固定在对应定位槽内,防火胶条可增加整个电缆的耐火性,同时减小阻燃外护套的摩擦。更优选地,阻燃外护套按照重量份的组分为:乙烯-醋酸乙烯酯共聚物60份、纳米氮化硼5-15份、纳米氧化镁1-15份、纳米介孔分子筛5-20份、纳米氮磷类膨胀阻燃剂1-10份、十二碳醇酯5-10份、重质碳酸钙1-15份、三氧化二锑1-15份、氧化镁5-15份、促进剂1-10份、增塑剂0.5-2.5份、防老剂2-6份。优选地,第二纳米阻燃绝缘层内设有接地地芯,防止电磁耦合干扰,避免绝缘层损坏漏电。优选地,第一纳米阻燃绝缘层和第二纳米阻燃绝缘层的材料相同,按照重量份的组分为:纳米介孔分子筛40-60份、纳米氮化硼1-25份、纳米三氧化二铝5-15份、三烯丙基异三聚氰酸酯5-15份、纳米氧化镁2-10份、水性丙烯酸树脂30-50份、活性轻质碳酸钙2-4份、三元乙丙橡胶1-5份、三氧化二锑5-15份、聚醚改性硅油5-10份、十二碳醇酯5-25份、过氧化二异丙苯5-10份。优选地,第一金属带和第二金属带的材料相同,都为软铝镁合金带。优选地,陶瓷纤维耐火带由一层陶瓷纤维和一层钢纤维粘合而成,厚度为0.1~0.25mm。优选地,纳米复合带通过以下方法制成:称取甲基乙烯基硅橡胶25~30份、二苯基硅二醇0.5~1.2份、乙烯基三甲氧基硅烷0.5~1.2份、纳米二氧化硅(气相法)15~20份、纳米二氧化硅(沉淀法)15~19份、氢氧化钙7~10份、三氧化二铝9~12份、纳米二氧化钛1.3~2.0份、过氧化物硫化剂0.3~1.0份,混合后进行翻炼,所得材料设置在玻璃布上下表面,并与玻璃布带通过延压工艺进行复合,然后进行烘烤和硫化,最后进行切割、缠绕、包装。优选地,纳米耐火层采用以下组分及重量份含量的原料混合制成:纳米人造粉15-80、纳米二氧化硅10-40、纳米石英沙5-25、纳米氢氧化铝10-45、硅灰石粉5-35、彩土5-10、胶水20-40、珍珠岩5-15、纳米碳酸钙15-70。更优选地,纳米人造粉由氧化镁、氧化钙、碳酸钙在水中均化研磨制成;氧化镁、氧化钙、碳酸钙、水的重量比为15∶13∶25∶400。与现有技术相比,本发明的有益效果在于:本发明提供的新能源用纳米型耐火电缆,可在1800℃下,正常工作,电缆不受敷设落差限制,重量轻,弯曲性能好,具有耐腐蚀和耐高温的性能。附图说明图1为本发明提供的一种新能源用纳米型耐火电缆的示意图。具体实施方式根据附图对本发明提供的优选实施方式做具体说明。图1为本发明提供的一种新能源用纳米型耐火电缆的优选实施方式。实施例1该新能源用纳米型耐火电缆包括若干绝缘线芯1绞合而成的电缆内芯,电缆内芯外依次包覆第一纳米阻燃绝缘层2、第一金属带3、第二纳米阻燃绝缘层4、陶瓷纤维耐火带5和阻燃外护套6,电缆内芯内绝缘线芯1之间填充纳米耐火层7,阻燃护套6的外壁设有多个防火胶条601。阻燃护套6的外壁上设有多个定位槽602,防火胶条601固定在对应定位槽602内,防火胶条601可增加整个电缆的耐火性,同时减小阻燃外护套6的摩擦。阻燃外护套6按照重量份的组分为:乙烯-醋酸乙烯酯共聚物60份、纳米氮化硼8份、纳米氧化镁9份、纳米介孔分子筛16份、纳米氮磷类膨胀阻燃剂7份、十二碳醇酯7份、重质碳酸钙9份、三氧化二锑12份、氧化镁12份、促进剂8份、增塑剂1.3份、防老剂5份。第二纳米阻燃绝缘层4内设有接地地芯401,防止电磁耦合干扰,避免绝缘层损坏漏电。每个绝缘线芯1包括铜导体101以及依次包覆在铜导体101外的纳米复合带102、第二金属带103和绝缘护套104。第一纳米阻燃绝缘层2和第二纳米阻燃绝缘层4的材料相同,按照重量份的组分为:纳米介孔分子筛45份、纳米氮化硼20份、纳米三氧化二铝13份、三烯丙基异三聚氰酸酯12份、纳米氧化镁7份、水性丙烯酸树脂33份、活性轻质碳酸钙2份、三元乙丙橡胶4份、三氧化二锑7份、聚醚改性硅油8份、十二碳醇酯22份、过氧化二异丙苯9份。第一金属带3和第二金属带103的材料相同,都为软铝镁合金带,具有耐高温和耐撞击的作用。陶瓷纤维耐火带5由一层陶瓷纤维和一层钢纤维粘合而成,厚度为0.1~0.25mm,相邻层采用双向绕包的方式,每层重叠处间隔缠绕,陶瓷纤维耐火带5在-70℃~210℃时,柔软、有弹性、强度高、机械性绝缘性优异,使得电缆具有柔软、隔音、抗冲击等特点,施工铺设便利。纳米复合带102通过以下方法制成:称取甲基乙烯基硅橡胶26份、二苯基硅二醇0.7份、乙烯基三甲氧基硅烷0.9份、纳米二氧化硅(气相法)17份、纳米二氧化硅(沉淀法)15份、氢氧化钙8份、三氧化二铝9份、纳米二氧化钛1.7份、过氧化物硫化剂0.7份,混合后进行翻炼,所得材料设置在玻璃布上下表面,并与玻璃布带通过延压工艺进行复合,然后进行烘烤和硫化,最后进行切割、缠绕、包装。纳米耐火层7采用以下组分及重量份含量的原料混合制成:纳米人造粉30、纳米二氧化硅40、纳米石英沙20、纳米氢氧化铝30、硅灰石粉30、彩土9、胶水20、珍珠岩6、纳米碳酸钙18。纳米人造粉由氧化镁、氧化钙、碳酸钙在水中均化研磨制成;氧化镁、氧化钙、碳酸钙、水的重量比为15∶13∶25∶400。防火实验:1.对上述实施例制备的一种新能源用纳米型耐火电缆进行专项实验的检测报告摘录如下:序号英国BS6387标准标准要求结果1A级650℃受火3h后,线路保持完整合格2X级650℃受火、机械冲击15min后,线路保持完整合格3B级750℃受火3h后,线路保持完整合格4Y级750℃受火、机械冲击15min后,线路保持完整合格5C级950℃受火3h后,线路保持完整合格6Z级950℃受火、机械冲击15min后,线路保持完整合格7W级650℃受火15min、水喷淋15min后,线路保持完整合格2.对本产品进行型式试验的检测报告摘录如下:可见,本发明设计的一种新能源用纳米型耐火电缆的耐火试验不仅满足国标GB/T19216的要求,在导体之间施加1000V电压,在火焰温度为950-1000℃的火焰中燃烧3h,电缆既不短路也不开路。还可满足英国BS6387标准中规定的A级、B级和C级的要求,同时,在燃烧中还可耐受水喷淋(W级)与抗机械冲击(X级、Y级、Z级);试验过程中,电缆既不短路也不开路。实施例2该新能源用纳米型耐火电缆包括若干绝缘线芯1绞合而成的电缆内芯,电缆内芯外依次包覆第一纳米阻燃绝缘层2、第一金属带3、第二纳米阻燃绝缘层4、陶瓷纤维耐火带5和阻燃外护套6,电缆内芯内绝缘线芯1之间填充纳米耐火层7,阻燃护套6的外壁设有多个防火胶条601。阻燃护套6的外壁上设有多个定位槽602,防火胶条601固定在对应定位槽602内。第二纳米阻燃绝缘层4内设有接地地芯401,防止电磁耦合干扰,避免绝缘层损坏漏电。每个绝缘线芯1包括铜导体101以及依次包覆在铜导体101外的纳米复合带102、第二金属带103和绝缘护套104。阻燃外护套6按照重量份的组分为:乙烯-醋酸乙烯酯共聚物60份、纳米氮化硼10份、纳米氧化镁10份、纳米介孔分子筛15份、纳米氮磷类膨胀阻燃剂5份、十二碳醇酯8份、重质碳酸钙10份、三氧化二锑10份、氧化镁10份、促进剂8份、增塑剂1.5份、防老剂4份。第一纳米阻燃绝缘层2和第二纳米阻燃绝缘层4的材料相同,按照重量份的组分为:纳米介孔分子筛50份、纳米氮化硼15份、纳米三氧化二铝10份、三烯丙基异三聚氰酸酯10份、纳米氧化镁8份、水性丙烯酸树脂40份、活性轻质碳酸钙3份、三元乙丙橡胶3份、三氧化二锑6份、聚醚改性硅油8份、十二碳醇酯10份、过氧化二异丙苯8份。第一金属带3和第二金属带103的材料相同,都为软铝镁合金带,具有耐高温和耐撞击的作用。陶瓷纤维耐火带5由一层陶瓷纤维和一层钢纤维粘合而成,厚度为0.1~0.25mm,相邻层采用双向绕包的方式,每层重叠处间隔缠绕,陶瓷纤维耐火带5在-70℃~210℃时,柔软、有弹性、强度高、机械性绝缘性优异,使得电缆具有柔软、隔音、抗冲击等特点,施工铺设便利。纳米复合带102通过以下方法制成:称取甲基乙烯基硅橡胶25份、二苯基硅二醇0.8份、乙烯基三甲氧基硅烷0.8份、纳米二氧化硅(气相法)18份、纳米二氧化硅(沉淀法)17份、氢氧化钙8份、三氧化二铝10份、纳米二氧化钛1.7份、过氧化物硫化剂0.8份,混合后进行翻炼,所得材料设置在玻璃布上下表面,并与玻璃布带通过延压工艺进行复合,然后进行烘烤和硫化,最后进行切割、缠绕、包装。纳米耐火层7采用以下组分及重量份含量的原料混合制成:纳米人造粉60纳米二氧化硅20、纳米石英沙15、纳米氢氧化铝20、硅灰石粉30、彩土8、胶水30、珍珠岩10、纳米碳酸钙20。纳米人造粉由氧化镁、氧化钙、碳酸钙在水中均化研磨制成;氧化镁、氧化钙、碳酸钙、水的重量比为15∶13∶25∶400。防火实验:1.对上述实施例制备的一种新能源用纳米型耐火电缆进行专项实验的检测报告摘录如下:序号英国BS6387标准标准要求结果1A级650℃受火3h后,线路保持完整合格2X级650℃受火、机械冲击15min后,线路保持完整合格3B级750℃受火3h后,线路保持完整合格4Y级750℃受火、机械冲击15min后,线路保持完整合格5C级950℃受火3h后,线路保持完整合格6Z级950℃受火、机械冲击15min后,线路保持完整合格7W级650℃受火15min、水喷淋15min后,线路保持完整合格2.对本产品进行型式试验的检测报告摘录如下:可见,本发明设计的一种新能源用纳米型耐火电缆的耐火试验不仅满足国标GB/T19216的要求,在导体之间施加1000V电压,在火焰温度为950-1000℃的火焰中燃烧3h,电缆既不短路也不开路。还可满足英国BS6387标准中规定的A级、B级和C级的要求,同时,在燃烧中还可耐受水喷淋(W级)与抗机械冲击(X级、Y级、Z级);试验过程中,电缆既不短路也不开路。综上所述,本发明的技术方案可以充分有效的实现上述发明目的,且本发明的结构及功能原理都已经在实施例中得到充分的验证,能达到预期的功效及目的,在不背离本发明的原理和实质的前提下,可以对发明的实施例做出多种变更或修改。因此,本发明包括一切在专利申请范围中所提到范围内的所有替换内容,任何在本发明申请专利范围内所作的等效变化,皆属本案申请的专利范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1