具有惰性气体环境的模片键合装置的制作方法

文档序号:11955688阅读:417来源:国知局
具有惰性气体环境的模片键合装置的制作方法

本发明涉及模片键合装置,并且尤其涉及包括用于实施模片键合的惰性气体环境的模片键合装置。



背景技术:

当制造电子封装时集成电路(IC)的组装涉及将模片或芯片附装到基板。键合过程的一个示例是热压键合(TCB)过程,该过程可用于倒装芯片键合。与常规的焊炉回流过程不同的是,TCB过程不是批量过程。在TCB过程期间倒装芯片模片的键合在同一时间执行一个模片。来自于硅晶片的模片被翻转并且利用面向下的模片上的隆起转移到键合臂。由键合臂承载的模片然后被放置到基板的键合部位上或者另一模片上。在模片上施加小的压缩力以将其压靠在基板上或者另一模片上,以确保模片和基板之间或者相应的模片之间的良好接触。

人们不期望键合材料上具有杂质,这是因为杂质阻止键合材料和键合表面之间的良好接触,这可导致最终产品的性能劣化。在模片键合过程中存在许多潜在杂质源。例如,杂质可来源于覆盖键合材料的表面的外部材料,由键合材料在TCB过程期间在高温下氧化产生,或者由在键合过程期间产生的副产物产生。

降低可能干涉键合过程的杂质的量将是有益的,以避免所组装的电子封装的性能劣化。



技术实现要素:

因此,本发明的目的是旨在提供一种模片键合装置,该模片键合装置能够减少杂质的量以避免所组装的电子封装的性能劣化。

根据本发明,提供了一种模片键合装置,该模片键合装置包括:第一惰性气体容器,该第一惰性气体容器具有第一惰性气体浓度;封闭在所述第一惰性气体容器内的第二惰性气体容器,该第二惰性气体容器具有第二惰性气体浓度,该第二惰性气体浓度比所述第一惰性气体浓度高;键合头,该键合头位于所述第二惰性气体容器中用于接收待键合模片;以及第三惰性气体容器,该第三惰性气体容器具有与所述第一惰性气体容器和所述第二惰性气体容器分离并且能够定位基板以键合模片的惰性气体环境。所述键合头操作成在所述第二惰性气体容器内的第一位置和所述第三惰性气体容器内的第二位置之间移动所述模片,以将所述模片键合到位于所述第三惰性气体容器中的所述基板上。

结合说明部分、所附权利要求以及附图,上述和其它特征、各个方面和各个优点将变得显而易见。

附图说明

现在将参照附图,仅通过示例描述本发明的实施方式,附图中:

图1是根据本发明的优选实施方式的模片键合机的平面图;

图2是用于执行模片键合的惰性环境系统的侧视图;

图3是惰性环境系统的包括用于接收待处理的基板的可动键合段的部分的立体图;

图4是惰性环境系统中包括的芯部惰性环境的立体图;

图5是芯部惰性环境中包括的示例性气体流的剖面图;

图6是示出从其产生的空气流的键合段的立体图;

图7是惰性环境系统中包括的小型惰性环境的侧视图;以及

图8示出了结合在模片键合机中的焊剂排气系统。

在附图中,相同的部件用相同的附图标记表示。

具体实施方式

图1是根据本发明的优选实施方式的模片键合机10的平面图。模片键合机10包括转移系统,诸如高速转移系统12,其构造成将键合基板或者模片封装输送到基板转移臂(STA)14的基板转移臂(STA)头16操作成拾取基板所在的位置。基板从基板供应装置13被转移到高速转移系统12。可沿X轴移动的STA 14被构造成输送基板并且将基板放置到位于加载位置的键合段60上。可沿X-Y轴移动的键合段60可在第一惰性气体容器或者大型惰性环境40下方移动。大型惰性环境40具有第一惰性气体浓度。大型惰性环境40包括具有第二惰性气体浓度的第二惰性气体容器或者芯部惰性环境50。第二惰性气体浓度具有比第一惰性气体浓度更高的惰性气体浓度。换言之,位于大型惰性环境40内的芯部惰性环境50具有比大型惰性环境40更低的氧浓度。键合段可位于大型惰性环境40或者芯部惰性环境50的下方。键合段60被构造成将基板从基板被加载到键合段60上的加载位置输送到在芯部惰性环境50下方的执行模片键合所在的键合位置。在键合段60将基板移动到大型惰性环境40下方之前可以使用清洁系统(未示出)来清洁基板。

模片拾取臂(DPA)20的模片拾取臂(DPA)头22被构造成从半导体模片供应装置15拾取模片。DPA 20被构造成将模片输送到位于大型惰性环境40内的模片输送器或者模片转移器臂(DTA)30。DTA 30被构造成将模片输送到大型惰性环境40内的拾取位置以待由键合头52拾取。基板和模片到键合位置的输送可以同时执行。

图2是用于执行模片键合的惰性环境系统90的侧视图。具体地,惰性环境系统40保护模片24和基板26免受杂质和氧化的影响,尤其是当模片24和基板26的温度高的时候,例如在键合之前、期间和之后。惰性环境系统90包括大型惰性环境40、位于大型惰性环境40内的芯部惰性环境50以及位于大型惰性环境40下方的第三惰性气体容器或者小型惰性环境80。小型惰性环境80具有与大型惰性环境40和芯部惰性环境50分离的惰性气体环境。小型惰性环境80安装在键合段60上,基板26可以定位在键合段上以用于模片键合。

大型惰性环境40包括大型惰性室44以及覆盖大型惰性室44的底部的大型惰性室基板42。大型惰性室44还包括位于该大型惰性室44的侧壁上的DTA开口32。DTA开口32被构造成允许DPA 20将模片24转移到DTA 30。大型惰性室基板42包括大体位于该大型惰性室基板42的中心处的第一容器开口或者键合排气窗(BEW)开口70。芯部惰性环境50包括与BEW开口70和拾取位置对准的第二容器开口74,从而使得键合头52能够移动到大型惰性环境40中的拾取位置,以从DTA 30拾取模片24。第二容器开口74和BEW开口70还与键合位置对准,从而使得键合头52能够移动到键合位置,以将模片键合到基板26。BEW开口70和第二容器开口74将大型惰性环境40、芯部惰性环境50以及小型惰性环境80流体地连接。大型惰性环境40提供低氧惰性环境,以保护模片24,在将模片24移动到拾取位置的情况下,该模片24通常还未被加热以进行键合。大型惰性环境40不具有直接的惰性气体供应装置,而是通常被被动地填充有从芯部惰性环境50和/或小型惰性环境80溢流的惰性气体。大型惰性环境40还可以包括检查光学装置,以执行预键合检查和/或键合后检查。

芯部惰性环境50包括在其底部处具有第二容器开口74的芯部惰性室54。键合头52位于芯部惰性环境50内。芯部惰性环境50大体位于BEW开口70的上方。键合头52操作成将模片24从芯部惰性环境50内的第一位置移动到小型惰性环境80内的第二位置,以将模片24键合到位于小型惰性环境80内的基板26上。DTA 30被构造成将模片24输送到键合头52的下方,以使键合头52拾取模片24。键合头包括用于将模片24加热到键合温度的模片头加热器(未示出)。高浓度的惰性气体(例如氮)被连续地供应到芯部惰性环境50中,以将氧的浓度保持得尽可能低,以在模片24由键合头52加热时保护模片24免受氧化的影响。

键合段60包括键合段加热器46、位于键合段加热器46上的键合段基座66以及沿着键合段60的周缘的壁62。键合段基座66被构造成保持基板26,并且键合段加热器46被构造成加热基板26以用于键合。在键合段60移动到大型惰性环境40的下方时形成小型惰性环境80。小型惰性环境80主要包括键合段60的由侧面上的壁62、底部上的键合段基座66以及顶部上的大型惰性室基板42封闭的部分。在壁62和大型惰性室基板42之间具有间隙,该间隙允许小型惰性环境80在大型惰性环境40下方自由地移动。小型惰性环境80提供了低氧惰性环境以在基板26由键合段加热器46加热时(例如在将基板26输送到芯部惰性环境50下方的键合位置时)保护基板26。当小型惰性环境80位于芯部惰性环境50的下方时,一些惰性气体从芯部惰性环境50流动到小型惰性环境80,因此向小型惰性环境80提供惰性气体的供应。

图3是图2的惰性环境系统90的一部分的立体图,包括用于接收待被处理的基板26的可动键合段60。可动键合段60包括XY台。壁62包括键合段惰性气体出口64,该键合段惰性气体出口64围绕或者封闭歧管结构中的小型惰性环境80的侧面。DTA开口32被构造成允许DPA 20将模片24转移到DTA 30。DPA 20操作成延伸穿过DTA 开口32,以将模片转移到DTA 30。由DPA 20将模片24向大型惰性环境40中的转移通常被尽可能快地执行,以减少模片24被暴露于周围空气的时间,从而使模片24的氧化最小。为了使大型惰性环境40和周围空气之间的气体交换最小,可以在DTA开口32处设置门(未示出)。门可以包括机械卷帘门,其仅在DPA 20将模片24转移到DTA 30时打开并且在其它时间保持关闭。

图4是惰性环境系统90中包括的芯部惰性环境50的立体图。芯部惰性室54可以包括位于侧壁处的透明窗口58,以允许用户观察芯部惰性环境50。芯部惰性环境50包括高浓度的惰性气体和低浓度的氧,以在模片24由键合头52加热到氧化更容易发生的高温时防止氧化。惰性气体被主动且直接地供应到芯部惰性环境50以保持高浓度的惰性气体和低浓度的氧。芯部惰性室54包括用于将惰性气体供应到芯部惰性环境50的惰性气体入口34、连接到惰性气体入口34的多个惰性气体出口或者扩散器36以及用于将来自惰性气体入口34的惰性气体输送到扩散器36的流动通道板38。覆盖芯部惰性室54的顶部的流动通道板38包括四个周缘侧壁,这些侧壁限定键合头开口56以定位键合头52。垫圈层37放置在流动通道板38的顶表面上。扩散器36沿着流动通道板38的两个相对的周缘侧壁定位。

图5是芯部惰性环境50中包括的示例性气体流的剖视图。惰性气体供应装置(未示出)经由惰性气体入口34连接到芯部惰性环境50,以向芯部惰性环境50供应惰性气体。惰性气体从惰性气体入口34流入到流动通道板38中,然后流入到扩散器36。相等地间隔开的扩散器36将惰性气体均匀地分布到芯部惰性环境50中。扩散器36围绕键合头52和模片24并且朝向位于芯部惰性环境50的底部处的第二容器开口74引导层状向下的惰性气体流。扩散器36可以被构造成减慢惰性气体的流动速度,以更佳地产生层状向下流以及芯部惰性环境50内的均匀浓度的惰性气体。这样,产生适当的环境以进行键合并且保护被加热的模片24免受氧化。

芯部惰性环境50位于大型惰性室基板42的BEW开口70的正上方。当小型惰性环境80位于键合位置时,小型惰性环境80位于芯部惰性环境50和BEW开口70的正下方。来自扩散器36的惰性气体充满芯部惰性环境50并且向下朝向BEW开口70流动。

图6示出了键合段60的立体图,以示出从其产生的空气流。键合段60包括壁62,壁62包括键合段惰性气体出口64,键合段惰性气体出口64围绕歧管结构中的小型惰性环境80。键合段惰性气体出口64包括外惰性气体出口69,该外惰性气体出口69向上引导惰性气体,由此在键合段惰性气体出口64上方形成屏障或者空气帘。键合段60还包括内小型惰性室气体出口68,其将惰性气体供应到小型惰性环境80中。键合段60还包括附加存储空间65,该附加存储空间65位于壁62中的一个壁和基板26可被定位以进行模片键合所在的位置之间。附加存储空间65例如可以用作喷嘴组,以存储不同的喷嘴来拾取不同的模片。在键合头52和喷嘴由芯部惰性环境50和小型惰性环境80保护的情况下,键合头52在键合过程期间的任何时间可以改变到能够安装在键合头52上的不同的喷嘴。

图7是惰性环境系统90中包括的小型惰性环境80的侧视图。在键合段60移动到大型惰性环境40下方时,产生可动的小型惰性环境80。小型惰性环境80主要包括键合段60的由侧面上的壁62、底部上的键合段基座66以及顶部上的大型惰性室基板42封闭的部分。在壁62的键合段惰性气体出口64和大型惰性环境40的大型惰性室基板42之间存在间隙,从而使得小型惰性环境80可以在大型惰性环境40下方并且相对于大型惰性环境40和芯部惰性环境50自由地移动。外惰性气体出口69朝向大型惰性环境40的大型惰性室基板42排出惰性气体,以形成屏障或者空气帘来限制周围空气进入小型惰性环境80。由从外惰性气体出口69流动的惰性气体形成的空气帘被设计成限制小型惰性环境80和周围空气之间的气体交换。来自外惰性气体出口69的惰性气体直接流向大型惰性室基板42,并且惰性气体流分开从而使得惰性气体流的一部分向内被引导到小型惰性环境80中。这样,空气帘限制周围空气进入小型惰性环境80中,即使在小型惰性环境80移动到大型惰性环境40下方时也如此。

小型惰性环境80用于保护基板26免受氧化。基板26被放置在周围空气环境中的键合段60上,但是在键合段60移动到大型惰性环境40下方时,产生小型惰性环境80。当小型惰性环境80产生时,基板26可以被安全地加热,这是因为小型惰性环境80保护基板26在输送到大型惰性环境40下方期间以及键合期间免受氧化。

图8示出了模片键合机中结合的焊剂排气系统。在键合期间,保持模24的键合头52将模片24加热达至适当的温度以进行键合,并且向下朝向已由键合段加热器46加热到适当温度的基板26移动以用于键合。键合头52向下移动通过BEW开口70和第二容器开口74,直到模片24接触基板26时为止。模片24然后键合到高温下的基板26,并且在键合期间产生汽化焊剂。焊剂排气系统包括焊剂排气入口72、连接到焊剂排出入口72的蒸汽冷凝器(未示出)以及连接到蒸汽冷凝器的存储收集器(未示出),并且焊剂排气系统被构造成移除汽化焊剂。大型惰性室基板42包括第一板76和第二板78,第一板76包括第一孔77,第二板78包括与第一孔77对准的第二孔79。第一孔77和第二孔79一起形成BEW开口70。焊剂排气入口72位于BEW开口70处,并且焊剂排气入口72包括位于第一板76和第二板78之间的空间。汽化焊剂可以从第一板76和第二板78之间的BEW开口70进入焊剂排气入口72。焊剂排气入口72的形状例如可以是圆形的,从而使得汽化焊剂从所有方向进入圆形形状的焊剂排气入口72。焊剂排气系统产生抽吸力以将在键合期间产生的汽化焊剂提取到焊剂排气入口72中,并且之后从焊剂排气系统排出焊剂排气。

焊剂排气系统还被构造成在小型惰性环境80不位于BEW开口70下方时提取周围空气,从而使得当小型惰性环境不位于BEW开口70下方时防止周围空气进入小型惰性环境80。另外,焊剂排气系统被构造成在小型惰性环境80移动到BEW开口70的下方时将周围空气提取到小型惰性环境80中。此外,焊剂排气系统可以被构造成将惰性气体供应装置与小型惰性环境80相关联,从而使得即使不具有由从外惰性气体出口69流动的惰性气体形成的空气帘,也防止周围空气进入到小型惰性环境80中。

大型惰性环境40中氧的浓度可大可小,但是通常为50ppm(百万分率)至100ppm。芯部惰性环境50中氧的浓度也可以大小不一,但是通常为0ppm至50pmm。小型惰性环境80中氧的浓度也可大小不一,但是通常为0ppm至50pmm。

尽管已参照一些实施方式相当详细地描述了本发明,但其它实施方式也是可行的。

例如,如果不设置DTA开口32处的门,则可以提供惰性气体空气帘,以使得大型惰性环境40和周围空气之间的气体交换最少。

因此,所附权利要求的精神和范围不应被限制于本文所包含的实施方式的描述。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1