生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用与流程

文档序号:11835985阅读:878来源:国知局
生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用与流程

本发明涉及GaN薄膜,特别涉及生长在铝酸镁钪(ScMgAlO4)衬底上的GaN薄膜及其制备方法、应用。



背景技术:

GaN及III-族氮化物由于宽禁带、稳定的物理化学性质、高的热导率和高的电子饱和速度等优点,广泛应用于发光二极管(LED)、激光器和光电子器件等方面。

目前,GaN基器件主要是基于蓝宝石衬底。蓝宝石与GaN的晶格失配高达13.3%,导致外延GaN薄膜过程中形成很高的位错密度,从而降低了材料的载流子迁移率,缩短了载流子寿命,进而影响了GaN基器件的性能。其次,由于室温下蓝宝石热膨胀系数(6.63×10-6K-1)较GaN的热膨胀系数(5.6×10-6K-1)大,两者间的热失配度约为27%;当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。再次,由于蓝宝石的热导率低(100℃时为25W/m.K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。因此迫切寻找一种晶格和热膨胀系数匹配的衬底材料应用于外延生长GaN薄膜。



技术实现要素:

为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种生长在铝酸镁钪衬底上的GaN薄膜,铝酸镁钪衬底材料与GaN的晶格失配率仅为1.8%,热失配小(9.7%),有利于GaN的形核;基于此衬底材料生长的GaN薄膜,具有晶体质量好,位错密度低的优点。

本发明的目的之二在于提供上述生长在铝酸镁钪衬底上的GaN薄膜的制备方法。

本发明的目的之三在于提供上述生长在铝酸镁钪衬底上的GaN薄膜的应用。

本发明的目的通过以下技术方案实现:

生长在铝酸镁钪衬底上的GaN薄膜,包括依次生长在ScMgAlO4衬底上的GaN缓冲层、GaN形核层,GaN非晶层和GaN薄膜。

所述ScMgAlO4衬底以(0001)面偏(11-20)面0.5~1°为外延面。

所述GaN缓冲层的厚度为30~80nm。

所述GaN形核层的厚度为50~150nm。

所述GaN非晶层的厚度为10~120nm。

所述GaN薄膜的厚度为100~500nm。

生长在铝酸镁钪衬底上的GaN薄膜的制备方法,包括以下步骤:

(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)面0.5~1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;

(2)衬底退火处理:将衬底放入退火室内,在600~700℃下对ScMgAlO4衬底进行退火处理1~2h,获得原子级平整的衬底表面;

(3)GaN缓冲层外延生长:衬底温度调为450~550℃,采用脉冲激光沉积在反应室的压力为1.0~4.0×10-5Pa、激光能量密度为1.5~3.0J/cm2的条件下生长GaN缓冲层;

(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(3)得到的GaN缓冲层上生长GaN薄膜;

(5)GaN非晶层的生长:采用分子束外延生长工艺,将衬底保持在350~400℃,在反应室的压力为1.2~2.0×10-4Pa、生长速度为0.5~0.6ML/s条件下,在步骤(4)得到的GaN形核层上生长GaN非晶层,释放生长中引入的应力;

(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500~600℃,在反应室的压力为6.0~8.0×10-5Pa、生长速度为0.6~0.8ML/s条件下,在步骤(5)得到的GaN非晶层上生长GaN薄膜。

所述的生长在铝酸镁钪衬底上的GaN薄膜的应用,用于制备LED或光电探测器。

ScAlMgO4晶体属于六方晶系,晶格常数a=0.3246nm,c=2.5195nm,具有菱形六面体层状结构,与纤锌矿氮化物和氧化锌的结构相似。ScAlMgO4是一种与GaN和ZnO晶格常数和结构非常匹配的衬底材料。它与GaN的晶格失配率约为1.8%,与ZnO的晶格失配率仅为0.09%,a轴的热膨胀系数为6.2×10-6/℃,c轴的热膨胀系数为12.2×10-6/℃,与GaN、ZnO外延薄膜之间的热膨胀系数失配比传统的蓝宝石和硅等衬底好的多,可制作大尺寸衬底,降低成本。

与现有技术相比,本发明具有以下优点和有益效果:

(1)本发明使用铝酸镁钪作为衬底,ScMgAlO4衬底与GaN晶格失配小(1.8%),热失配小(9.7%),并且价格便宜,有利于降低生产成本,铝酸镁钪衬底生产工艺成熟,可制作大尺寸衬底;ScMgAlO4热导率要比蓝宝石高,有利于制备大功率器件。

(2)本发明使用铝酸镁钪作为衬底,外延生长GaN薄膜前,先采用脉冲激光沉积低温生长GaN缓冲层。GaN缓冲层可以提供形核的中心,容易获得岛状GaN,为下一步外延高质量低缺陷的GaN薄膜做铺垫。

(3)本发明外延生长中采用了GaN非晶层这一结构。GaN非晶层由晶体向非晶转变过程中,有效释放了薄膜生长中应力,减少了缺陷;从而易于在此基础上生长高质量的GaN薄膜。

(4)本发明制备得到的GaN薄膜,X射线摇摆曲线半峰宽数值小,晶体质量高,位错密度低。另外采用与GaN晶格失配和热失配度小的铝酸镁钪作为衬底,能够有效的减少热应力和位错的形成,有利于高质量GaN薄膜的生长。制备得到的GaN基光电材料器件的载流子辐射复合效率高,可大幅度提高氮化物器件如半导体激光器、发光二极管及太阳能电池的发光效率。

(5)本发明的生长工艺简单易行,具有可重复性。

附图说明

图1为实施例1制备的GaN薄膜的截面示意图。

图2为实施例1制备的GaN非晶层的反射高能电子衍射仪(RHEED)图。

图3为实施例1制备的GaN薄膜(GaN(0002))的高分辨X射线衍射(HRXRD)图谱。

图4为实施例1制备的GaN薄膜(GaN(10-12))的高分辨X射线衍射(HRXRD)图谱。

图5为实施例1制备的GaN薄膜的显微镜(100X)图谱。

图6是5000倍下GaN薄膜表面的SEM图。

具体实施方式

下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。

实施例1

生长在铝酸镁钪衬底上的高质量GaN薄膜的制备方法,包括以下步骤:

(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)面0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;

(2)衬底退火处理:将衬底分子束外延真空生长室内,在600℃下对铝酸镁钪衬底进行退火处理1小时,获得原子级平整表面;

(3)GaN缓冲层外延生长:衬底温度调为450℃,采用脉冲激光沉积在反应室的压力为2.0×10-5Pa、激光能量密度为1.8J/cm2的条件下生长30nm厚的GaN缓冲层;

(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为6.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(3)得到的GaN缓冲层上生长厚度为100nm的GaN薄膜;

(5)GaN非晶层的外延生长:采用分子束外延生长工艺,将衬底保持在550℃,在反应室的压力为1.6×10-4Pa、生长速度为0.8ML/s条件下,在步骤(4)得到的GaN形核层上生长厚度为120nm的GaN非晶层,释放生长中引入的应力;

(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为6.0×10-5Pa、生长速度为0.6ML/s条件下,在步骤(5)得到的GaN非晶层上生长厚度为200nm的GaN薄膜。

如图1所示,本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜,包括生长在ScMgAlO4衬底11上的GaN缓冲层12;生长在GaN缓冲层12上的GaN形核层13;生长在GaN形核层13上的GaN非晶层14;生长在GaN非晶层14上的GaN薄膜15。

图2为实施例1制备的GaN非晶层的反射高能电子衍射仪(RHEED)图,证明是GaN非晶层,可以有效释放应力,减少缺陷。图3~4是本实施例制备的GaN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,GaN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于0.2°,GaN(10-12)的半峰宽值为0.4°;表明在ScMgAlO4衬底上外延生长出了高质量的GaN薄膜。

图5是本实施例制备的GaN薄膜的显微镜(OM)图谱,可以看到GaN薄膜表面光滑且平整。

图6是5000倍下GaN薄膜表面的SEM图,可以看到平整的GaN薄膜。

将本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜用于制备LED:在本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜上依次外延生长Si掺杂的n型掺硅GaN、InxGa1-xN多量子阱层、Mg掺杂的p型掺镁的GaN层,最后电子束蒸发形成欧姆接触。在铝酸镁钪衬底上制备得到的GaN基LED器件,其n型GaN的厚度约为8μm,其载流子的浓度为1×1019cm-3;InxGa1-xN/GaN多量子阱层的厚度约为240nm,周期数为15,其中InxGa1-xN阱层为3nm,GaN垒层为13nm,p型掺镁的GaN层厚度约为400nm,其载流子的浓度为2×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.5mW,开启电压值为3V。

将本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜用于制备MSM型紫外光电探测器:在本实施例制备的生长在铝酸镁钪衬底上的GaN薄膜,依次进行光刻显影,电子束蒸发沉积电极形成肖特基接触,退火等工艺。其中沉积电极厚度约为80μm,退火温度为500℃,退火时间为180s。本实施例所制备的光电探测器在10V偏压下,暗电流仅为9pA;并且器件在3V偏压下,在365nm处响应度的最大值达到了0.15A/W;光响应从10%上升到90%仅用50ps。

实施例2

生长在铝酸镁钪衬底上的GaN薄膜的制备方法,包括以下步骤:

(1)衬底以及其晶向的选取:采用ScMgAlO4衬底,以(0001)面偏(11-20)方向0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于ScMgAlO4的(0001)面;

(2)衬底退火处理:将衬底分子束外延真空生长室内,在700℃下对铝酸镁钪衬底进行退火处理2小时,获得原子级平整表面;

(3)GaN缓冲层外延生长:衬底温度调为500℃,采用脉冲激光沉积在反应室的压力为3.0×10-5Pa、激光能量密度为2.0J/cm2的条件下生长80nm厚的GaN缓冲层;

(4)GaN形核层的外延生长:采用分子束外延生长工艺,将衬底保持在600℃,在反应室的压力为8.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(3)得到的GaN缓冲层上生长厚度为150nm的GaN薄膜;

(5)GaN非晶层的生长:采用分子束外延生长工艺,将衬底保持在350℃,在反应室的压力为1.4×10-4Pa、生长速度为0.6ML/s条件下,在步骤(4)得到的GaN形核层上生长厚度为50nm的GaN非晶层,释放生长中引入的应力;

(6)GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底保持在500℃,在反应室的压力为8.0×10-5Pa、生长速度为0.8ML/s条件下,在步骤(5)得到的GaN非晶层上生长厚度为400nm的GaN薄膜。

本实施例制备的铝酸镁钪衬底上的GaN薄膜具有非常好的光学性能,测试数据与实施例1相近,在此不再赘述。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1