挠性透明聚酰亚胺层压板及其制造方法与流程

文档序号:12036242阅读:400来源:国知局
挠性透明聚酰亚胺层压板及其制造方法与流程

本发明涉及一种挠性透明聚酰亚胺层压板及其制造方法,特别涉及一种以有机不可溶聚酰亚胺作为粘合剂,将导电层贴附在基板的聚酰亚胺层压板及其制造方法。



背景技术:

近年来,挠性电子产品如可卷曲和弯曲的液晶显示器、有机发光二极管、薄膜式太阳能电池等,由于产品的轻量化与超薄组件的特性而倍受瞩目。目前,以化学气相层析(cvd)制备的铟锡氧化物(ito)薄膜因具有优异的光学透明性和导电性而成为应用最广泛的材料。然而,ito膜易脆,在受到弯曲时容易损坏,严重限制其在挠性基板上的应用。此外,铟资源的匮乏、较高的沉积温度与昂贵的真空蒸镀设备等限制,促使厂商寻找低成本、挠性的替代材料。

导电高分子、纳米碳管(cnt)、石墨烯以及金属纳米线等都是备受期望的替代材料。导电高分子具有挠性与导电性,但其具有较高表面电阻与较强的光学吸收,因此单纯使用导电高分子是无法达到实际应用的要求。此外,纳米碳管与石墨烯需藉由化学气相沉积法制备而成,所需的设备成本较高。因此,金属纳米线被认为是未来最有可能取代铟锡氧化物的一种具有潜力的材料。

传统以金属纳米线作为导电膜的制程中,是将金属纳米线分散于溶剂中,再经过涂布等方法制得导电膜。此种制备方法简单,但金属纳米线与基材之间黏附力差,容易造成剥落。而且,纳米线分散液的黏度很低,在涂布过程中容易产生流动而造成涂布不均匀和团聚等问题。



技术实现要素:

鉴于上述问题,本发明提供一种挠性透明聚酰亚胺层压板,其使用有机不溶性的透明聚酰亚胺作为粘合剂(binder)或保护剂(protector),改善纳米金属线容易剥落的缺点,且有机不可溶的特性,使导电层不受溶剂的侵蚀影响,可增加后续制程弹性。

根据本发明一个实施例,提供一种挠性透明聚酰亚胺层压板。该挠性透明聚酰亚胺层压板包括导电层、黏着层及透明聚酰亚胺基板。该导电层中含有多个纳米金属线,该黏着层由有机不溶性的透明聚酰亚胺制成,该导电层通过该黏着层而贴附至该透明聚酰亚胺基板。该黏着层由芳环族二酸酐与下列材料中其一脱水闭环而形成:脂环族二胺、含氟二胺、以及脂环族二胺与含氟二胺的组合。

根据本发明另一个实施例,提供一种挠性透明聚酰亚胺层压板的制造方法。所述制造方法包括将含多个纳米金属线的溶液涂布于基质上,以形成预备导电层;于该预备导电层上涂布聚酰胺酸溶液;加热使涂布于该预备导电层上的该聚酰胺酸溶液闭环,以形成黏着层;于该黏着层上涂布聚酰亚胺,并使其干燥形成基板;以及自该预备导电层移除该基质。其中该聚酰胺酸溶液由芳环族二酸酐与下列材料中其一聚合而形成:脂环族二胺、含氟二胺、以及脂环族二胺与含氟二胺的组合。

为使本发明的上述及其他方面更为清楚易懂,下文特举实施例,并配合所附图式详细说明。

附图说明

图1示意说明根据本发明实施例的挠性透明聚酰亚胺层压板的结构;

图2a为以不同长径比纳米银线制得的挠性透明聚酰亚胺层压板在波长为550nm下的穿透率与片电阻的关系图;

图2b说明有机不可溶聚酰亚胺与高透明性聚酰亚胺的可见光穿透率,其各厚度为30微米;

图3a至图3e说明本发明的挠性透明聚酰亚胺层压板的制造流程;

图4a至图4e说明本发明中作为黏着层及基板的聚酰亚胺聚合物的不同合成例的傅利叶红外线分析(ftir)图谱,其说明这种聚酰亚胺聚合物合成例的组成;

图5为本发明的挠性透明聚酰亚胺层压板中的导电层所含的纳米银线的扫瞄式电子显微影像(sem图);

图6说明以本发明方法所制备的不同导电度的层压板的uv-vis光谱图;

图7说明本发明的挠性透明聚酰亚胺层压板的片电阻与品质因子和在波长550nm下的穿透率的关系;

图8a与图8b为本发明的挠性透明聚酰亚胺层压板在不同放大倍率下的sem图;及

图9a与图9b分别说明本发明的挠性透明聚酰亚胺层压板与传统聚酰亚胺层压板的耐化学性测试结果。

具体实施方式

请参阅图1,其是根据本发明一个具体实施例所提供的挠性透明聚酰亚胺层压板100的结构示意图,本发明的挠性透明聚酰亚胺层压板100包括由导电层130、黏着层120及透明聚酰亚胺基板110组成的三层结构。导电层130中含有多个纳米金属线。黏着层120是以有机不溶性的透明聚酰亚胺所制成,且其由芳环族二酸酐与下列材料中其一脱水闭合而形成:脂环族二胺、含氟二胺、以及脂环族二胺与含氟二胺的组合。导电层130通过黏着层120而贴附至透明聚酰亚胺基板110上。

根据本发明,上述导电层130内所含纳米金属线的金属优选自由金、银、铜、镍、钛所组成的群组。纳米金属线优选为纳米银线,其可由改良式多元醇法(modifiedpolyolprocess)制备而成,长度可为10至100微米,直径可为20至100纳米,且长径比(aspectratio=length/diameter)平均值(l/d)大于400,优选为500至600。

根据本发明,导电层130中纳米金属线的长径比会影响导电层130的光穿透率。如图2a所示,其说明了以长径比(l/d)分别为350和600的纳米银线作为导电层的挠性透明聚酰亚胺层压板在波长为550nm下的穿透率与片电阻关系,由图可知,以较大长径比的纳米银线作为导电层,其在相同电阻率下具有较佳的光穿透度,有助于提升透明导电膜的穿透率以及降低导电层的片电阻值。

上述有机不溶性的透明聚酰亚胺黏着层120作为导电层的粘合剂(binder)或保护剂(protector),可以保护导电层中的纳米金属线。较之现有技术中利用涂布方式所形成的导电层,本发明中所采用的黏着层可改善纳米金属线容易剥落的缺点,并使含纳米金属线的导电层不受溶剂的侵蚀影响,可增加后续制程弹性。

在本文中,“有机不溶性”是指本发明的透明聚酰亚胺黏着层在有机溶剂浸泡下,在室温及/或加热至沸腾温度5小时后皆不溶于该有机溶剂中。该有机溶剂例如为n,n-二甲基甲酰胺(dmf)、n,n-二甲基乙酰胺(dmac)、n,n-二乙基乙酰胺、n-甲基吡咯烷酮(nmp)、二甲基亚砜(dmso)、间-甲酚(m-cresol)、二氯甲烷、四氢呋喃(thf)、氯仿或丙酮等常用有机溶剂。

上述有机不溶性的透明聚酰亚胺黏着层可由芳环族二酸酐与下列材料中其一脱水闭环而形成:脂环族二胺、含氟二胺、以及脂环族二胺与含氟二胺的组合。含氟二胺中的氟原子,可藉由其强拉电子的能力来减少电荷转移;脂肪族二胺中的脂肪族结构可阻止分子链与链之间,或分子链内的电荷转移,此类单体可形成高透明度的无色聚酰亚胺,具有光学应用方面的优势。

根据本发明,上述黏着层120的厚度为0.1至5微米,优选为0.1至1微米,更优选为0.1至0.5微米。

上述芳环族二酸酐包含:苯均四酸二酐、3,3′,4,4′-联苯四羧酸二酐、2,2-双(3,4-二羧基苯基)六氟丙酸二酐、4-(2,5-二氧代四氢呋喃-3-基)-1,2,3,4-四氢萘-1,2-二甲酸酐。脂环族二胺包含:1,4-环己烷二胺、4,4'-二氨基二环己基甲烷、1,4-环己烷二甲胺。含氟二胺包含:2,2'-双(三氟甲基)-联苯胺、2-三氟甲基-联苯胺。特别注意的是,有机不溶性的透明聚酰亚胺黏着层并不限定仅能使用单一一种芳环族二酸酐、脂环族二胺或含氟二胺进行制备,也即可使用两种以上的芳环族二酸酐、两种以上的脂环族二胺或两种以上含氟二胺进行制备。

根据本发明,上述透明聚酰亚胺基板110使用高透明性聚酰亚胺作为原料,其在厚度为30微米时的可见光穿透率大于90%,藉此可提升完成挠性透明聚酰亚胺层压板的整体可见光穿透率。如图2b所示,较之有机不可溶聚酰亚胺同时作为黏着层与基板(厚度为30微米,其可见光光穿透率约为85%),本发明的挠性透明聚酰亚胺层压板使用高透明性聚酰亚胺基板作为基板,结合作为黏着层的有机不溶性聚酰亚胺(其厚度为0.1~5μm),本发明的层压板的可见光穿透率可被提升至约90%。

本发明的透明聚酰亚胺基板利用二酸酐与二胺脱水闭环所形成,其中二酸酐包含:苯均四酸二酐、3,3’,4,4’-联苯四羧酸二酐、2,2-双(3,4-二羧基苯基)六氟丙酸二酐、3,3’,4,4’-二苯甲酮四羧酸二酐、3,3’,4,4'-二苯醚四羧酸二酐、1,2,3,4-丁烷四羧酸二酐、1,2,3,4-环丁烷四羧酸二酐、1,2,4,5-环己烷四羧酸二酐、双环(2,2,2)八-7-碳烯-2,3,5,6-四羧酸二酐、双环(2,2,2)辛烷-2,3,5,6-四羧酸二酐、1,4-环己烷双偏苯三酸二酐、4-(2,5-二氧代四氢呋喃-3-基)-1,2,3,4-四氢萘-1,2-二甲酸酐,上述二酐可单独使用,或两种以上并用。二胺则包含:2,2’-双(三氟甲基)-联苯胺、2-三氟甲基-联苯胺、2,2-双(4-胺基苯基)六氟丙烷、4,4’-二胺基二苯醚、2,2’-二甲基-4,4’-二胺基联苯、3,3’-二胺基二苯砜、4,4’-二胺基二苯砜、4,4’-二胺基二苯基甲烷、2-双(4-(4-胺基苯氧基)苯基)丙烷、2,2-双(4-(4-胺基苯氧基)苯基)六氟丙烷、1,3-二(3-胺基丙基)-1,1,3,3-四甲基二硅氧烷、1,4-环己烷二胺、4,4’-二氨基二环己基甲烷、1,4-环己烷二甲胺,上述二胺可单独使用,或两种以上并用。

上述透明聚酰亚胺基板110的厚度为10至100微米,优选为10至50微米,更优选为10至30微米。

本发明另提供一种制造上述挠性透明聚酰亚胺层压板的方法。本发明的挠性透明聚酰亚胺层压板的制造方法包括下列步骤:(1)将含前述纳米金属线的溶液涂布于基质350上,以形成预备导电层330,如图3a所示;(2)于该预备导电层330上涂布聚酰胺酸溶液涂层320’,如图3b所示;(3)于真空下进行加热,使涂布于该预备导电层330上的该聚酰胺酸溶液闭环,以形成黏着层320,如图3c所示;(4)于该黏着层上涂布聚酰亚胺,并使其干燥形成基板310,如图3d所示;(5)以及自该预备导电层移除该基质350,以形成该挠性透明聚酰亚胺层压板300,如图3e所示。

在上述步骤(1)中,纳米金属线分散于适当溶剂中而形成含有纳米金属线的溶液(下称“纳米金属线溶液”),所述溶剂例如为水、醇类(酒精、丙醇等)、酮类(丙酮)、甲苯、己烷、二甲基甲酰胺、四氢呋喃、酯类(乙酸乙酯)、醚类、烃类、芳香族溶剂(二甲苯)、丙二醇单甲基醚(pgme)、丙二醇单甲基醚酯(pgmea)等,也可混合一种以上的溶剂。纳米金属线溶液可经由旋转涂布法、浸渍法、喷涂法、刮条涂布法、狭缝涂布法、线棒式湿膜涂布法等涂布方法涂布于该基质上,并加热干燥以形成该预备导电层。加热干燥的方法例如可将涂布纳米金属线溶液的基材置于约80-100℃的真空烘箱中进行干燥。

在本发明中,“基质”是指供纳米金属线溶液涂覆并干燥于其上的支撑物质,其可包括:聚酰亚胺、聚酰胺等塑料基板;铜、铝、不锈钢等金属基板,或玻璃基板等。

在上述步骤(2),聚酰胺酸溶液即本发明的有机不溶性聚酰亚胺黏着层的前体。聚酰胺酸溶液是由芳环族二酸酐与脂环族二胺及/或含氟二胺聚合而成,将聚酰胺酸溶液脱水闭环则可得有机不溶性聚酰亚胺黏着层(材料与前述第【0024】段至第【0026】段所述相同)。有机不溶性聚酰亚胺黏着层的详细制造方法是将其前体(聚酰胺酸溶液)以旋转涂布法、浸渍法、喷涂法、网版印刷法、柔性版印刷法、刮条涂布法、狭缝涂布法、线棒式湿膜涂布法等涂布方法涂布于步骤(1)的预备导电层上,接着再使聚酰胺酸溶液环化形成聚酰亚胺黏着层。

于上述步骤(3)中,加热聚酰胺酸溶液而使其闭环,可控制此加热温度为达到纳米金属线的退火温度。退火可以降低纳米金属线的电阻,而退火温度会依据纳米金属线材质及长径比不同改变。在纳米金属线的制备过程中,可能会有高分子覆盖剂残留在纳米金属在线,加热到退火温度可使部分的覆盖剂裂解。此外,若采用熔点较低的纳米银线时(熔点200℃),退火可使一部分银线熔融,使线与线之间的接触电阻降低,降低导电层的电阻率,增加导电度。

在上述步骤(4)中,所述基板即为前述透明聚酰亚胺基板,该基板所使用的聚酰亚胺为高透明性聚酰亚胺,其以如第【0028】段所述的材料制成。高透明性聚酰亚胺聚合的方法可用溶剂溶解二酸酐单体及二胺单体,再将经溶解的二酸酐单体与二胺单体混合反应,便可得到聚酰胺酸溶液,并进一步在250~350℃下进行环化脱水反应,也可加入催化剂帮助脱水反应。将上述环化脱水后所得的聚酰亚胺涂布于黏着层上,并经干燥后即得本发明所述高透明性聚酰亚胺基板。

最后,如步骤(5)所述,自该预备导电层上剥离/移除该基质,即完成本发明的挠性透明聚酰亚胺层压板。此制备方法为先于基质上形成预备导电层,并于预备导电层上形成黏着层,以黏着层将预备导电层/黏着层的两层结构转印到透明聚酰亚胺基板上,最后移除基质,制成挠性透明聚酰亚胺层压板。

本发明的挠性透明聚酰亚胺层压板的优点包括:产品表面平滑,应用于各种装置上时,着色及涂布等皆较均匀;使用有机不溶性聚酰亚胺作为粘合剂,不但耐高温,也可防止有机溶剂造成纳米金属线的脱落;纳米金属线退火与黏着层的闭环处理为同一个步骤,使制备方式较简便;将聚酰亚胺涂布至具有纳米金属线的导电层上,重力可使得该纳米金属线所形成的网络更加紧密,可更进一步促使电阻值下降;以高透明性聚酰亚胺作为基板,可提升挠性透明聚酰亚胺层压板的可见光穿透率。

此外,本发明挠性透明聚酰亚胺层压板的黏着层(有机不溶性聚酰亚胺)以及基板(高透明性聚酰亚胺)的玻璃转移温度大于320℃,在空气中热裂解5wt%温度大于450℃,故本发明的挠性透明聚酰亚胺层压板产品可以承受如电浆、雷射、退火(anneal)、镀膜等高温制程,应用广泛。

以下将以实施例详细说明本发明的上述及其他内容,惟该等实施例仅为说明目的,而非用以限制本发明的范围。

合成例1(黏着层材料)

将1,4-环己二胺与4,4′-联苯四羧酸二酐溶解于n,n-二甲基乙酰胺,经由热亚胺化作用形成第一聚酰亚胺聚合物(下称“chdabppi”),其ftir图谱如图4a所示。

合成例2(黏着层材料)

将2,2′-二(三氟甲基)二氨基联苯与4,4′-联苯四羧酸二酐溶解于n,n-二甲基乙酰胺,经由热亚胺化作用形成第二聚酰亚胺聚合物(下称“tfmbbppi”,其ftir图谱如图4b所示)。

合成例3(黏着层材料)

将1,4-环己二胺、2,2′-二(三氟甲基)二氨基联苯与4,4′-联苯四羧酸二酐溶解于n,n-二甲基乙酰胺,其中1,4-环己二胺及2,2′-二(三氟甲基)二氨基联苯的莫耳比例为1∶1,经由热亚胺化作用形成第三聚酰亚胺聚合物(下称“ch/tfmbbppi”)(1∶1),其ftir图谱如图4c所示。

合成例4(基板材料)

将2,2′-二(三氟甲基)二氨基联苯与1,2,4,5-环己烷四甲酸二酐溶解于n,n-二甲基乙酰胺,经由热亚胺化作用形成第四聚酰亚胺聚合物(下称“tfmbchpi”),其ftir图谱如图4d所示。

合成例5(基板材料)

将二胺六氟异亚丙基二苯胺与1,2,4,5-环己烷四甲酸二酐溶解于n,n-二甲基乙酰胺,经由热亚胺化作用形成第五聚酰亚胺聚合物(下称“6fchpj”),其ftir图谱如图4e所示。

合成例的聚酰亚胺特性分析

溶解度分析:上述合成例1-5的聚酰亚胺材料进行溶解度测试的结果如下表1所示:

a溶解度测试,将10mg的测试样本加入1ml溶剂中。++,即室温下可溶;+,加热温度下可溶;+-,部份可溶或膨润;-,即使在加热情况下也不溶。

由表1可知黏着层材料(合成例1-3)对于各种有机溶剂皆不可溶。

热性质分析:上述合成例1-5的聚酰亚胺材料进行热性质分析的结果如下表2所示:

表2聚酰亚胺的热性质分析

a在热性质分析前,所有聚酰亚胺膜先在300℃热处理1小时

b以热机械分析仪(tma)测定玻璃转移温度(tg),在薄膜/纤维模式下以10℃/分钟的加热速率并以10mn恒定施加荷重

c以tma测定温度50~200℃线性热膨胀系数(coefficientofthermalexpansion,cte)

d以热重量分析仪(tga)测定5%重量损失的温度(td5),其参数为20℃/分钟的加热速度及20cm3/分钟的气体流速

e以tga测定在氮气环境下于800℃的残留重量%(rw800),又称焦炭残留量(charyield)

由表2可知,本发明合成例1-5的聚酰亚胺的玻璃转移温度(tg)皆大于320℃,在空气下的热裂解5wt%温度(td5)皆大于450℃。采用上述材料的本发明挠性透明聚酰亚胺层压板,可以承受300℃或更高温度的制程及处理。

光学性质分析:上述合成例1-5的聚酰亚胺材料进行光学性质分析的结果如下表3所示:

表3聚酰亚胺的光学性质分析

a聚酰亚胺膜厚度约为30μm

bcie1976色彩空间(或cieab)

c藉由uv-vis于400及550nm波长下测量厚度约30μm薄膜的穿透率

d截止波长(cutoffwavelength)

由表3可知,本发明的聚酰亚胺材料于可见光范围内其穿透率皆高;在cie色彩空间的三色刺激值中,本发明的聚酰亚胺薄膜接具有高颜色亮度(l*>93)、低红色/绿色以及黄色/蓝色色度(a*值及b*值接近于0),由此结果可知合成例1-5的聚酰亚胺材料皆接近无色透明。

实施例1-挠性透明聚酰亚胺层压板的制备与测试

下述实施例利用转印方式、以如前述图3a至图3e所示流程所制成。首先准备基质,以丙酮和清洁剂以超音波震荡方式清洗并干燥。接着,于该基质表面涂布一层纳米银线/酒精溶液,并于80℃真空烘箱内干燥,形成预备导电层。将2,2′-二(三氟甲基)二氨基联苯与1,2,4,5-环己烷四甲酸二酐溶解于n,n-二甲基乙酰胺制得聚酰胺酸(聚酰亚胺前体)paa/dmac溶液,将其均匀涂布于含有纳米银线的基质表面上并干燥形成paa薄膜;接着,升温至300℃进行热闭环法脱水得到有机不溶性聚酰亚胺薄膜chdabppi(合成例1的材料)。再将合成例4所得tfmbbppi高透明性聚酰亚胺涂布于有机不溶性聚酰亚胺薄膜上。最后将基质移除,形成挠性透明聚酰亚胺层压板,其包括纳米银线导电层agnws-有机不溶性聚酰亚胺chbpdapi-高透明性聚酰亚胺tfmbchpi三层结构。

纳米银线以改良多元醇制法制备,该过程使用纯乙二醇(eg)作为还原剂及溶剂、以聚乙烯吡咯烷酮(pvp)作为覆盖剂、硝酸银作为银离子的来源,以及以氯化铜作为脱氧剂。所制成的纳米银线长度约为30-100微米,直径约为60-100纳米。所制得的纳米银线的平均长径比高于600,如图5所示。

另外,图6为利用上述方法制备的不同导电度的层压板的uv-vis光谱图,显示当层压板对波长550nm光线的透光度越高时,层压板对应的片电阻越高;然而,通过调整导电层中纳米金属线的长径比,即可改变其于特定片电阻值下的光穿透度,如前述关于图2a所说明,在相同的光穿透度下,长径比的提高有助于降低整体层压板的片电阻值。

本实施例的挠性透明聚酰亚胺层压板透明性(穿透率)与导电性的关系可用质量因子(figureofmerit,fom)评估。质量因子是一种判断透明导电膜透光度与导电度关系的指标,其计算公式如下:

其中σdc为膜的直流电导电率;σop(λ)指在波长λ下的光学导电率;z0为自由空间的阻抗(377ω);rs为片电阻;t是波长λ下的透射率。在产业的应用上,对于波长550nm光,fom的值优选需大于35。图7绘示本实施例的挠性透明聚酰亚胺层压板的片电阻与品质因子和波长550nm光的穿透率作图。本实施例所制得挠性透明聚酰亚胺层压板,其对550nm光的穿透率为81%且片电阻为11.1ω/sq,经计算fom值可达152.83,显示该层压板具有优异的透明性(高穿透率)与导电度。

此外,图8a与图8b为本实施例的挠性透明聚酰亚胺层压板在不同放大倍率下的sem图,显示纳米银线在pi复合膜中的分散性。本实施例的挠性透明聚酰亚胺层压板将纳米银线导电层转印到高透明性聚酰亚胺基板上,可使纳米银线网络结构能够均匀且平滑的附着在基板表面。从sem截面图中并未发现纳米银线有翘曲或脱落现象,表示纳米银线和有机不可溶聚酰亚胺黏着层间具有强烈黏合能力。

比较例1

比较例1提供一种传统的聚酰亚胺层压板,将纳米银线使用有机可溶性聚酰亚胺(合成例5的材料)作为粘合剂,黏着在另一个聚酰亚胺基板上,制成聚酰亚胺层压板。此种层压板的范例可参照台湾专利申请号103137583所公开内容。

耐化学性测试

在实施例1的挠性透明聚酰亚胺层压板中,有机不溶性聚酰亚胺chdabppi作为粘合剂和保护剂,增加层压板的后续加工能力。耐化学性测试是将实施例1的挠性透明聚酰亚胺层压板浸泡在氯仿、丙酮、四氢呋喃(thf)、n,n-二甲基乙酰胺(dmac)、n-甲基吡咯烷酮(nmp)、n,n-二甲基甲酰胺(dmf)和二甲基亚砜(dmso)等不同有机溶剂中,测量其片电阻变化的图,其结果如图9a所示。比较例1的传统聚酰亚胺层压板浸泡于dmac的片电阻变化结果则如图9b所示。由图9a、9b可知,于不同类型的有机溶剂浸泡0.5小时后,实施例1的挠性透明聚酰亚胺层压板其片电阻增加率小于50%。然而,比较例1的层压板在浸泡dmac中仅仅30秒后,片电阻便增加高达950倍。进一步以sem观察浸泡20小时后实施例1的挠性透明聚酰亚胺层压板的纳米银线导电层的变化,结果如图4c,其纳米银线和基板间仍维持黏附性,仅观察到少许纳米银线被去除的痕迹。此结果证实实施例1的挠性透明聚酰亚胺层压板在后期加工应用上具有极高的潜力和可塑性。

虽然本发明以实施例说明如上,惟这些实施例并非用以限制本发明。本领域的通常知识者在不脱离本发明技艺精神的范畴内,当可对这些实施例进行等效实施或变更,故本发明的保护范围应以其后所附的权利要求范围为准。

符号说明

100挠性透明聚酰亚胺层压板

110透明聚酰亚胺基板

120黏着层

130导电层

300挠性透明聚酰亚胺层压板

310基板

320黏着层

320’聚酰胺酸溶液涂层

330预备导电层

350基质

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1