一种应用于晶硅太阳能电池的热氧化工艺的制作方法

文档序号:11102444阅读:1297来源:国知局

本发明涉及太阳能电池技术领域,尤其是涉及一种应用于晶硅太阳能电池的热氧化工艺。



背景技术:

传统的晶硅电池制造工艺流程为:制绒→磷扩散→刻蚀→PECVD镀膜→印刷烧结,该方法由于磷扩散限制,硅片表面参杂的N型区域,大量P原子出于非激活状态(导致晶格变形缺陷),且表面晶格悬挂键多,容易吸附杂质离子,产生缺陷能级及杂质能级,对电池片的开路电压及短路电流造成负面影响。为解决这一问题,有人提出来热氧化工艺,其工艺流程为:制绒→磷扩散→刻蚀→热氧化→PECVD镀膜→印刷烧结。该方法通过在高温下,通入一定量的氧气,在硅片表面制作一层薄薄的二氧化硅层,可以有效钝化硅片表面晶格的悬挂键,同时高温对非激活态的P原子有激活作用,即利用热氧化的方法,硅片表层的晶格缺陷及悬挂键可以得到良好的修复。但是该热氧化方法会引起表面掺杂溶度降低且杂质分布离散,限制晶硅电池转化效率进一步提升。

因此,开发一种新的热氧化方法在解决传统P扩散工艺表层晶格缺陷多、悬挂键多的问题同时,又不会在热氧化后产生新的问题即硅片表层掺杂溶度降低且杂质分布离散,显得尤为重要。



技术实现要素:

本发明是为了解决现有技术的晶硅太阳能电池热氧化工艺所存在的会引起表面掺杂溶度降低且杂质分布离散,限制晶硅电池转化效率进一步提升的问题,提供了一种应用于晶硅太阳能电池的热氧化工艺,本发明步骤简单,可操作性强,能有效解决电池表层晶格缺陷、悬挂键多,硅片表层掺杂溶度降低且杂质分布离散,限制晶硅电池转化效率提升的问题,具有较大的应用推广价值。

为了实现上述目的,本发明采用以下技术方案:

本发明的一种应用于晶硅太阳能电池的热氧化工艺,包括以下步骤:

(1)将扩散、刻蚀、清洗后的硅片插入石英舟中后送入低压扩散炉中,升温至650~800℃,通入氮气并控制炉管内气体压力为50~150mBar。

(2)通入氧气、小氮、氮气,控制炉内温度650~800℃,通入时间50~200s,炉管内气体压力50~150mBar,小氮中磷源POCl3摩尔百分比浓度控制在2.5~3%。氮气作为稀释气体,小氮为携带磷源(POCl3)的载气。

(3)降温出炉,测试方阻,控制方阻85~95Ω/□。

作为优选,步骤(1)中,氮气通入量为5~10SLM。

作为优选,步骤(2)中,氧气通入量为500~1000sccm,小氮通入量为50~200sccm,氮气通入量为500~1000sccm。

作为优选,步骤(3)中,降温至600~700℃,时间500~600s。

因此,本发明具有如下有益效果:本发明对热源氧化步骤进行了改进优化,尤其是在热氧化时通入少量的POCl3,通过磷源的再次注入扩散,不仅可以修复晶格缺陷、钝化表面悬挂键,还可以完美解决常规热氧化方法硅片表面参杂浓度过低的问题,增加硅片表面参杂量,有利于降低电池片银硅接触电阻及横向传导电阻,从而使电池片串联电阻降低,提升转化效率。

具体实施方式

下面通过具体实施方式对本发明做进一步的描述。

实施例1

(1)将扩散、刻蚀、清洗后的硅片插入石英舟中后送入低压扩散炉中,升温至650℃,通入氮气并控制炉管内气体压力为50mBar,氮气通入量为5SLM;

(2)通入氧气、小氮、氮气,控制炉内温度650℃,通入时间50s,炉管内气体压力50mBar,小氮中磷源POCl3摩尔百分比浓度控制在2.5%,其中氧气通入量为500sccm,小氮通入量为50sccm,氮气通入量为500sccm;

(3)降温至600℃,,时间500s,出炉,测试方阻,控制方阻85Ω/□。

实施例2

(1)将扩散、刻蚀、清洗后的硅片插入石英舟中后送入低压扩散炉中,升温至700℃,通入氮气并控制炉管内气体压力为100mBar,氮气通入量为8SLM;

(2)通入氧气、小氮、氮气,控制炉内温度700℃,通入时间100s,炉管内气体压力100mBar,小氮中磷源POCl3摩尔百分比浓度控制在2.7%,其中氧气通入量为700sccm,小氮通入量为150sccm,氮气通入量为700sccm;

(3)降温至650℃,,时间550s,出炉,测试方阻,控制方阻90Ω/□。

实施例3

(1)将扩散、刻蚀、清洗后的硅片插入石英舟中后送入低压扩散炉中,升温至800℃,通入氮气并控制炉管内气体压力为150mBar,氮气通入量为10SLM;

(2)通入氧气、小氮、氮气,控制炉内温度800℃,通入时间200s,炉管内气体压力150mBar,小氮中磷源POCl3摩尔百分比浓度控制在3%,其中氧气通入量为500~1000sccm,小氮通入量为50~200sccm,氮气通入量为1000sccm;

(3)降温至700℃,,时间600s,出炉,测试方阻,控制方阻95Ω/□。

本发明对热源氧化步骤进行了改进优化,尤其是在热氧化时通入少量的POCl3,通过磷源的再次注入扩散,不仅可以修复晶格缺陷、钝化表面悬挂键,还可以完美解决常规热氧化方法硅片表面参杂浓度过低的问题,增加硅片表面参杂量,有利于降低电池片银硅接触电阻及横向传导电阻,从而使电池片串联电阻降低,提升转化效率,具有较大的应用推广价值。

以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1