梯度合金量子点的制备及该量子点在QLED器件的应用的制作方法

文档序号:11102603阅读:1168来源:国知局

本发明涉及梯度合金量子点的制备,具体涉及锰离子和铜离子优化梯度合金量子点的制备及该量子点在QLED器件的应用。



背景技术:

目前量子点热正在席卷世界,其全波段可协调发光,半峰宽窄,生物相容性好等等优点吸引着人们对其研究的不断深入。目前量子点的制备可分为有机相合成和水相合成,水相合成温度较低,周期较短而其弊端亦是显而易见的,荧光寿命短,量子点产率低,杂质多等等,而目前高产率,荧光寿命长的量子点主要是通过油相合成。我们研发一种高效的梯度合金量子点制备方法。成功梯度合成合金量子点,具有荧光寿命长,半峰宽窄,绝对产率高等等特点的优质的梯度合金量子点并在QLED器件的应用。本发明的优点是:梯度合金量子点制备技术稳定,有机相合成量子产率高、量子点粒径更小。所制备的QLED易组装成本低且具有宽的吸收光谱和高的光电转换效率,具有比较高的开发价值。



技术实现要素:

本发明的目的在于提供梯度合金量子点的制备及该量子点在QLED器件的应用,量子点独特的量子尺寸效应、宏观量子隧道效应、量子尺寸效应和表面效应使其展现出出色的物理性质,尤其是其光学性能。相对于有机荧光染料,胶体法制备的量子点具有光谱可调,发光强度大、色纯度高、荧光寿命长,单光源可激发多色荧光等优势。此外,QLED的寿命长,封装工艺简单。

本发明采用如下的技术方案,一种锰离子优化梯度合金量子点的制备,其特征是方法步骤如下:

(1)以醋酸锌作为量子点制备锌前驱体,氧化镉作为量子点制备镉前驱体,以S,1-十八烯制备成S源,以硒粉制备的三丁基膦硒化膦作为硒前驱体,以1-十八烯为稳定剂,油酸作为溶剂反应剂和配体得油溶性梯度合金量子点。乙腈促使量子点沉淀,离心分离提纯;

(2)硒源:锌源:镉源:Mn2+=1:5:0.5:0.05的摩尔比反应,S的量不定,可制得可见光波段所有类型的量子点,此时量子点含有杂质未反应的硒源杂质,过量的锌源等等,加入过量丙酮乙腈等促使量子点沉淀离心分离得固体粉末,加入三氯甲烷溶解再加过量丙酮沉淀,反复两次得到纯净的梯度合金量子点粉末;

(3)采用有机相合成成功制备了胶体量子点CdS/ZnSe梯度量子点并成功对其进行包覆,制备出了CdS/ZnSe梯度量子点,包覆后荧光性能得到明显改善;通过改变合成工艺参数在很宽的范围内实现了发光光谱的调控;所合成的CdS/ZnSe梯度量子点荧光量子产率达90%,;量子点粒径分布均匀,荧光半峰宽为17~30nm,并能维持优异的光纯度和光亮度。

一种铜离子优化梯度合金量子点的制备,其特征是方法步骤如下:

(1)以醋酸锌作为量子点制备锌前驱体,氧化镉作为量子点制备镉前驱体,以S,1-十八烯制备成S源,以硒粉制备的三丁基膦硒化膦作为硒前驱体,以1-十八烯为稳定剂,油酸作为溶剂反应剂和配体得油溶性梯度合金量子点。乙腈促使量子点沉淀,离心分离提纯;

(2)硒源:锌源:镉源:Cu2+=1:5:0.5:0.05的摩尔比反应,S的量不定,可制得可见光波段所有类型的量子点,此时量子点含有杂质未反应的硒源杂质,过量的锌源等等,加入过量丙酮乙腈等促使量子点沉淀离心分离得固体粉末,加入三氯甲烷溶解再加过量丙酮沉淀,反复两次得到纯净的梯度合金量子点粉末;

(3)采用有机相合成成功制备了胶体量子点CdS/ZnSe梯度量子点并成功对其进行包覆,制备出了CdS/ZnSe梯度量子点,包覆后荧光性能得到明显改善;通过改变合成工艺参数在很宽的范围内实现了发光光谱的调控;所合成的CdS/ZnSe梯度量子点荧光量子产率达90%,;量子点粒径分布均匀,荧光半峰宽为17~30nm,并能维持优异的光纯度和光亮度。

一种梯度合金量子点在QLED器件的应用,其特征是方法步骤如下:

(1)将纯净的梯度合金量子点粉末重新分散到三氯甲烷中;

(2)将提纯后的量子点组装成QLED发光器件,空穴传输层、发光层以及电子传输层组成的三明治结构。

对比OLED, QLED的特点在于其发光材料采用性能更加稳定的无机量子点。量子点独特的量子尺寸效应、宏观量子隧道效应、量子尺寸效应和表面效应使其展现出出色的物理性质,尤其是其光学性能。相对于有机荧光染料,胶体法制备的量子点具有光谱可调,发光强度大、色纯度高、荧光寿命长,单光源可激发多色荧光等优势。此外,QLED的寿命长,封装工艺简单或无需封装,有望成为下一代的平板显示器,具有广阔发展前景。 目前根据QLED中载流子传输层的不同,可将QLED分为四种。分别为聚合物载流子传输层QLED,有机小分子载流子传输层QLED,无机载流子传输层QLED,以及杂化载流子传输层QLEDo其中无机载流子传输层,空气稳定性最好,无需进行封装,是本文研究的重点。然而,目前无机载流子传输层QLED器件效率很低,主要原因在于空穴载流子和电子载流子传输速率不平衡造成量子点充电以及荧光淬灭。因此,本文主要分步优化空穴传输层,电子传输层,从而提高空穴传输层中空穴载流子传输速率和电子传输能力,以期提高QLED器件效率 研究内容主要如下: (1)对氧化锌材料的创新和优化制备 (2)polytbp,氧化锌,PEDOP:PSS,量子点等材料的旋涂优化。

本发明的优点是:有机相中制备的量子点荧光量子产率高,单分散性和稳定性较好,光学性能优异且粒径可控,量子点试剂低毒、廉价、操作简单、环境友好、并有高度的重现性符合能源发展趋势,具有比较高的开发价值。

具体实施方式

以下通过实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。

本发明采用溶剂热法:分别在有机相中合成梯度合金量子点,与氧化锌,polytbp等组装成QLED器件。

本发明铜锰离子梯度合金量子点合成具体步骤如下:

方法1:

一.称量CdO(0.5mmol),Zn(Ac)2(5.0mmol),OA溶液(3ml),ODE溶液(10ml),醋酸铜(0.05mmol)放入50毫升的四口烧瓶;

二.加热至100摄氏度,抽真空40min;

三.换气三次,加热至300摄氏度,迅速注入S-ODE溶液;

四.310摄氏度保温15~20min滴入Se-TBP(1mmol);

五.保温,高温缓慢滴入S-ODE溶液一毫升;

六.重复第四步。保温,冷却至室温;

本发明铜锰梯度合金量子点分离提纯步骤如下:

(1)将制得的量子点原液加入离心管中,原液离心10000rmp,时长10min.。(2)取上清液,体积比上清液:三氯甲烷:乙腈=3:0.5:2.7,然后离心8000rmp,时长五分钟。(3)取沉淀,用少于1ml的三氯甲烷溶解沉淀,再加入3ml的乙腈促沉淀,离心8000rmp,时长五分钟。(4)重复步骤(3),将制备的量子点粉末溶解在正己烷或者真空烘干。

方法2:

一.称量CdO(0.5mmol),Zn(Ac)2(5.0mmol),OA溶液(3ml),ODE溶液(10ml),醋酸锰(0.05mmol)放入50毫升的四口烧瓶;

二.加热至100摄氏度,抽真空40min;

三.换气三次,加热至300摄氏度,迅速注入S-ODE溶液;

四.310摄氏度保温15~20min滴入Se-TBP(1mmol);

五.保温,高温缓慢滴入S-ODE溶液一毫升;

六.重复第四步。保温,冷却至室温。

本发明铜锰梯度合金量子点QLED器件组装步骤如下:

(1)取1.5*2.0cm2的ITO导电玻璃于丙酮、无水乙醇和水摩尔比为2:2:1的溶液中超声清洗10min,随即用去离子水清洗掉有机溶剂,将洗净的导电玻璃烘干,用擦镜纸将ITO玻璃擦拭干净。

(2)在ITO玻璃旋涂一层PEDOT-PSS膜,然后真空干燥50摄氏度,30min,使得PEDOT-PSS膜均匀平整的铺设在ITO玻璃。

(3)往吸附好PEDOT-PSS的TiO2膜上旋涂一层poly-tod,然后真空干燥50摄氏度,30min,使得poly-tod膜均匀平整地铺设在ITO玻璃。

(4)旋涂一层QDs ,然后真空干燥50摄氏度,30min,使得QDs膜均匀平整地铺设在ITO玻璃。

(5)往吸附好的QDs膜上旋涂一层ZnO溶液,然后真空干燥50摄氏度,30min,使得ZnO膜均匀平整地铺设在ITO玻璃。

(6)真空镀膜机镀膜;通过铜锰梯度合金量子点合成、铜锰梯度合金量子点分离提纯和铜锰梯度合金量子点QLED器件组装三个步骤制备,满足高效QLED器件制备工艺的要求。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1