一种氮化镓双向开关器件的制作方法

文档序号:11101925阅读:1106来源:国知局
一种氮化镓双向开关器件的制造方法与工艺

本发明属于半导体功率器件技术领域,特别涉及一种氮化镓双向开关器件。



背景技术:

具有双向传导电流和阻断电压特性的双向开关广泛应用于电机驱动、航空器、交流电源装置、船舶电力推进和电动汽车之中。传统的双向开关是由两个反向串联的绝缘栅双极晶体管(IGBT)和两个功率二极管组成,结构类似于图1(a),在这样的结构中,电流将流经两个会不同的器件,较长的电流通路将导致较大的导通压降,进而会使双向开关具有较高的功率损耗。为了减小双向开关的导通损耗,提高系统效率,近几年提出了基于逆阻型器件的双向开关,例如基于逆阻型绝缘栅双极晶体管(RB-IGBT)的双向开关,基于逆阻型器件的双向开关结构图类似于图1(b),在这种新的双向开关中电流只经过一个器件,较短的电流通路使得双向开关具有较小的导通电压和和较低的导通损耗。但是这种结构,每次开关导通时,只能利用一个器件导通,芯片面积利用率低。基于此,有人提出双栅双向开关器件(其结构类似于图1(c))。该双向开关只有一个导电通道,即双向开关的两个方向电流都流经同一个通道,芯片面积利用率高。同时电流只流经一个器件,器件的导通压降低。

氮化镓是第三代宽禁带半导体的代表之一,正受到人们的广泛关注,其优越的性能主要表现在:高的临界击穿电场(~3.5×106V/cm)、高电子迁移率(~2000cm2/V·s)、高的二维电子气(2DEG)浓度(~1013cm-2)、高的高温工作能力。GaN材料的禁带宽度高达3.4eV,3倍于Si材料的禁带宽度,2.5倍于GaAs材料,半导体材料的本征载流子浓度随禁带宽度和温度的增加而呈指数增长,因此,在一定的温度范围内,其半导体材料禁带宽度越大,便拥有越小的本征载流子浓度,这可以使器件具有非常低的泄漏电流。另外,氮化镓(GaN)材料化学性质稳定、耐高温、抗腐蚀,在高频、大功率、抗辐射应用领域具有先天优势。基于AlGaN/GaN异质结的高电子迁移率晶体管(HEMT)(或异质结场效应晶体管HFET,调制掺杂场效应晶体管MODFET)在半导体领域已经取得广泛应用。该类器件具有反向阻断电压高、正向导通电阻低、工作频率高等特性,因此可以满足系统对半导体器件更大功率、更高频率、更小体积工作的要求。

近年来,为实现低功耗高能效的双向开关,研究人员提出了GaN逆导型HEMT器件(RC-MISHEMT),但是从上面的分析可知,基于逆导型器件的双向开关具有较大的导通压降和导通损耗。为了进一步减小双向导通电压和导通损耗,提高开关转换效率,双向开关器件是非常有必要的。因此,本发明提出了一种氮化镓双向开关器件,其结构如图2所示,通过每个肖特基接触附近的绝缘栅结构控制肖特基接触的能带结构来改变器件的工作状态,实现双向开关的双向导通和双向阻断能力。由于本发明中只存在肖特基接触,不需要利用金等重元素金属,可以与传统的CMOS工艺兼容。



技术实现要素:

本发明所要解决的,就是针对高效功率开关器件的主要指标(芯片面积利用率,导通电阻、反向耐压、功耗),本发明提出了一种氮化镓双向开关器件。本发明所提出的氮化镓双向开关器件具有芯片面积利用率高、低导通电阻、高反向阻断能力和低功耗等优点,尤其适用于矩阵变换器中。

本发明的技术方案是:一种氮化镓双向开关器件,包括从下至上依次层叠设置的衬底1、GaN层2和MGaN层3,所述GaN层2和MGaN层3形成异质结;所述器件两端分别具有肖特基源极结构和肖特基漏极结构,所述肖特基源极结构和肖特基漏极结构以器件的垂直中线呈对称分布;所述肖特基源极结构为凹槽型肖特基结构,包括通过刻蚀GaN层2形成的深凹槽和覆盖在凹槽内的与GaN层2接触的源极肖特基接触电极9,所述源极肖特基接触电极9的侧面与MGaN层3接触;所述肖特基漏极结构为凹槽型肖特基结构,包括通过刻蚀GaN层2形成的凹槽和覆盖在凹槽内的与GaN层2接触的漏极肖特基接触电极10,所述漏极肖特基接触电极10的侧面与MGaN层3接触;与源极肖特基接触电极9接触的MGaN层3上层具有第一绝缘栅极结构,与漏极肖特基接触电极10与接触的MGaN层3上层具有第二绝缘栅极结构,所述第一绝缘栅极结构和第二绝缘栅极结构以器件的垂直中线呈对称分布,所述第一绝缘栅极结构包括通过刻蚀MGaN层3形成凹槽和覆盖在凹槽内的绝缘栅介质6,以及覆盖在栅介质上的第一金属栅电极7;所述第二绝缘栅极结构包括通过刻蚀MGaN层3上层形成凹槽和覆盖在凹槽内的绝缘栅介质6,以及覆盖在栅介质上的第一金属栅电极7;所述M为除Ga之外的Ⅲ族元素。

进一步的,所述漏极肖特基接触电极9和源极肖特基接触电极10嵌入GaN层2上表面的深度为5um。

进一步的,所述绝缘栅介质6采用的材料为SiO2、Si3N4、AlN、Al2O3、MgO或Sc2O3中的一种。

需要说明的是,通过增绝缘栅电极嵌入MGaN层上表面的深度可以增加器件的阻断能力。

本发明的有益效果为,相对于传统结构,本发明的器件具有芯片面积利用率高、低导通电阻、高反向阻断能力和低功耗等优点,尤其适用于矩阵变换器中。由于本发明中只存在肖特基接触,不需要利用金等重元素金属,可以与传统的CMOS工艺兼容。

附图说明

图1为传统双向开关结构示意图,其中,(a)为串联型,(b)为并联型,(c)器件型;

图2为本发明的器件结构示意图;

图3为本发明的器件工作原理示意图;

图4为本发明器件双向导通特性曲线示意图;

图5为本发明器件双向阻断特性曲线示意图;

图6为本发明器件制造工艺流程中衬底示意图;

图7为本发明器件制造工艺流程中在源极接触和漏极接触处过刻势垒层至GaN层的结构示意图;

图8为本发明器件制造工艺流程中源极肖特基接触和漏极肖特基接触后结构示意图;

图9为本发明器件制造工艺流程中刻蚀MGaN形成第一凹槽和第二凹槽后结构示意图;

图10为本发明器件制造工艺流程中淀积绝缘层后结构示意图;

图11为本发明器件制造工艺流程中淀积第一凹槽和第二凹槽上的金属后结构示意图。

具体实施方式

下面结合附图,详细描述本发明的技术方案:

如图2所示,本发明的氮化镓双向开关器件,包括从下至上依次层叠设置的衬底1、GaN层2和MGaN层3,所述GaN层2和MGaN层3形成异质结;所述器件两端分别具有肖特基源极结构和肖特基漏极结构,所述肖特基源极结构和肖特基漏极结构以器件的垂直中线呈对称分布;所述肖特基源极结构为凹槽型肖特基结构,包括通过刻蚀GaN层2形成的深凹槽和覆盖在凹槽内的与GaN层2接触的源极肖特基接触电极9,所述源极肖特基接触电极9的侧面与MGaN层3接触;所述肖特基漏极结构为凹槽型肖特基结构,包括通过刻蚀GaN层2形成的凹槽和覆盖在凹槽内的与GaN层2接触的漏极肖特基接触电极10,所述漏极肖特基接触电极10的侧面与MGaN层3接触;与源极肖特基接触电极9接触的MGaN层3上层具有第一绝缘栅极结构,与漏极肖特基接触电极10与接触的MGaN层3上层具有第二绝缘栅极结构,所述第一绝缘栅极结构和第二绝缘栅极结构以器件的垂直中线呈对称分布,所述第一绝缘栅极结构包括通过刻蚀MGaN层3形成凹槽和覆盖在凹槽内的绝缘栅介质6,以及覆盖在栅介质上的第一金属栅电极7;所述第二绝缘栅极结构包括通过刻蚀MGaN层3上层形成凹槽和覆盖在凹槽内的绝缘栅介质6,以及覆盖在栅介质上的第一金属栅电极7;所述M为除Ga之外的Ⅲ族元素。

基于逆导型器件的双向开关具有较大的导通压降和导通损耗。而基于逆阻型器件的双向开关的芯片利用面积率低。本发明提出了一种氮化镓双向开关器件(如图2所示),本发明器件的源极和漏极都是肖特基接触,同时在源极结构和漏极结构附近的AlGaN层上层各具有一个栅极结构,不存在欧姆接触,不需要利用重金属,可以与CMOS工艺兼容。通过每个肖特基接触附近的绝缘栅结构控制肖特基接触的能带结构来改变器件的工作状态,实现双向开关的双向导通和双向阻断能力。同时本器件只存在一个导电通道,芯片面积利用率高。此外,导通电阻、泄露电流和导通压降均是可由栅极控制,通过控制栅极结构下方的AlGaN势垒层的厚度TG、栅极金属的功函数Wm和凹槽MIS结构的长度来控制器件的导通电阻和导通压降。氮化镓双向开关器件的阻断能力是由栅极结构和肖特基结构共同决定,栅极结构下方的AlGaN势垒层厚度较薄以及源极肖特基接触势垒较大时器件可以具有较好的反向阻断能力,但同时也会导致导通电阻和导通压降的增加。

需要特别指出的是,本发明的设计过程中尤其体现了以下细节:

1、源极和漏极的AlGaN势垒层尽量刻蚀完。

2、在AlGaN层表面淀积钝化层,进一步降低漏电,提高性能。

3、肖特基接触与绝缘栅结构用绝缘介质隔开,介质质量的好坏直接影响器件的性能。

本器件的基本工作原理是:

首先通过每个肖特基接触附近的绝缘栅结构控制肖特基接触的能带结构来改变器件的工作状态,实现双向开关的双向导通和双向阻断能力。当栅极加上正电压时,肖特基附近的势垒厚度变薄(图3),电子的隧穿几率增加,可以使得器件具有类似欧姆接触的电流特性;当在栅极负电压时,势垒厚度变厚,电子的隧穿几率降低,电子几乎无法通过势垒,器件可以实现阻断能力。当只有一个栅极上加上正压时,该双向开关只能在一个方向导通电流,而在另个方向表现出阻断能力。本发明同时利用肖特基结和绝缘栅结构来抑制器件的反向漏电。通过减薄绝缘栅下势垒层的厚度来增加栅压对栅下载流子的耗尽能力。本发明的双向开关的阻断机理可以解释如下,仿真电路图如图5插图所示,在电压较低时主要由源极或者漏极的肖特基接触的势垒来阻断电流;当电压增大时,相应肖特基附近的栅极下方的载流子开始耗尽,当栅下载流子完全耗尽时,载流子无法通过栅沟道,此时由绝缘栅来组断电流。减薄绝缘栅下势垒层厚度可以增加器件的阻断能力。图4为氮化镓双向开关器件的双向导通特性曲线示意图;图5是器件的双向阻断特性的曲线图。

本发明的器件与传统CMOS工艺兼容,可以利用传统的CMOS工艺线制备该器件,需要特别说明的是:

1、根据权利要求1所述的氮化镓双向开关器件,其特征在于,漏极和源极的凹槽必须延伸至GaN2。

2、根据权利要求1所述的氮化镓双向开关器件,其特征在于,所述绝缘栅介质6采用的材料为SiO2、Si3N4、AlN、Al2O3、MgO或Sc2O3中的一种。

3、根据权利要求1所述的氮化镓双向开关器件,其特征在于,第一凹槽4必须在源极肖特基接触附近,第二凹槽5必须在漏极肖特基接触附近。

4、根据权利要求1所述的化镓双向开关器件,其特征在于,增加第二凹槽4和第一凹槽5深度可以增加器件的阻断能力。

在本发明中,可采用以下两种方案来制备绝缘介质材料。

(a)采用原子层淀积(ALD)制备Al2O3、HfO2、TiO2等介质材料。ALD所生长的薄膜是自限制的,能精确地控制薄膜的厚度和化学组分,而且淀积的薄膜具有很好的均匀性和保形性。应考虑采用复合叠层的办法来实现,比如HfO2/Al2O3等。

(b)采用MOCVD设备制备Ga2O3、Al2O3、AlGaO或AlGaO/Al2O3等各种单层、混合层以及各种叠层结构,以制备高性能绝缘栅介质。采用MOCVD方法具有介质材料成膜状态致密、厚度控制精准、易于形成混合膜和多层膜重复性好等优点,特别是对界面态控制的可控空间较大。

本发明的制造工艺流程如图6-图11所示,主要包括:

图6制备衬底和势垒层形成异质结,图7在源极接触和漏极接触处过刻势垒层至GaN层,图8钝化开孔和制作源极和漏极肖特基接触金属,图9和图10为第一凹槽栅和第二凹槽栅开孔并淀积绝缘介质,图11淀积栅金属。

采用器件仿真软件Sentaurus对本发明所提结构进行了初步仿真分析。在本仿真分析中栅极长度为1μm,栅源之间的介质厚度为10nm,两个栅极之间的距离为10μm,栅宽为10000μm,GaN缓冲层厚度3μm,Al0.26Ga0.74N势垒层厚度为25nm,栅极金属功函数为4.5eV。源极和漏极的肖特基势垒为1.0eV。

通过双向导通特性曲线(图4)可以看出,在栅压为10V,电流为5A时器件的导通电阻为0.997mΩ·cm2。图5是双向开关器件的双向阻断特性曲线,在栅压为0V,漏极电压为±500V时,泄漏电流均为10μA;说明该器件具有双向阻断能力。通过以上仿真,验证了本发明在电学特性上的优秀性能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1