单行载流子光电二极管的收集区结构的制作方法

文档序号:11136670阅读:541来源:国知局
单行载流子光电二极管的收集区结构的制造方法与工艺

本发明属于半导体光电器件技术领域,特别是涉及一种单行载流子光电二极管的收集区结构。



背景技术:

光电二极管(Photodiode,PD)是一种重要的光电转换器件,在国民经济及军事应用领域有着广泛的应用,是光纤通信、超宽带无线通信、导弹制导、红外成像及遥感等应用系统的核心器件。PD有两个重要指标:饱和电流和响应带宽。前者决定了输出功率,后者则反应了器件的高频响应能力。一般情况下,关于PD的研究主要是围绕提升这两个性能指标而展开的。饱和电流大、响应速度快的PD可满足更多的应用需求,这一点对于高速通信系统尤为重要。

传统的PD基于PIN结构,其能带结构图如图1所示。光吸收发生在I区耗尽层,在电场作用下,光激发产生的电子空穴对分别向器件的两极移动。在PIN-PD中,电子和空穴的输运共同决定了器件的性能。然而,空穴的漂移速度远低于电子,这就限制了器件的带宽;同时,当入射光功率变大时,产生的大量空穴将不能及时离开耗尽区,而空穴的聚集引发空间电荷效应,使器件进入饱和状态。由于上述限制,一般的高速PIN-PD的响应带宽为数十GHz,若要应用于太赫兹(100GHz~10THz)领域则略显不足。

1997年,单行载流子光电二极管(Unitraveling carrier photodiode,UTC-PD)的发明彻底解决了“慢速”空穴的问题,给PD的性能带来了质的突破。UTC-PD一般采用InGaAs/InP材料体系,能带结构如图2所示,其中吸收区为p型掺杂In0.53Ga0.47As,入射光在此激发电子空穴对;收集区(即漂移区、耗尽层)为禁带较宽的InP,并进行均匀掺杂,掺杂浓度为1×1016。在此结构中,吸收区与漂移区分离。UTC-PD之所以被称之为“单行”,是因为器件性能主要由电子输运所决定的:光吸收发生在p型掺杂的吸收区内,空穴为多数载流子,光激发产生的空穴通过多数载流子的集体运动很快弛豫到电极,只有电子是有效载流子进入漂移区,因此,“慢速”空穴带来的影响被完全排除。仅有“高速”的电子为有效载流子带来了更大的带宽;而在饱和电流方面,尽管在UTC-PD收集区的注入端也会存在空间电荷效应,但该效应是由电子引起的,由于电子漂移速度远高于空穴,因此需要更强的入射激光激发产生更大量的电子才能引起电子的囤积,所以,UTC-PD的饱和特性也远高于PIN-PD。

本发明将针对UTC-PD,提出一种新型的收集区结构,旨在进一步提升器件的饱和电流,对发展超宽带光纤通信及太赫兹无线通信系统具有重大意义。



技术实现要素:

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种单行载流子光电二极管的收集区结构,用于提升单行载流子光电二极管的饱和电流。

为实现上述目的及其他相关目的,本发明提供一种单行载流子光电二极管的收集区结构,所述收集区结构包括掺杂区和非掺杂区,其中,所述掺杂区靠近吸收区一侧。

优选地,所述掺杂区的掺杂浓度其中,d为掺杂区的掺杂浓度,最小掺杂浓度D=1×1016/cm3,LC为收集区的长度,LD为掺杂区的长度。

优选地,所述掺杂区的长度其中,最大掺杂浓度do=1×1017/cm3

优选地,所述收集区的长度100nm≤LC≤1μm。

优选地,所述掺杂区为n型硅掺杂。

优选地,所述收集区的材料为InP。

优选地,所述单行载流子光电二极管包括依次相连的p型接触层、扩散阻挡层、吸收区、收集区、以及n型接触层。

优选地,所述单行载流子光电二极管还包括过渡层以及亚接触层,所述过渡层连接于所述吸收区和所述收集区之间,所述亚接触层连接于所述收集区和所述n型接触层之间。

如上所述,本发明的单行载流子光电二极管的收集区结构,具有以下有益效果:本发明所述单行载流子光电二极管通过将收集区结构设置为掺杂区和非掺杂区,并通过将掺杂区的掺杂浓度设置为掺杂区的长度设置为在保证了响应带宽的前提下,有效缓解收集区内因电子聚集产生的空间电荷效应,进一步提高了所述单行载流子光电二极管的饱和电流。

附图说明

图1显示为现有技术中的PIN-PD的能带结构图示意图。

图2显示为现有技术中的单行载流子光电二极管UTC-PD的能带结构示意图。

图3显示为本发明所述单行载流子光电二极管的能带结构示意图。

图4显示为本发明所述收集区的结构示意图。

图5显示为使用商用软件ATLAS模拟得到的UTC-PD饱和电流和LD的关系图。

图6显示为使用商用软件ATLAS模拟得到的UTC-PD光电流和带宽的关系图。

元件标号说明

1 p型接触层

2 扩散阻挡层

3 吸收区

4 收集区

41 掺杂区

42 非掺杂区

5 n型接触层

具体实施方式

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。

请参阅图3至图6。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。

如图3和图4所示,所述收集区结构4包括掺杂区41和非掺杂区42,其中,所述掺杂区41靠近吸收区3一侧。

具体的,所述收集区4的材料为InP,其中,所述掺杂区41为n型硅掺杂。

需要说明的是,通过将靠近吸收区3一侧的收集区4设置为掺杂区41,其它区域为非掺杂区42,其中,所述掺杂区41为n型硅掺杂;使得光生电子从吸收区3进入所述收集区4时,掺杂离子能够与从所述吸收区3输运过来的光生电子进行中和,有效补偿由吸收区3注入收集区4的大量光生电子,从而减轻收集区4的空间电荷效应,提升器件的饱和电流。

具体的,所述掺杂区41的掺杂浓度其中,d为掺杂区的掺杂浓度,最小掺杂浓度D=1×1016/cm3,LC为收集区的长度,LD为掺杂区的长度。

需要说明的是,通过将所述掺杂区的掺杂浓度d限定为使得掺杂浓度d与掺杂区的长度LD及收集区的长度LC相关;根据掺杂区的长度LD和收集区的长度LC确定掺杂区的掺杂浓度,能够使更多的光生电子与掺杂离子进行中和,进而更大程度地减轻收集区的空间电荷效应,进一步提升饱和电流。

具体的,所述掺杂区的长度为其中,最大掺杂浓度do=1×1017/cm3

需要说明的是,通过进一步设定所述掺杂区4的长度LD的取值范围,使得所述单行载流子光电二极管在获得较大饱和电流的同时,保证了所述单行载流子光电二极管的响应带宽。

具体的,所述单行载流子光电二极管的结构不同,其收集区4的长度LC的值是不同的。优选地,所述收集区4的长度100nm≤LC≤1μm。进一步优选地,在本实施例中,所述收集区4的长度LC为263nm。

具体的,所述单行载流子光电二极管包括依次相连的p型接触层1、扩散阻挡层2、吸收区3、收集区4、以及n型接触层5。优选地,所述单行载流子光电二极管还包括过渡层以及亚接触层,所述过渡层连接于所述吸收区和所述收集区之间,所述亚接触层连接于所述收集区和所述n型接触层之间。

下面请结合具体的UTC-PD说明本发明所述掺杂区长度及浓度的确定方法,其中,现有UTC-PD外延结构与本发明改进后的UTC-PD外延结构的比对结果如下表所示:

具体的,先设定收集区长度LC的值,得到掺杂区长度LD的取值范围;然后通过软件模拟,得到掺杂区长度LD和饱和电流的变化曲线,从而确定掺杂区长度LD的值,进而得到掺杂区的掺杂浓度d。

当所述UTC-PD的收集区长度LC=263nm时,所述掺杂区的长度83.1nm≤LD<263nm,采用商用软件Atlas对所述UTC-PD进行编程和模拟,得到所述UTC-PD的掺杂区长度LD和饱和电流的变化曲线,如图5所示,可见,当83.1nm≤LD<263nm时,随着掺杂区长度LD的缩短,饱和电流单调上升,所以,掺杂区长度LD的最佳取值为83.1nm,进而根据公式计算得到在掺杂区长度LD为83.1nm时的掺杂浓度d=do=1×1017/cm3

需要说明的是,从图5中可以看出,当掺杂区长度LD<83.1nm时,所述UTC-PD的饱和电流会进一步增大,但当掺杂区长度LD<83.1nm时,会对所述UTC-PD的响应带宽造成不利影响,因此,在保证不影响所述UTC-PD的响应带宽的情况下,为了获得最大的饱和电流,故使所述掺杂区长度LD=83.1nm。

进一步需要说明的是,采用商用软件Atlas模拟了四种不同掺杂区长度LD下所述UTC-PD的响应带宽随饱和电流变化的关系图,如图6所示。从图6中可以看出,相较于现有的UTC-PD结构(当LD=LC,d=1×1016/cm3时),当本发明所述掺杂区长度LD=83.1nm时,所述UTC-PD达到最佳带宽和饱和电流的组合。

综上所述,本发明的单行载流子光电二极管的收集区结构,具有以下有益效果:本发明所述单行载流子光电二极管通过将收集区结构设置为掺杂区和非掺杂区,并通过将掺杂区的掺杂浓度设置为掺杂区的长度设置为在保证了响应带宽的前提下,有效缓解收集区内因电子聚集产生的空间电荷效应,进一步提高了所述单行载流子光电二极管的饱和电流。

所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1