使用半导体发光器件的显示装置及其制造方法与流程

文档序号:11621927阅读:152来源:国知局
使用半导体发光器件的显示装置及其制造方法与流程

本公开涉及一种显示装置及其制造方法,更具体地,涉及一种使用半导体发光器件的柔性显示装置。



背景技术:

近年来,在显示技术领域中已经开发了具有例如薄型(lowprofile)、柔性等优异特性的显示装置。目前,商业化的主要显示器包括液晶显示器(lcd)和有源矩阵有机发光二极管(amoled)。

然而,lcd存在诸如响应时间缓慢、难以实现灵活性等问题,而amoled存在诸如短寿命、低产率以及低灵活性等缺点。此外,发光二极管(led)是用于将电流转换为光的已知的发光器件,并且已经用作在包括信息通信装置的电子装置中显示图像的光源,这是因为使用gaasp化合物半导体的红色led与gap:n基绿色led一起在1962年已可市售。因此,半导体发光器件可以用于实现柔性显示器,从而提出用于解决这些问题的方案。

使用半导体发光器件的柔性显示器提高了半导体发光器件的发光效率,但是半导体发光器件的制造复杂。此外,提供附加的反射层使得周围结构之间的关系复杂化。



技术实现要素:

因此,本公开的一个方面在于解决相关技术的上述和其它问题。

本公开的另一个方面在于提供一种增强显示装置中的亮度的结构及其制造方法。

本公开的又一个方面在于提供一种通过粘合层和白色颜料的组合即使具有简单的结构也能够提高发光效率的显示装置。

为了实现这些和其它优点并根据本发明的目的,如在此具体实施和广泛描述的,本发明在一个方面提供一种显示装置,包括:基板,包括布线电极;导电粘合层,包括各向异性导电介质,并且布置为覆盖所述布线电极;以及多个半导体发光器件,粘附到所述导电粘合层并且通过所述各向异性导电介质电连接到所述布线电极。此外,所述导电粘合层包括布置在基板上的第一层;沉积在所述第一层上并且包括所述各向异性导电介质的第二层;以及沉积在所述第二层上的第三层,所述半导体发光器件粘附到所述第三层上。此外,第二层和第三层中的至少一个包括被配置为反射由所述半导体发光器件发射的光的白色颜料。本发明还提供了一种相应的各向异性导电介质。

在根据本公开的显示装置中,可以将白色颜料添加到导电粘合层,从而将半导体发光器件的发光引导到顶部。在这种情况下,导电粘合层可以设置有具有不同含量白色颜料的多个层,从而实现能够增加柔性并保持粘附性的连接结构。

此外,根据本公开,可以将白色颜料仅添加到导电粘合层的仅一些层中,从而即使利用简单的制造工艺也实现了显示装置的亮度增强。此外,多个层可以设置有不同的材料,从而实现具有相对于周围结构所需的流动性和粘度的导电粘合层。

此外,导电粘合层可以形成为具有其中将适量白色颜料添加到需要白色颜料的部分的结构,从而降低制造成本。

附图说明

附图被包括进来以提供对本发明的进一步理解,并且被并入本说明书且构成本说明书的一部分,附图示出了本发明的实施例并与说明书一起用于解释本发明的原理。

在附图中:

图1是示出根据本公开的实施例的使用半导体发光器件的显示装置的概念图;

图2是图1中的部分“a”的局部放大图;

图3a和图3b是沿图2中的b-b线和c-c线截取的剖视图;

图4是示出图3a中的倒装芯片型半导体发光器件的概念图;

图5a至图5c是示出用于结合倒装芯片型半导体发光器件实现颜色的各种形式的概念图;

图6是示出根据本公开实施例的使用半导体发光器件的显示装置的制造方法的剖视图;

图7是示出根据本公开的另一个实施例的使用半导体发光器件的显示装置的透视图;

图8是沿图7中的d-d线截取的剖视图;

图9是示出图8中的垂直式半导体发光器件的概念图;

图10是示出图1中的部分“a”的放大图,其示出应用了新型半导体发光器件的本公开的另一个实施例;

图11a是沿图10中的e-e线截取的剖视图;

图11b是沿图10中的f-f线截取的剖视图;

图12是示出图11a中的倒装芯片型半导体发光器件的概念图;

图13是示出图1中的部分“a”的放大图,其示出了本公开的另一个实施例;

图14是沿图13中的g-g线的剖视图;

图15是沿图13中的h-h线的剖视图;以及

图16和图17是示出本公开的其它示例的概念图。

具体实施方式

在下文中,将参考附图详细描述本文所公开的实施例,并且相同或相似的元件用相同的附图标记表示,而与图号无关,并且将省略其冗余描述。用于在以下描述中公开的组成元件的后缀“模块”或“单元”仅旨在容易描述说明书,并且后缀本身不给出任何特定的含义或功能。此外,应当注意,附图仅仅被示出以容易地解释本发明的概念,因此,它们不应被解释为限制本文中通过附图公开的技术概念。

此外,当诸如层、区域或基板的元件被称为在另一个元件“上”时,其可以直接在另一个元件上,或者也可以在其间插入中间元件。本文公开的显示装置包括便携式电话、智能电话、膝上型计算机、数字广播终端、个人数字助理(pda)、便携式多媒体播放器(pmp)、导航、板型pc、平板pc、超级本、数字tv、台式计算机等。然而,本领域技术人员将容易理解,本文所公开的配置能够适用于任何可显示装置,即使其是稍后将开发的新产品类型。

图1是示出根据本公开的实施例的使用半导体发光器件的显示装置的概念图。此外,可以使用柔性显示器来显示在显示装置100的控制器中处理的信息。柔性显示器包括柔性、可弯曲、可扭转、可折叠和可卷曲的显示器。例如,柔性显示器可以制造在薄的柔性基板上,其可以像纸张一样卷曲、弯曲、折叠或卷起,同时保持平面显示器的显示特性。

另外,当柔性显示器不卷曲时(例如,具有无限曲率半径的配置,下文中称为“第一配置”),柔性显示器的显示区域变为平面。在第一配置中用外力卷曲柔性显示器的配置(例如,具有有限曲率半径的配置,下文中称为“第二配置”)中,其显示区域变为弯曲表面。如图所示,在第二配置中显示的信息可以是在曲面上显示的视觉信息。可以通过单独地控制以矩阵形式布置的子像素的发光来实现视觉信息。子像素表示用于实现一种颜色的最小单位。

此外,柔性显示器的子像素可以由半导体发光器件实现。根据本公开的实施例,发光二极管(led)被示出为一种类型的半导体发光器件,并且即使在第二配置中,发光二极管也可以形成为具有小尺寸以执行子像素的作用。

在下文中,将参考附图更详细地描述使用发光二极管实现的柔性显示器。特别地,图2是图1中的部分“a”的局部放大图。图1、图3a和3b是沿图2中的线b-b和c-c截取的剖视图,图4是示出图3a中的倒装芯片型半导体发光器件的概念图,并且图5a至图5c是示出用于结合倒装芯片型半导体发光器件实现颜色的各种形式的概念图。

图2、图3a和图3b示出使用无源矩阵(pm)型半导体发光器件的显示装置100。然而,以下说明也适用于有源矩阵(am)型半导体发光器件。

如图所示,显示装置100包括基板110、第一电极120、导电粘合层130、第二电极140和多个半导体发光器件150。基板110可以是柔性基板,并且包含玻璃或聚酰亚胺(pi)以实现柔性显示装置。此外,如果其是柔性材料,则可以使用诸如聚萘二甲酸乙二醇酯(pen)、聚对苯二甲酸乙二醇酯(pet)等中的任一种。基板110也可以是透明和非透明材料中的一种。

此外,基板110可以是布置有第一电极120的布线基板,并且因此第一电极120可以放置在基板110上。此外,绝缘层160布置在基板110上,与第一电极120放置在一起,并且辅助电极170放置在绝缘层160上。在这种情况下,绝缘层160沉积在基板110上的配置可以是单个布线基板。更具体地,绝缘层160可以用诸如聚酰亚胺(pi)、pet、pen等的绝缘且柔性材料结合到基板110中以形成单个布线基板。

此外,作为用于将第一电极120电连接到半导体发光器件150的电极的辅助电极170被放置在绝缘层160上,并且被布置为对应于第一电极120的位置。例如辅助电极170具有点状形状,并且可以通过穿过绝缘层160的电极孔171电连接到第一电极120。电极孔171可以通过在通孔中填充导电材料来形成。

此外,导电粘合层130可以形成在绝缘层160的一个表面上,但是本公开不限于此。例如,还可以使导电粘合层130布置在基板110上而不具有绝缘层160。另外,导电粘合层130可以在导电粘合层130布置在基板110上的结构中起到绝缘层的作用。

导电粘合层130也可以是具有粘性和导电性的层,并且可以在导电粘合层130上混合导电材料和粘合材料。导电粘合层130还可以具有柔性,由此允许显示装置具有柔性功能。

例如,导电粘合层130可以是各向异性导电膜(acf)、各向异性导电膏、含有导电颗粒的溶液等。导电粘合层130可以允许在z方向上穿过其厚度的电互连,但是可以被配置为在其水平x-y方向上具有电绝缘的层。因此,导电粘合层130可以被称为z轴导电层(下文中称为“导电粘合层”)。

此外,各向异性导电膜包括与绝缘基底构件混合的各向异性导电介质,并且因此在向其施加热和压力时,各向异性导电介质仅其特定部分具有导电性。在下文中,对各向异性导电膜施加热和压力,但是其它方法也可用于各向异性导电膜以使其部分地具有导电性。所述方法包括仅对其施加热和压力中的一种、uv固化等。

另外,各向异性导电介质可以是导电球或导电颗粒。在本实施例中,各向异性导电膜包括与绝缘基底构件混合的各向异性导电介质,并且因此在施加热和压力时,其特定部分仅通过导电球具有导电性。各向异性导电膜还可以包括具有导电材料的芯,该导电材料包含涂覆有具有聚合物材料的绝缘层的多个颗粒,并且在断裂绝缘层的施加热和压力的部分的同时通过所述芯具有导电性。这里,可以对芯进行变换以实现具有物体在膜的厚度方向上接触的两个表面的层。

对于更具体的示例,将热和压力施加到作为整体的各向异性导电膜,并且通过与使用各向异性导电膜粘附的配合物体的高度差部分地形成z轴方向上的电连接。在另一个示例中,各向异性导电膜可以包括其中导电材料涂覆在绝缘芯上的多个颗粒。

在这种情况下,施加热和压力的部分被转换(挤压和粘附)到导电材料,以在膜的厚度方向上具有导电性。在另一个示例中,膜可以在其中导电材料沿z方向穿过绝缘基底构件的膜的厚度方向上具有导电性。在这种情况下,导电材料可以具有尖端部分。

另外,各向异性导电膜可以是包括插入绝缘基底构件的一个表面中的导电球的固定阵列各向异性导电膜(acf)。更具体地,绝缘基底构件由粘合材料形成,并且导电球集中地布置在绝缘基底构件的底部,并且当对其施加热和压力时,基底构件与导电球一同被修改,从而在其垂直方向上具有导电性。

然而,本公开不限于此,并且各向异性导电膜可以包括与绝缘基底构件随机混合的导电球或者包括其中导电球布置在任何一层的多个层(双acf)等。各向异性导电膏还可以是其中导电球与绝缘和粘合基材混合的膏料。此外,含有导电性颗粒的溶液可以含有导电性颗粒或纳米颗粒。

再次参考附图,第二电极140位于绝缘层160处以与辅助电极170分离。换句话说,导电粘合层130布置在绝缘层160上与辅助电极170和第二电极140一同定位。当定位辅助电极170和第二电极140时形成导电粘合层130,并且然后在施加热和压力的情况下以倒装芯片形式将半导体发光器件150连接到其上,半导体发光器件150电连接到第一电极120和第二电极140。

参考图4,半导体发光器件150可以是倒装芯片型半导体发光器件。例如,半导体发光器件可以包括p型电极156、用p型电极156形成的p型半导体层155、形成在p型半导体层155上的有源层154、形成在有源层154上的n型半导体层153以及布置为在n型半导体层153上在水平方向上与p型电极156分离的n型电极152。在这种情况下,p型电极156可以通过导电粘合层130电连接到焊接部分,并且n型电极152可以电连接到第二电极140。

再次参考图2、图3a和图3b,辅助电极170在一个方向上以细长的方式形成以电连接到多个半导体发光器件150。例如,在辅助电极170周围的半导体发光器件150的左、右p型电极可以电连接到一个辅助电极。

更具体地,半导体发光器件150被压入导电粘合层130中,并且通过这种方式,仅半导体发光器件150的p型电极156与辅助电极170之间的部分以及半导体发光器件150的n型电极152与第二电极140之间的部分具有导电性,而其余部分因为没有半导体发光器件的下推(push-down)而不具有导电性。此外,多个半导体发光器件150构成发光阵列,并且在发光阵列上形成磷光体层180。

发光器件可以包括具有不同自亮度值的多个半导体发光器件。每个半导体发光器件150构成子像素,并且电连接到第一电极120。例如,可以使用多个第一电极120,半导体发光器件可以布置成多行,并且每行半导体发光器件可以电连接到多个第一电极中的任何一个。

此外,半导体发光器件可以以倒装芯片形式连接,并且因此半导体发光器件生长在透明电介质基板上。半导体发光器件可以是例如氮化物半导体发光器件。半导体发光器件150还具有优异的亮度特性,并且因此可以配置各个子像素,即使其具有小尺寸也是如此。

另外,分隔壁190可以形成在半导体发光器件150之间,并且将各个子像素彼此分开,并且与导电粘合层130形成为一体。例如,各向异性导电膜的基底构件可以在将半导体发光器件150插入各向异性导电膜时形成分隔壁。

此外,当各向异性导电膜的基底构件是黑色时,分隔壁190具有反射特性,同时增加对比度而无需额外的黑色绝缘体。在另一个示例中,反射分隔壁可以与分隔壁190分开设置。在这种情况下,根据显示装置的目的,分隔壁190可以包括黑色或白色绝缘体,并且当使用白色绝缘体的分隔壁时增加反射特性且在具有反射特性的同时增加对比度。

此外,磷光体层180可以位于半导体发光器件150的外表面。例如,半导体发光器件150是发射蓝色(b)光的蓝色半导体发光器件,并且磷光体层180将蓝色(b)光转换为子像素的颜色。磷光体层180可以是构成各个像素的红色磷光体层181或绿色磷光体层182。

换句话说,能够将蓝色光转换为红色(r)光的红色磷光体181可以在实现红色子像素的位置处沉积在蓝色半导体发光器件151上,并且能够将蓝色光转换为绿色(g)光的绿色磷光体182可以在实现绿色子像素的位置处沉积在蓝色半导体发光器件151上。此外,可以仅在实现蓝色子像素的位置处使用蓝色半导体发光器件151。在这种情况下,红色(r)、绿色(g)和蓝色(b)子像素可以实现一个像素。

更具体地,可以沿着第一电极120的每条线沉积单色磷光体。因此,第一电极120上的一条线可以是控制一种颜色的电极。换句话说,可以顺序地布置红色(r)、绿色(b)和蓝色(b),从而实现子像素。然而,本公开不限于此,并且半导体发光器件150可以与量子点(qd)而不是磷光体结合以实现诸如红色(r)、绿色(g)和蓝色(b)的子像素。

此外,在每个磷光体层之间可以布置黑色矩阵191以增强对比度。换句话说,黑色矩阵191可以增强亮度的对比度。然而,本公开不限于此,用于实现蓝色、红色和绿色的另一种结构也可以应用于此。

参考图5a,每个半导体发光器件150可以用发射各种光(包括主要使用氮化镓(gan)并添加铟(in)和/或铝(al)的蓝色)的高功率发光器件来实现。在这种情况下,半导体发光器件150可以分别是红色、绿色和蓝色半导体发光器件,以实现每个子像素。例如,红色、绿色和蓝色(r、g、b)半导体发光器件交替布置,并且通过红色、绿色和蓝色半导体发光器件实现一个像素的红色、绿色和蓝色子像素,从而实现全色显示。

参考图5b,半导体发光器件可以具有针对每个元件设置有黄色磷光体层的白色发光器件(w)。在这种情况下,红色磷光体层181、绿色磷光体层182和蓝色磷光体层183可以设置在白色发光器件(w)上以实现子像素。此外,可以使用在白色发光器件(w)上重复的红色、绿色和蓝色滤色器来实现子像素。

参考图5c,也可以具有在紫外线发光器件(uv)上设置红色磷光体层181、绿色磷光体层182和蓝色磷光体层183的结构。因此,半导体发光器件可以在直到紫外(uv)以及可见光的整个区域上使用,并且可以是可以将紫外线(uv)用作激发源的半导体发光器件。

再次考虑本示例,半导体发光器件150被放置在导电粘合层130上以在显示装置中配置子像素。半导体发光器件150具有优异的亮度特性,并且因此即使是小尺寸的子像素也可以配置各个子像素。此外,各个半导体发光器件150的尺寸在其一侧的长度上可以小于80μm,并且形成有矩形或正方形形状的元件。对于矩形元件,其尺寸可以小于20×80μm。

另外,即使当将具有10μm的边长的正方形半导体发光器件150用于子像素时,其也将呈现用于实现显示装置的足够的亮度。因此,例如,对于子像素的一侧的尺寸为600μm并且其剩余的一侧为300μm的矩形像素,半导体发光器件之间的相对距离变得足够大。因此,在这种情况下,可以实现具有hd图像质量的柔性显示装置。

使用前述半导体发光器件的显示装置可以通过参考图6描述的新型制造方法制造。具体地,图6是示出根据本公开的实施例的使用半导体发光器件制造显示装置的方法的剖视图。

如图所示,导电粘合层130形成在绝缘层160上,与辅助电极170和第二电极140一同定位。此外,绝缘层160沉积在第一基板110上以形成一个基板(或布线基板),并且第一电极120、辅助电极170和第二电极140布置在布线基板处。在这种情况下,第一电极120和第二电极140可以沿彼此垂直的方向布置。

此外,第一基板110和绝缘层160可以分别包含玻璃或聚酰亚胺(pi),以实现柔性显示装置。导电粘合层130也可以由例如各向异性导电膜实现,并且因此各向异性导电膜可以涂覆在基板上,与绝缘层160一同定位。

接下来,与对应于辅助电极170和第二电极140的位置并且构成各个像素的多个半导体发光器件150一同定位的第二基板112被布置为使得半导体发光器件150面向辅助电极170和第二电极140。在这种情况下,作为用于生长半导体发光器件150的生长基板的第二基板112可以是蓝宝石基板或硅基板。当在晶片的单元中形成时半导体发光器件还具有能够实现显示装置的间隙和尺寸,因此有效地用于显示装置。

接下来,将布线基板热压缩到第二基板112。例如,布线基板和第二基板112可以通过应用acf压头而彼此热压缩。布线基板和第二基板112使用热压缩彼此接合。如上所述,由于通过热压缩具有导电性的各向异性导电膜的特性,仅半导体发光器件150与辅助电极170和第二电极140之间的部分可以具有导电性,从而允许电极和半导体发光器件150彼此电连接。此外,半导体发光器件150插入各向异性导电膜中,从而在半导体发光器件150之间形成分隔壁。

接下来,去除第二基板112。例如,可以使用激光剥离(llo)或化学剥离(clo)方法去除第二基板112。最后,去除第二基板112以将半导体发光器件150暴露到外部。可以在耦合到半导体发光器件150的布线基板上涂覆氧化硅(siox)等以形成透明绝缘层。

此外,可以在半导体发光器件150的一个表面上形成磷光体层。例如,半导体发光器件150可以是用于发射蓝色(b)光的蓝色半导体发光器件,并且用于将蓝色(b)光转换为子像素的颜色的红色或绿色磷光体可以在蓝色半导体发光器件的一个表面上形成层。

可以以各种形式修改使用前述半导体发光器件的显示装置的制造方法或结构。例如,前述显示装置可以适用于垂直式半导体发光器件。在下文中,将参考图5和图6描述垂直结构。

接下来,图7是示出根据本公开的另一个实施例的使用半导体发光器件的显示装置的透视图,图8是沿图7中的c-c线截取的剖视图,并且图9是示出图8中的垂直式半导体发光器件的概念图。根据附图,显示装置可以使用无源矩阵(pm)型垂直式半导体发光器件。

如图所示,显示装置包括基板210、第一电极220、导电粘合层230、第二电极240和多个半导体发光器件250。作为布线基板的基板210布置有第一电极220,基板210可以包括聚酰亚胺(pi)以实现柔性显示装置。此外,如果是绝缘和柔性材料,则可以使用任何材料。

另外,第一电极220位于基板210上,并且形成有在一个方向上细长的条形电极。第一电极220也可以是数据电极。此外,导电粘合层230形成在基板210上,与第一电极220一同定位。与应用倒装芯片型发光器件的显示装置类似,导电粘合层230可以是各向异性导电膜(acf)、各向异性导电膏、含有导电颗粒的溶液等。然而,本实施例示出了导电粘合层230由各向异性导电膜实现。

当在基板210上定位第一电极220时定位各向异性导电膜,然后施加热和压力以将半导体发光器件250连接到其上,半导体发光器件250电连接到第一电极220。此外,半导体发光器件250优选布置在第一电极220上。

另外,因为当如上所述施加热和压力时各向异性导电膜在厚度方向上部分地具有导电性,因而产生电连接。因此,各向异性导电膜在厚度方向上被分隔成具有导电性的部分和不具有导电性的部分。

此外,各向异性导电膜包含粘合性组分,并且因此导电粘合层230实现了半导体发光器件250与第一电极220之间的机械耦合以及电耦合。因此,半导体发光器件250被放置在导电粘合层230上,从而在显示装置中配置单独的子像素。

如上所述,半导体发光器件250具有优异的亮度特性,并且因此即使是小尺寸的子像素,也可以配置各个子像素。各个半导体发光器件250的尺寸在其一侧的长度上可以小于80μm,并且形成有矩形或正方形形状的元件。在矩形形状元件的情况下,其尺寸可以小于20×80μm。

半导体发光器件250可以是垂直结构。沿与第一电极220的长度方向交叉的方向布置并电连接到垂直式半导体发光器件250的多个第二电极240也可以位于垂直式半导体发光器件之间。

参考图9,垂直式半导体发光器件可以包括p型电极256、用p型电极256形成的p型半导体层255、形成在p型半导体层255上的有源层254、形成在有源层254上的n型半导体层253以及形成在n型半导体层253上的n型电极252。在这种情况下,位于其底部的p型电极256可以通过导电粘合层230电连接到第一电极220,并且位于其顶部的n型电极252可以电连接到稍后将描述的第二电极240。电极在垂直式半导体发光器件250中沿向上/向下方向布置,从而提供了能够减小芯片尺寸的巨大优点。

再次参考图8,在半导体发光器件250的一个表面上形成磷光体层280。例如,半导体发光器件250是发射蓝色(b)光的蓝色半导体发光器件251,并且可以在其上设置用于将蓝色(b)光转换为子像素的颜色的磷光体层280。在这种情况下,磷光体层280可以是构成各个像素的红色磷光体281和绿色磷光体282。

换句话说,能够将蓝色光转换为红色(r)光的红色磷光体281可以在实现红色子像素的位置处沉积在蓝色半导体发光器件251上,并且能够将蓝色光转换为绿色(g)光的绿色磷光体282可以在实现绿色子像素的位置处沉积在蓝色半导体发光器件251上。此外,可以仅在实现蓝色子像素的位置处仅使用蓝色半导体发光器件251。在这种情况下,红色(r)、绿色(g)和蓝色(b)子像素可以实现一个像素。

然而,本公开不限于此,并且在如上所述应用倒装芯片型发光器件的显示装置中,用于实现蓝色、红色和绿色的另一种结构也可以适用于此。

另外,第二电极240位于半导体发光器件250之间,并且电连接到半导体发光器件250。例如,半导体发光器件250可以布置成多行,并且第二电极240可以位于半导体发光器件250的各行之间。

由于构成各个像素的半导体发光器件250之间的距离足够大,所以第二电极240可以位于半导体发光器件250之间。第二电极也可以形成具有在一个方向上细长并且布置在与第一电极垂直的方向上的条形电极。

此外,第二电极240通过从第二电极240突出的连接电极电连接到半导体发光器件250。更具体地,连接电极可以是半导体发光器件250的n型电极。例如,n型电极形成有用于欧姆接触的欧姆电极,并且第二电极通过印刷或沉积覆盖欧姆电极的至少一部分。通过这样,第二电极240可以电连接到半导体发光器件250的n型电极。

另外,第二电极240位于导电粘合层230上。还可以在形成有半导体发光器件250的基板210上形成包含氧化硅(siox)的透明绝缘层。当形成透明绝缘层并且然后在其上放置第二电极240时,第二电极240可以位于透明绝缘层上。第二电极240也可以形成为与导电粘合层230或透明绝缘层分离。

如果使用诸如氧化铟锡(ito)的透明电极来在半导体发光器件250上定位第二电极240,则ito材料与n型半导体具有差的粘附性。因此,第二电极240可以被放置在半导体发光器件250之间,从而获得不需要透明电极的优点。因此,可以将n型半导体层和具有良好粘附性的导电材料用作水平电极,而不受透明材料的选择的限制,从而提高光提取效率。

另外,在半导体发光器件250之间形成分隔壁290。换句话说,分隔壁290布置在垂直式半导体发光器件250之间,以隔离构成各个像素的半导体发光器件250。因此,分隔壁290将各个子像素彼此分开,并且可以与导电粘合层230形成为一体。例如,当半导体发光器件250插入各向异性导电膜中时,各向异性导电膜的基底构件可以形成分隔壁。

此外,当各向异性导电膜的基底构件是黑色时,分隔壁290可以具有反射特性,同时增加对比度而不需要额外的黑色绝缘体。在另一个示例中,反射分隔壁可以与分隔壁290分开设置,并且包括黑色或白色绝缘体。

如果第二电极240精确地位于半导体发光器件250之间的导电粘合层230上,则分隔壁290可以位于半导体发光器件250与第二电极240之间。因此,使用半导体发光器件250,各个子像素可以配置为甚至小尺寸,并且半导体发光器件250之间的距离可以相对足够大,以将第二电极240放置在半导体发光器件250之间,从而具有实现具有hd图像质量的柔性显示装置。另外,黑色矩阵291布置在每个磷光体层之间以增强对比度。换句话说,黑色矩阵191可以增强亮度的对比度。

如上所述,半导体发光器件250位于导电粘合层230上,从而在显示装置上构成各个像素。由于半导体发光器件250具有优异的亮度特性,从而即使以小尺寸配置各个子像素也是如此。结果,可以实现全色显示,其中红色(r)、绿色(g)和蓝色(b)的子像素通过半导体发光器件实现一个像素。

接下来,图10是示出根据应用了新型半导体发光器件的本公开的另一个实施例的图1中的部分“a”的放大图,图11a是沿图10中的e-e线截取的剖视图。图11b是沿图10中的f-f线截取的剖视图,并且图12是示出图11a中的倒装芯片型半导体发光器件的概念图。

特别地,图10、图11a和图11b示出使用无源矩阵(pm)型半导体发光器件的显示装置1000。然而,下面描述的示例也可适用于有源矩阵(am)型半导体发光器件。

如图所示,显示装置1000包括基板1010、第一电极1020、导电粘合层1030、第二电极1040和多个半导体发光器件1050。这里,第一电极1020和第二电极1040可以分别包括多个电极线。

作为其上布置有第一电极1020的布线基板的基板1010可以包括聚酰亚胺(pi)以实现柔性显示装置。另外,如果是绝缘且柔性的材料,则任何材料都可以用于基板1010。第一电极1020位于基板1010上,并且形成有在一个方向上细长的条形电极。第一电极1020也可以是数据电极。

此外,导电粘合层1030形成在基板1010上,与第一电极1020一同定位。如上所述,导电粘合层1030可以是各向异性导电膜(acf)、各向异性导电膏、含有导电性颗粒等。然而,根据本实施例,导电粘合层1030可以由粘合层代替。例如,当第一电极1020不位于基板1010上而是与半导体发光器件的导电电极一体形成时,可以不需要粘合层的导电性。

另外,沿着与第一电极1020的长度方向交叉的方向布置并且电连接到垂直式半导体发光器件1050的多个第二电极1040位于半导体发光器件之间。另外,第二电极1040位于导电粘合层1030上。换句话说,导电粘合层1030布置在布线基板与第二电极1040之间。因此,第二电极1040可以通过接触电连接到半导体光发光器件1050。

根据上述结构,多个半导体发光器件1050耦合到导电粘合层1030,并且电连接到第一电极1020和第二电极1040。此外,包含氧化硅(siox)的透明绝缘层可以形成在形成有半导体发光器件1050的基板1010上。当形成透明绝缘层并且然后在其上放置第二电极1040时,第二电极1040可以位于透明绝缘层上。第二电极1040也可以形成为与导电粘合层1030或透明绝缘层分离。

如图所示,多个半导体发光器件1050在与设置在第一电极1020中的多个电极线平行的方向上形成多个列。然而,本公开不限于此。例如,多个半导体发光器件1050可以沿着第二电极1040形成多个列。

此外,显示装置1000还可以包括形成在多个半导体发光器件1050的一个表面上的磷光体层1080。例如,半导体发光器件1050是发射蓝色(b)光的蓝色半导体发光器件,并且磷光体层1080执行将蓝色(b)光转换为子像素的颜色的作用。磷光体层1080可以是构成各个像素的红色磷光体层1081或绿色磷光体层1082。换句话说,能够将蓝色光转换为红色(r)光的红色磷光体1081可以在实现红色子像素的位置处沉积在蓝色半导体发光器件1051a上,并且能够将蓝色光变成绿色(g)光的绿色磷光体层1082可以在实现绿色子像素的位置处沉积在蓝色半导体发光器件1051b上。

此外,只有蓝色半导体发光器件1051c可以在实现蓝色子像素的位置处单独使用。在这种情况下,红色(r)、绿色(g)和蓝色(b)子像素可以实现一个像素。更具体地,可以沿着第一电极1020的每条线沉积单色磷光体。因此,第一电极1020上的一条线可以是控制一种颜色的电极。换句话说,可以沿着第二电极1040顺序地布置红色(r)、绿色(b)和蓝色(b),从而实现子像素。然而,本公开不限于此,并且半导体发光器件1050可以与量子点(qd)而不是磷光体组合以实现诸如红色(r)、绿色(g)和蓝色(a)的子像素。

此外,显示装置还可以包括布置在每个磷光体之间的黑色矩阵1091,以增强磷光体层1080的对比度。黑色矩阵1091可以形成为使得在磷光体点之间形成间隙,并且将黑色材料填充到间隙中。因此,黑色矩阵1091可以增强光与阴影之间的对比度,而同时吸收外部光反射。另外,黑色矩阵1091沿着第一电极1020在磷光体层1080沉积的方向上位于每个磷光体之间。在这种情况下,在与蓝色半导体发光器件1051对应的位置处不形成磷光体层,而是可以通过在其间插入没有磷光体层的空间(或者通过在其间插入蓝色半导体发光器件1051c)而在两侧形成黑色矩阵。

再次,参考根据本示例的半导体发光器件1050,电极布置在顶部/底部,从而具有减小芯片尺寸的优点。即,在本公开的该实施例中,电极布置在顶部/底部,但是半导体发光器件是倒装芯片型发光器件。

参考图12,例如,半导体发光器件1050包括第一导电电极1156、形成有第一导电电极1156的第一导电半导体层1155、形成在第一导电半导体层1155上的有源层1154、形成在有源层1154上的第二导电半导体层1153和形成在第二导电半导体层1153上的第二导电电极1152。

更具体地,第一导电电极1156和第一导电半导体层1155可以分别是p型电极和p型半导体层,并且第二导电电极1152和第二导电半导体层1153可以分别是n型电极和n型半导体层。然而,本公开不限于此,并且包括第一导电类型是n型,第二导电类型是p型的情况。

更具体地,第一导电电极1156形成在第一导电半导体层1155的一个表面上,并且有源层1154形成在第一导电半导体层1155的另一个表面与第二导电半导体层1153的一个表面之间,并且第二导电电极1152形成在第二导电半导体层1153的一个表面上。

在这种情况下,第二导电电极1152可以布置在第二导电半导体层1153的一个表面上,并且未掺杂的半导体层1153a可以形成在第二导电半导体层1153的另一个表面上。

参考图12以及图10至图11b,第二导电半导体层的一个表面可以是最接近布线基板的表面,并且第二导电半导体层的另一个表面可以是离布线基板最远的表面。此外,第一导电电极1156和第二导电电极1152被形成为在沿着半导体发光器件的宽度方向的分离位置处在宽度方向和垂直方向(或厚度方向)上具有高度差。

另外,第二导电电极1152使用该高度差形成在第二导电半导体层1153上,但是布置为与位于半导体发光器件的上侧的第二电极1040相邻。例如,第二导电电极1152的至少一部分从第二导电半导体层1153的侧表面(或未掺杂半导体层1153a的侧表面)沿着宽度方向突出。因此,由于第二导电电极1152从侧表面突出,所以第二导电电极1152可以暴露于半导体发光器件的上侧。因此,第二导电电极1152布置在与布置在导电粘合层1030的上侧的第二电极1040重叠的位置处。

更具体地,半导体发光器件包括从第二导电电极1152延伸并且从多个半导体发光器件的侧表面突出的突出部分1152a。在这种情况下,基于突出部分1152a,第一导电电极1156和第二导电电极1152沿着突出部分1152a的突出方向布置在分离的位置处,并且形成为在与突出方向垂直的方向上彼此具有高度差。

突出部分1152a从第二导电半导体层1153的一个表面延伸到其侧表面,并且延伸到第二导电半导体层1153的上表面,更具体地是未掺杂半导体层1153a的上表面。突出部分1152a从未掺杂半导体层1153a的侧表面沿宽度方向突出。因此,突出部分1152a可以基于第二半导体层在第一导电电极的相对侧处电连接到第二电极1040。

具有突出部分1152a的结构可以在前述水平和垂直式半导体发光器件中实现。也可以通过在未掺杂半导体层1153a上距离第一导电电极1156最远的上表面上进行粗糙化来形成细槽。

另外,半导体发光器件1050包括形成为覆盖第二导电电极1152的绝缘部1158。绝缘部1158连同第二导电电极1152一起覆盖第一导电半导体层1155的一部分。第二导电电极1152和有源层1154也形成在第二导电半导体层1153的一个表面上,并且通过在其间插入绝缘部1158而在一个方向上彼此分离地布置。这里,一个方向(或水平方向)是半导体发光器件的宽度方向,而垂直方向是半导体发光器件的厚度方向。

另外,如图12所示,第一导电电极1156形成在暴露而未被第一导电半导体层1155上的绝缘部1158覆盖的部分上。因此,第一导电电极1156通过绝缘部1158暴露到外部。如上所述,第一导电电极1152和第二导电电极1156被绝缘层1058分开,并且半导体发光器件的n型电极和p型电极可以是绝缘的。

显示装置1000还包括形成在多个半导体发光器件1050的一个表面上的磷光体层1080(参考图11b)。在这种情况下,使用磷光体激发从半导体发光器件发射的光以实现红色(r)和绿色(g)。上述黑色矩阵191、291、1091(参考图3b,图8和图11b)防止磷光体之间的颜色混合。因此,本公开的实施例便于显示装置的结构和制造工艺并增加其亮度。

在下文中,将参考附图详细描述根据本公开的实施例的用于增加亮度的显示装置的结构。特别地,图13是示出根据本公开的另一个实施例的图1的部分“a”的放大图。图14是沿图13的g-g线截取的剖视图,并且图15是沿图13的h-h线截取的剖视图。

如图13至图15所示,示出了参考图10至图12描述的使用倒装芯片型半导体发光器件的显示装置2000。更具体地,示出在参考图10至图12描述的倒装芯片型半导体发光器件中添加用于增加亮度的机制。在这种情况下,图14中所示的箭头示出用于增加亮度的光的路径。

根据下面描述的本示例,相同或相似的附图标记被指定用于与参考图10至图12描述的前述示例的每个配置相同或相似的配置。例如,显示装置2000包括基板2010、第一电极2020、导电粘合层2030、第二电极2040和多个半导体发光器件2050,并且其描述可以由参考图10至图12的描述代替。

在这种情况下,半导体发光器件2050包括第一导电电极2156、形成有第一导电电极2156的第一导电半导体层2155、形成在第一导电半导体层2155上的有源层2154、形成在有源层2154上的第二导电半导体层2153以及形成在第二导电半导体层2153上的第二导电电极2152,并且其描述可以由图12的先前描述代替。

此外,如上面参考图12所述,突出部分2152a从第二导电半导体层2153的一个表面延伸到其侧表面,并且延伸到第二导电半导体层2153的上表面,更具体地是未掺杂半导体层2153a的上表面。因此,突出部分2152a可以基于第二导电半导体层在第一导电电极的相对侧处电连接到第二电极2040。

半导体发光器件2050还包括覆盖第二导电电极2152的绝缘部2158。绝缘部2158可以形成为与第二导电电极2152一起覆盖第一导电半导体层2155的一部分。

此外,第一导电电极2156形成在暴露而未被第一导电半导体层2155上的绝缘部2158覆盖的部分上。因此,第一导电电极2156通过绝缘部2158暴露到外部。显示装置2000还可以包括形成在多个半导体发光器件2050的一个表面上的磷光体层2080。

例如,半导体发光器件2050是用于发射蓝色(b)光的蓝色半导体发光器件,并且磷光体层2080执行将蓝色(b)光转换为子像素的颜色的功能。在这种情况下,使用磷光体激发从半导体发光器件2050发射的光以实现红色(r)和绿色(g)。另外,磷光体层2080可以由滤色器、量子点等代替。黑色矩阵2091防止磷光体之间的颜色混合。红色磷光体层2081、绿色磷光体层2082和蓝色半导体发光器件2051a、2051b和2051c也在图15中示出。

另外,导电粘合层2030在将半导体发光器件2050粘附到基板2010(布线基板)的同时电连接在基板2010与半导体发光器件2050之间。在这种情况下,导电粘合层2030可以是各向异性导电膜。

例如,第一电极2020布置在基板2010上,并且因此成为布线电极。第一电极2020可以通过导电粘合层2030的各向异性导电介质2034电连接到半导体发光器件2050,并且被驱动为用于传输数据信号的数据电极。

此外,第二电极2040位于导电粘合层2030上。换句话说,导电粘合层2030布置在布线基板与第二电极2040之间。第二电极2040可以通过接触电连接到半导体发光器件2050,并且被驱动为用于传输扫描信号的扫描电极。然而,本公开不限于此,第一电极2020可以是扫描电极,并且第二电极2040可以是数据电极。

根据本实施例,导电粘合层2030包括多个层2031、2032、2033,并且白色颜料2060包括在多个层中的至少一层中。白色颜料2060在导电粘合层2030中混合以反射从半导体发光器件2050发射的光。

此外,白色颜料2060可以包括氧化钛、氧化铝、氧化镁、氧化锑、氧化锆和二氧化硅中的至少一种。更具体地,导电粘合层2030可以包括第一层2031、第二层2032和第三层2033。第一层2031是布置在基板2010上的层,并且被配置为具有粘附到基板2010的粘附性。第一层可以由具有足够的流动性以足以进行粘合过程的材料形成。

此外,第一层2031不是直接与半导体发光器件接触的部分,因此可以不包括白色颜料。因此,由于其中不包括或不包含白色颜料,因此可以减轻或防止第一层2031的粘附性劣化。

另外,第二层2032包括各向异性导电介质2034作为沉积在第一层2031上的层。半导体发光器件的至少一部分可以插入到第二层2032的至少一部分中。因此,各向异性导电介质2034与半导体发光器件的第一导电电极2156接触,以在发光器件与基板的布线电极之间导电。

在这种情况下,白色颜料2060可以包括或包含在第二层2032中,以反射从半导体发光器件2050发射的光。例如,白色颜料2060可以渗透到导电粘合层2030的绝缘基底构件或基底材料中。

另外,第二层可以包括在熔融状态下具有比第一层2031更高粘度的材料。与第一层2031相反的,第二层2032有效地抑制各向异性导电介质的流动达到最大值,并且因此具有高熔体粘度特性。

随着分子量增加,熔体粘度增加,并且因此第二层2032可以由具有比第一层2031的分子量更高的分子量的热塑性树脂形成。例如,第二层2032可以包括以下中的至少一种:苯乙烯-丁二烯橡胶、苯乙烯-乙烯-丁烯-苯乙烯(sebs)乙烯乙酸乙烯酯共聚物、羧基改性的乙烯-乙酸乙烯酯共聚物、乙烯乙酸异丁酯、聚酰胺、聚酰亚胺、聚酯、聚乙烯醚、聚乙烯醇缩丁醛、聚氨酯、苯乙烯-丁二烯-苯乙烯(sbs)嵌段共聚物、羧基改性的sbs共聚物、sis共聚物、sebs共聚物、马来酸改性的sebs共聚物、聚丁二烯橡胶、氯丁二烯橡胶、羧基改性的氯丁二烯橡胶、苯乙烯-丁二烯橡胶、异丁烯-异戊二烯共聚物、丙烯腈-丁二烯橡胶、羧基改性的丙烯腈-丁二烯橡胶和胺改性的丙烯腈-丁二烯橡胶。

另外,第三层2033可以是这样的层,其上未布置各向异性导电介质作为沉积在第二层2032上的层。第二电极2040也布置在第三层2033的一个表面上。另外,第二层2032布置在第一层2031与第三层2033之间,并且半导体发光器件粘附到第三层2033。在这种情况下,第一层2031和第三层可以由相同的材料,并且第二层2032可以由与第一层2031和第三层不同的材料形成。

另外,半导体发光器件的至少一部分穿过第三层2033,并且因此半导体发光器件直接面对第三层2033。在这种情况下,白色颜料2060可以包括或包含在第三层2033中用于反射从半导体发光器件发射的光。因此,第三层通过白色颜料2060增加了从半导体发光器件产生的光的反射率。

此外,白色颜料2060可以仅添加到第二层2032和第三层2033,并且因此可以仅向与半导体发光器件直接接触的层提供反射效果,以呈现亮度增强效果。此外,白色颜料2060将从磷光体层2080反射并朝向显示装置内部的光反射到磷光体层2080。在这种情况下,第三层2033的白色颜料主要对从磷光体层2080反射并且朝向显示装置的内部的光进行再反射。

白色颜料2060也可以仅添加到第二部分2032和第三层2033,并且粘附到多个层中的基板的层可以是具有比其它层的粘附性更高的层。另外,第一层2031的主要功能是提高由于布线基板上的电极的不均匀性而导致的可填充性或粘附性,而不是提高反射效果,并且因此不对其添加白色颜料。然而,本公开不限于此,并且少量的白色颜料可以添加到第一层2031。在这种情况下,添加到第二层2032或第三层2033的白色颜料的重量比比第一层2031的大。

下面的表1显示了白色颜料的含量随着本实施例的结构的使用而变化的实验结果。

此外,包括在第二层2032中的白色颜料的重量比可以是相对于第二层的总重量的10至80wt%。并且包括在第三层中的白色颜料的重量比可以为相对于第三层的总重量的10至80wt%。由于实验结果,基于添加高达10wt%的白色颜料,反射率倾向于快速增加,并且按比例增加。然而,提高超过50%的发光效率具有技术意义,并且因此白色颜料的重量比优选大于20wt%。

此外,当加入太多的白色颜料时,可能降低流动性,并且可能由于颗粒发生表面缺陷,并且因此白色颜料的重量比优选小于60wt%。根据本公开的实施例,包括在第二层2032中的白色颜料的重量比为20至60wt%,并且包括在第三层2033中的白色颜料的重量比为20至60wt%。

如上所述,本实施例清楚地限定了导电粘合层的结构和白色颜料的含量,从而实现了能够增加柔性以及在使用半导体发光器件的显示装置中保持粘附性的连接结构。

此外,下面描述的说明也可以应用于使用前述不同类型的半导体发光器件的显示装置。如上所述,使用上述半导体发光器件的显示装置可以以各种形式进行修改,并且下面将描述这种修改示例。

接下来,图16和图17是示出本公开的其它示例的概念图。首先,根据图16的图示,导电粘合层3030包括两层,并且在半导体发光器件3050粘附到基板3010(布线基板)的同时电连接在基板3010与半导体发光器件3050之间。

根据本实施例,导电粘合层3030包括多个层3031和3032,并且白色颜料3060被添加到多个层中的任何一个,但是没有添加到另一个中。另外,白色颜料3060可以包括氧化钛、氧化铝、氧化镁、氧化锑、氧化锆和二氧化硅中的至少一种。

更具体地,导电粘合层3030包括第一层3031和第二层3032。第一层3031布置在基板3010上,并且被配置为具有粘附到基板3010的粘合剂。第一层也可以由具有良好流动性的材料形成以适于粘合过程。此外,第一层3031不是与半导体发光器件3050直接接触的部分,并且因此可以不包括白色颜料。因此,因为其中不包括白色颜料,所以可以减轻或防止第一层3031的粘附性劣化。

另外,第二层3032布置有各向异性导电介质3034作为沉积在第一层3031上的层。此外,电连接到半导体发光器件的第二导电电极的第二电极布置在第二层3032的一个表面上。

另外,半导体发光器件的至少一部分可以插入到第二层3032的至少一部分中。因此,各向异性导电介质3034与半导体发光器件3050的第一导电电极2156接触,以在发光器件3050与基板3010的布线电极之间导电。

此外,白色颜料3060包括在第二层3032中,以反射从半导体发光器件3050发射的光。例如,白色颜料3060可以渗透到导电粘合层3030的绝缘基底构件或基底材料中。因此,白色颜料3060可以仅添加到第二层3032,并且因此可以仅向与半导体发光器件直接接触的层提供反射效果,以呈现亮度增强效果。

另外,白色颜料3060可以仅添加到第二部分3032,并且第一层3031可以是具有比第二层3032更高的粘附性的层。此外,第一层3031的主要功能是用以提高由于布线基板上的电极的不均匀性而引起的可填充性或粘附性,而不是提高反射效果,因此不向其中添加白色颜料。然而,本公开不限于此,并且少量的白色颜料可以添加到第一层3031。在这种情况下,添加到第二层3032的白色颜料的重量比大于第一层3031的重量比。

接下来,根据图17的图示,对于垂直式半导体发光器件,由于本公开的导电粘合层的结构,可以提高发光效率。如图所示,显示装置4000包括基板4010、第一电极4020、导电粘合层4030、第二电极4040和多个半导体发光器件4050。这里,第一电极4020和第二电极4040可以分别包括多条电极线。

作为布线基板的基板4010由类似于应用上述倒装芯片型发光器件的显示装置的柔性绝缘材料形成,并且第一电极4020布置在其上。作为在一个方向上细长的条形电极的第一电极4020可以形成为执行数据电极的作用,类似于应用上述倒装芯片型发光器件的显示装置。

沿与第一电极4020的长度方向交叉的方向布置并电连接到半导体发光器件4050的多个第二电极4040位于半导体发光器件4050之间。另外,多个半导体发光器件4050可以在与设置在第一电极4020上的多个电极线平行的方向上形成多个列。然而,本公开不限于此。例如,多个半导体发光器件4050可以沿着第二电极4040形成多个列。

此外,显示装置4000还可以包括形成在多个半导体发光器件4050的一个表面上的磷光体层4080。将参考图10、图11a和图11b,通过磷光体层的描述来代替其描述。此外,参考根据本实施例的半导体发光器件4050,本实施例中的半导体发光器件4050具有垂直型结构,并且电极布置在顶部/底部,从而具有减小芯片尺寸的优点。

例如,半导体发光器件4050可以包括第一导电电极4156、形成有第一导电电极4156的第一导电半导体层4155、形成在第一导电半导体层4155上的有源层4154以及在有源层4154上形成的第二导电半导体层4153。另外,有源层4154形成在第二导电半导体层4153的一侧,并且第二电极4040连接到第二导电半导体层4153的另一侧。

本图示示出第二导电电极4152不是附加地布置在每个半导体发光器件4050上,而是第二导电电极4152与第二电极4040一体形成。在这种情况下,可以形成第二电极4152而不需要在每个半导体发光器件4050上沉积第二导电电极4152的过程。

在这种情况下,第一导电电极4156和第一导电半导体层4155可以分别是p型电极和p型半导体层,并且第二电极4040和第二导电半导体层4153可以分别是n型电极和n型半导体层。更具体地,第一导电半导体层4155可以是p型gan层,并且第二导电半导体层4153可以是n型gan层。

导电粘合层4030形成在基板4010上,第一电极4020位于基板4010上。另外,第二电极4040可以位于导电粘合层4030上。换句话说,导电粘合层4030布置在布线基板与第二电极4040之间。第二电极4040可以通过接触电连接到半导体光发光器件4050。

由于上述结构,导电粘合层4030在将半导体发光器件4050粘附到基板4010(布线基板)的同时电连接在基板4010与半导体发光器件4050之间。例如,第一电极4020设置在基板4010上,并且因此变为布线电极。第一电极4020可以通过导电粘合层4030的各向异性导电介质4034电连接到半导体发光器件4050,并且被驱动为用于传输数据信号的数据电极。

另外,第二电极4040位于导电粘合层4030上。换句话说,导电粘合层4030布置在布线基板与第二电极4040之间。第二电极4040可以通过接触电连接到半导体发光器件4050,并且被驱动为用于传输扫描信号的扫描电极。

根据本实施例,导电粘合层4030设置有多个层4031、4032、4033,并且白色颜料4060添加到多个层中的至少一层。白色颜料4060混合在导电粘合层4030内以反射从半导体发光器件4050发射的光。在这种情况下,白色颜料4060可以包括氧化钛、氧化铝、氧化镁、氧化锑、氧化锆和二氧化硅中的至少一种。

更具体地,导电粘合层4030可以包括第一层4031、第二层4032和第三层4033。第一层4031、第二层4032和第三层4033可以具有与参考图13至图15描述的上述说明中的那些层的相同的结构和材料,并且其描述将被先前的描述代替。

因此,第一层可以不是直接与半导体发光器件接触的部分,并且因此可以不包括白色颜料。相反,第二层4032可以包括白色颜料4060以反射从半导体发光器件4050发射的光。第三层4033可以不布置有各向异性导电介质,而是可以包括白色颜料4060以反射从半导体发光器件4050发射的光。

白色颜料4060可以仅添加到第二层4032和第三层4033,并且因此可以仅向与半导体发光器件直接接触的层提供反射效果,以呈现亮度增强效果。此外,即使在如本实施例所示的使用垂直式半导体发光器件的显示装置中,白色颜料4060也可以执行将从磷光体层4080反射并且朝向显示装置内部的光再反射到磷光体层4080的作用。在这种情况下,第三层4033的白色颜料可以主要执行对从磷光体层4080反射并指向显示装置内部的光进行再反射的作用。

白色颜料4060可以仅添加到第二部分4032和第三层4033,并且粘附到多个层中的基板的层可以是具有比其它层的粘附性更高的层。然而,本公开不限于此,并且少量的白色颜料可以添加到第一层4031。在这种情况下,如本实施例所示,添加到第二层4032或第三层4033的白色颜料的重量比可以大于第一层4031的重量比。

如上所述,根据本公开的实施例的导电粘合层的结构还可以应用于使用垂直式半导体发光器件的显示装置,从而实现能够增加柔性并保持粘附性的连接结构。

根据上述实施例的配置和方法将不能以有限的方式应用于使用半导体发光器件的前述显示装置,并且每个实施例的全部或部分可以选择性地组合和配置以形成对其的各种修改。。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1