中空分割导体式列车用阻水控制电缆的制作方法

文档序号:12128625阅读:208来源:国知局

技术领域

本发明涉及电缆领域,具体是一种中空分割导体式列车用阻水控制电缆。



背景技术:

随着社会经济的高速发展,轨道交通也经历了多次提速,从最初的低速火车发展到现在的高铁,高铁运行速度很快,速度可以达到 300 ~ 400 公里每小时,而电缆是高速列车运行必不可少的,用于高速列车的电缆必须要具备较强的抗冲击能力、耐振动、耐燃料油以及耐高温和耐低温的性能,如果耐油性低,则燃料油会渗透到电缆的绝缘层内,导致绝缘层发生膨胀,最终导致绝缘层的破裂,影响其正常使用,现有的高速列车电缆抗冲击性和耐油性仍需改进。

导体的直流电阻是考核电缆电性能的一个重要参数。但是对于交流传输的大截面电缆,由于集肤效应的存在,导体中的电流密度并不是均匀分布,而是沿电缆导体径向自表面到中心逐渐减小,导致导体中的载流量并不是随电缆导体截面的增大而成正比例增加,而是当导体直径增大到一定程度时,集肤效应严重,导致交流电力线路中导体产生损耗而发热的有效电阻即交流电阻会明显大于其直流电阻,外径越大,集肤效应就越明显,导致交流电阻增加的比例也就越大,单靠增大截面也就失去了其实用性和经济性。

为了最大限度地减轻因集肤效应引起的导体交流电阻增大,有效地减小导体的损耗发热,增加导体的载流量,人们不得不将大截面导体以不同的方式进行分割加工成为由几个相互绝缘的独立部分构成的导体,每个部分的外形尺寸明显减小,以达到减小交流电阻的目的。电力电缆行业内常把交联聚乙烯绝缘电力电缆铜芯导体做成分割导体,一般有四分割、五分割、六分割和七分割等几种结构,分割股块也有扇形和瓦楞形等形状,以五分割扇形股块居多。由于单个扇形股块的截面积只有导体总截面积的若干分之一,所以单个股块的“集肤效应”和“邻近效应”大大减小,从而达到了减小导体交流电阻的目的。如在GB/T11017和GB/Z 18890中,以800mm2作为分水岭:800mm2以下的电缆导体采用常规紧压绞合排列结构形式;800mm2及以上的电缆导体采用五分割导体成缆绞合排列的结构形式。这种形式包括五个大小和截面形状均相同的铜芯股块,由该五个铜芯股块按一定方向扭合成缆,所述的大截面铜芯五分割导体还包括设置在该铜芯股块之间、将各股块隔离开来的绝缘皱纹纸,以及包裹在该铜芯股块外围的半导电尼龙带。通过将大截面铜芯导线化整为零,将原来的铜芯截面均匀分割成五个相互隔离的股块,从而将“集肤效应”和“临近效应”的不利影响降到最低限度,大大提高了导线的传输容量。

现有技术这种扇形股块分割导体的方式,主要适用于中等截面800-1800mm2,具有良好的分割效果。但是对于更大截面,由于扇形高和扇形宽已大于2倍的透入深度(集肤效应是由于场量在导体内部的衰减形成的,场量在导体内的衰减快慢可以用透人深度表示),因而分割效果就不再明显。同时,这种分割导体的方式在生产过程中也存在很多难题和弊端:一是扇形导体股块截面过大时,生产工艺难度增大,工装模具、设备的特性要求,及导体结构的稳定性和弯曲特性等均无法满足要求;二是电力电缆常要求导体必须采用紧压导体,以提高导线的填充系数,缩小外径,减少导体间间隙,防止水分渗入;使导体之间连接更紧密,避免了松动所引起的一些问题.接触面增大导电性能增强避免接触不良引起的发热电阻大等;而扇形导体股块是扇形紧压,每层的形状不同,股块截面过大时,紧压的难度增加。

为了增加导体截面,现有技术一种改进是采用中空的分割导体结构,包括支撑的螺旋管,在支撑的螺旋管外绞合四分割、五分割、六分割和七分割的瓦楞型导体股块,这种结构的中空分割导体支撑的螺旋管为了保证一定的强度往往采用金属螺旋管(如不锈钢螺旋管、青铜螺旋管等),不同的金属材质,会增加线路损耗,造成电场不均匀。即使采用相同材质,螺旋管与分割导体股块之间会也产生间隙,接触不良引起发热电阻大。而采用拉拔管或塑料等材质的铜管等,柔软度低,会导致整个导体的柔软度降低。

水分的侵入往往是电力电缆遭到破坏、使用寿命受到影响的主要原因。水分浸入途径主要是从电缆的护层和电缆的端部侵入电缆,造成导体的氧化、腐蚀,从而影响电缆的电性能,甚至发生异常断线事故;水分渗入绝缘层,在强电场的作用下,绝缘层会产生“水树枝”,加速电缆的电老化,导致电缆击穿事故,降低电缆使用寿命。为了防止水分的侵入,要求电缆各结构之间紧密没有间隙。



技术实现要素:

本发明为了解决现有技术中存在的问题,提供了一种生产工艺难度降低,工装模具、设备的特性要求低,结构稳定,集肤效应低,载流量大、阻水性能好、耐腐蚀、耐氧化、耐高温、控油性好、抗腐蚀的超大截面多层导体结构的中空分割导体式列车用阻水控制电缆。

本发明所述的一种中空分割导体式列车用阻水控制电缆,该电缆的中心为中空层,在中空层外设有双层的导体单线层;在导体单线层外设有多个瓦楞形导体股块,每个瓦楞形导体股块外设有瓦楞形阻水层;所述的每个瓦楞形导体股块内均设有圆形导体,每个圆形导体外设有圆形阻水层;所述瓦楞形阻水层之间的间隙中设有阻水填充条;所述的双层的导体单线层,内层由多个瓦楞形导体单线组成,外层由多个“Z”型导体单线组成;在多个瓦楞形阻水层外依次设有聚酯带、编织镀锡铜丝屏蔽层、无碱玻璃丝纤维带以及阻燃聚氯乙烯外护套。

进一步改进,所述的瓦楞形导体股块为五块,其截面形状大小均相同。

与现有技术相比,本发明的有益效果在于:

1、本发明内部自支撑的中空的“Z”型导体单线和瓦楞型导体单线双绞合层加上中空层,使导体整个截面增加,满足了超大截面的要求;瓦楞型导体股块扇形高和扇形宽小于2倍的透入深度,各瓦楞型股块之间及与绞合的“Z”型导体间单线均互相隔离,虽然大幅度增加了导体截面,分割效果仍然明显,“集肤效应”和“临近效应”的不利影响降到最低限度,大大提高了导线的传输容量。“Z”型导体单线是一种自支撑结构,结构稳定,导体单线之间没有间隙,无需紧压,即可满足导体单线之间连接更紧密的要求。中空的自支撑结构保证了强度,可以替代金属螺旋管(如不锈钢螺旋管、青铜螺旋管等)、拉拔的铜管或塑料等材质的支撑管,与分割导体股块之间间隙小,而且不会降低整个导体的柔软度。中空结构也最大程度利用了导体截面,更大幅度的降低了“集肤效应”的不利影响。

2、本发明集合的分割扇形导体股块内周绞合 “Z”型导体单线和瓦楞型导体单线,内部设有股块阻水层以及阻水填充条,集合的分割扇形导体股块截面达1500-2500mm2,满足了超大截面的要求。

3、在每个扇形导体股块内设有圆形导体,增加了导体的导电性能,增加了导体的载流量。

4、在股块导体外以及集合的空隙处均设有阻水层,使得整体导体被阻水层保护,使得导体具有很强的阻水功能,不会因为水分浸入造成导体的氧化、腐蚀,从而影响电缆的电性能,甚至发生异常断线事故。

5、本发明采用聚酯带,使得电缆的质量大大减轻,并具有很好的防水效果、无毒、无异味、抗菌、抗化学药剂、抗腐蚀性。

6、本发明设有内外聚氯乙烯护套,使得电缆具有更好的阻燃性,控油性。

附图说明

图1为本发明的结构示意图。

具体实施方式

下面结合附图对本发明作进一步说明。

如图1所示的一种中空分割导体式列车用阻水控制电缆,该电缆的中心为中空层1,在中空层外设有双层的导体单线层;在导体单线层外设有多个瓦楞形导体股块4,每个瓦楞形导体股块外设有瓦楞形阻水层5;所述的每个瓦楞形导体股块内均设有圆形导体6,每个圆形导体外设有圆形阻水层7;所述瓦楞形阻水层之间的间隙中设有阻水填充条8;所述的双层的导体单线层,内层由多个瓦楞形导体单线2组成,外层由多个“Z”型导体单线3组成;在多个瓦楞形阻水层外依次设有聚酯带9、编织镀锡铜丝屏蔽层10、无碱玻璃丝纤维带11以及阻燃聚氯乙烯外护套12,构成了整个电缆结构。

所述的导体单线层为两层,内层由多个瓦楞形导体单线组成,外层由多个“Z”型导体单线组成,都是一种自支撑结构,结构稳定,导体单线之间没有间隙,无需紧压,即可满足导体单线之间连接更紧密的要求;中空的自支撑结构保证了强度,可以替代金属螺旋管(如不锈钢螺旋管、青铜螺旋管等)、拉拔的铜管或塑料等材质的支撑管,与分割导体股块之间间隙小,而且不会降低整个导体的柔软度。中空结构也最大程度利用了导体截面,更大幅度的降低了“集肤效应”的不利影响。所述的集合的分割扇形导体股块的截面达1500-2500mm2,使导体整个截面增加,满足了超大截面的要求。

本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1