增强型栅场板GaN基电流孔径异质结场效应器件及其制作方法与流程

文档序号:11233062阅读:655来源:国知局
增强型栅场板GaN基电流孔径异质结场效应器件及其制作方法与流程

本发明属于微电子技术领域,涉及半导体器件,特别是增强型栅场板gan基电流孔径异质结场效应器件,可用于电力电子系统。

技术背景

功率半导体器件是电力电子技术的核心元件,随着能源和环境问题的日益突出,研发新型高性能、低损耗功率器件就成为提高电能利用率、节约能源、缓解能源危机的有效途径之一。而在功率器件研究中,高速、高压与低导通电阻之间存在着严重的制约关系,合理、有效地改进这种制约关系是提高器件整体性能的关键。随着微电子技术的发展,传统第一代si半导体和第二代gaas半导体功率器件性能已接近其材料本身决定的理论极限。为了能进一步减少芯片面积、提高工作频率、提高工作温度、降低导通电阻、提高击穿电压、降低整机体积、提高整机效率,以gan为代表的宽禁带半导体材料,凭借其更大的禁带宽度、更高的临界击穿电场和更高的电子饱和漂移速度,且化学性能稳定、耐高温、抗辐射等突出优点,在制备高性能功率器件方面脱颖而出,应用潜力巨大。特别是采用gan基异质结结构的横向高电子迁移率晶体管,即横向gan基高电子迁移率晶体管hemt器件,更是因其低导通电阻、高击穿电压、高工作频率等特性,成为了国内外研究和应用的热点、焦点。

然而,在横向gan基hemt器件中,为了获得更高的击穿电压,需要增加栅漏间距,这会增大器件尺寸和导通电阻,减小单位芯片面积上的有效电流密度和芯片性能,从而导致芯片面积和研制成本的增加。此外,在横向gan基hemt器件中,由高电场和表面态所引起的电流崩塌问题较为严重,尽管当前已有众多抑制措施,但电流崩塌问题依然没有得到彻底解决。为了解决上述问题,研究者们提出了垂直型gan基电流孔径异质结场效应器件,例如gan基电流孔径异质结场效应器件,参见algan/gancurrentapertureverticalelectrontransistors,ieeedeviceresearchconference,pp.31-32,2002。gan基电流孔径异质结场效应器件可通过增加漂移区厚度提高击穿电压,避免了牺牲器件尺寸和导通电阻的问题,因此可以实现高功率密度芯片。而且在gan基电流孔径异质结场效应器件中,高电场区域位于半导体材料体内,这可以彻底地消除电流崩塌问题。2004年,ilanben-yaacov等人利用刻蚀后mocvd再生长沟道技术研制出algan/gan电流孔径异质结场效应器件,该器件未采用钝化层,最大输出电流为750ma/mm,跨导为120ms/mm,两端栅击穿电压为65v,且电流崩塌效应得到显著抑制,参见algan/gancurrentapertureverticalelectrontransistorswithregrownchannels,journalofappliedphysics,vol.95,no.4,pp.2073-2078,2004。2012年,srabantichowdhury等人利用mg离子注入电流阻挡层结合等离子辅助mbe再生长algan/gan异质结的技术,研制出基于gan衬底的电流孔径异质结场效应器件,该器件采用3μm漂移区,最大输出电流为4ka·cm-2,导通电阻为2.2mω·cm2,击穿电压为250v,且抑制电流崩塌效果好,参见cavetonbulkgansubstratesachievedwithmbe-regrownalgan/ganlayerstosuppressdispersion,ieeeelectrondeviceletters,vol.33,no.1,pp.41-43,2012。同年,由masahirosugimoto等人提出的一种增强型gan基电流孔径异质结场效应器件获得授权,参见transistor,us8188514b2,2012。此外,2014年,huinie等人基于gan衬底研制出一种增强型gan基电流孔径异质结场效应器件,该器件阈值电压为0.5v,饱和电流大于2.3a,击穿电压为1.5kv,导通电阻为2.2mω·cm2,参见1.5-kvand2.2-mω-cm2verticalgantransistorsonbulk-gansubstrates,ieeeelectrondeviceletters,vol.35,no.9,pp.939-941,2014。

传统gan基电流孔径异质结场效应器件是基于gan基宽禁带半导体异质结结构,其包括:n+型gan衬底1、n-型gan漂移层2、n型gan孔径层3、左、右两个对称的电流阻挡层4、孔径5、gan沟道层6、势垒层7和钝化层14;势垒层7上面的两侧淀积有源极11,源极11下方通过离子注入形成两个n+注入区10,源极11之间的势垒层7上外延有p+型gan帽层8,p+型gan帽层8两侧刻有两个台阶9,p+型gan帽层的上面淀积有栅极12,n+型gan衬底1下面淀积有漏极13,钝化层14完全包裹除了漏极13底部以外的所有区域,如图1所示。

经过十多年的理论和实验研究,研究者们发现,上述传统gan基电流孔径异质结场效应器件结构上存在固有缺陷,会导致器件中电场强度分布极不均匀,尤其是在电流阻挡层与孔径区域交界面下方附近的半导体材料中存在极高的电场峰值,从而引起器件过早击穿。这使得实际工艺中很难实现通过增加n型gan漂移层的厚度来持续提高器件的击穿电压。因此,传统结构gan基电流孔径异质结场效应器件的击穿电压普遍不高。为了获得更高的器件击穿电压,并可以通过增加n型gan漂移层的厚度来持续提高器件的击穿电压,2013年,zhongdali等人利用数值仿真技术研究了一种基于超结的增强型gan基电流孔径异质结场效应器件,研究结果表明超结结构可以有效调制器件内部的电场分布,使处于关态时器件内部各处电场强度趋于均匀分布,因此器件击穿电压可达5~20kv,且采用3μm半柱宽时击穿电压为12.4kv,而导通电阻仅为4.2mω·cm2,参见designandsimulationof5-20-kvganenhancement-modeverticalsuperjunctionhemt,ieeetransactionsonelectrondecices,vol.60,no.10,pp.3230-3237,2013。采用超结的gan基电流孔径异质结场效应器件从理论上可以获得高击穿电压,且可实现击穿电压随n型gan漂移层厚度的增加而持续提高,是目前国内外已报道文献中击穿电压最高的一种非常有效的大功率器件结构。然而,超结结构的制造工艺难度非常大,尤其是厚n型gan漂移层情况下,几乎无法实现高性能超结结构的制作。因此,探索和研发制造工艺简单、击穿电压高的新型gan基电流孔径异质结场效应器件,非常必要、迫切,具有重要的现实意义。

场板结构已成为横向gan基hemt器件中用于提高器件击穿电压和可靠性的一种成熟、有效的场终端技术,且该技术可以实现器件击穿电压随场板的长度和结构变化而持续增加。近年来,通过利用场板结构已使横向gan基hemt器件的性能取得了突飞猛进的提升,参见highbreakdownvoltagealgan–ganpower-hemtdesignandhighcurrentdensityswitchingbehavior,ieeetransactionsonelectrondevices,vol.50,no.12,pp.2528-2531,2003,和highbreakdownvoltagealgan–ganhemtsachievedbymultiplefieldplates,ieeeelectrondeviceletters,vol.25,no.4,pp.161-163,2004,以及highbreakdownvoltageachievedonalgan/ganhemtswithintegratedslantfieldplates,ieeeelectrondeviceletters,vol.27,no.9,pp.713-715,2006。然而,截至目前国内外仍然没有将场板结构成功应用于gan基电流孔径异质结场效应器件中的先例,这主要是由于gan基电流孔径异质结场效应器件结构上的固有缺陷,会导致器件漂移层中最强电场峰位于电流阻挡层与孔径层交界面下方附近,该电场峰远离漂移层两侧表面,因此场板结构几乎无法发挥有效调制器件中电场分布的作用,即使在gan基电流孔径异质结场效应器件中采用了场板结构,器件性能也几乎没有任何提高。



技术实现要素:

本发明的目的在于针对上述已有技术的不足,提供一种增强型栅场板gan基电流孔径异质结场效应器件及其制作方法,以减小器件的制作难度,实现击穿电压的可持续增加,缓解器件击穿电压与导通电阻之间的矛盾,改善器件的击穿特性和可靠性。

为实现上述目的,本发明的技术方案是这样实现的:

一、器件结构

一种增强型栅场板gan基电流孔径异质结场效应器件,包括:n+型gan衬底、n-型gan漂移层、n型gan孔径层、左、右两个对称的电流阻挡层、孔径、gan沟道层、势垒层和钝化层,势垒层上的两侧淀积有两个源极,两个源极下方通过注入形成两个n+注入区,源极之间的势垒层上外延有p+型gan帽层,p+型gan帽层两侧刻有两个台阶,p+型gan帽层上面淀积有栅极,n+型gan衬底下面淀积有漏极,钝化层完全包裹除了漏极底部以外的所有区域,其特征在于:

所述电流阻挡层,由第一电流阻挡层和第二电流阻挡层共同构成的二级台阶结构组成,且第一电流阻挡层位于第二电流阻挡层的外侧;

所述孔径,包括第一孔径和第二孔径,第一孔径位于左、右两个第一电流阻挡层之间,第二孔径位于左、右两个第二电流阻挡层之间;

所述钝化层,采用阶梯形状,即在钝化层的两边刻有整数个阶梯,所有阶梯上淀积有连续金属,形成对称的两个整体阶梯场板,该阶梯场板与栅极电气连接,形成阶梯栅场板,阶梯场板上边界所在高度高于第一电流阻挡层41下边界所在高度,阶梯场板和钝化层上方覆盖有保护层。

所述整数个阶梯,其每个阶梯的高度相等,均为l,l的范围为0.5~4μm,且第1阶梯上表面距离第一电流阻挡层下边界的垂直距离也为l,每个阶梯的宽度si不同,且自上而下依次增大,i为整数且m≥i≥1。

所述电流阻挡层,第一电流阻挡层的厚度a与第二电流阻挡层的宽度e近似满足关系且e≤3.5a,其中,t为n-型gan漂移层与同侧阶梯场板最近处的水平间距。二、制作方法

本发明制作增强型栅场板gan基电流孔径异质结场效应器件的方法,包括如下过程:

a.在n+型gan衬底1上外延n-型gan半导体材料,形成掺杂浓度为1×1015~1×1018cm-3的n-型gan漂移层2;

b.在n-型gan漂移层2上外延n型gan半导体材料,形成厚度为0.5~3μm、掺杂浓度为1×1015~1×1018cm-3的n型gan孔径层3;

c.在n型gan孔径层3上第一次制作掩模,利用该掩模在n型gan孔径层内的两侧位置注入剂量为1×1015~1×1016cm-2的p型杂质,制作厚度a与n型gan孔径层厚度相同,宽度b为0.2~1μm的两个第一电流阻挡层41,这两个对称的第一电流阻挡层之间形成第一孔径51;

d.在n型gan孔径层3和两个第一电流阻挡层41上第二次制作掩模,利用该掩模,在左、右第一电流阻挡层之间的n型gan孔径层内的两侧注入剂量为1×1015~1×1016cm-2的p型杂质,制作厚度d为0.3~1μm,宽度e为1.4~3.4μm的两个第二电流阻挡层42,这两个对称的第二电流阻挡层之间形成第二孔径52;

e.在两个第一电流阻挡层41、两个第二电流阻挡层42和第二孔径52上部外延gan半导体材料,形成厚度为0.04~0.2μm的gan沟道层6;

f.在gan沟道层6上部外延gan基宽禁带半导体材料,形成厚度为5~50nm的势垒层7;

g.在势垒层7的上部外延p+型gan半导体材料,形成厚度为0.02~0.25μm的p+型gan帽层8;

h.在p+型gan帽层8上第三次制作掩模,利用该掩模在p+型gan帽层左、右两侧进行刻蚀,且刻蚀区深度等于p+型gan帽层的厚度,形成台阶9,且两个台阶之间的p+型gan帽层8与左右两个电流阻挡层4的水平交叠长度均为h,h>0μm;

i.在未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层上部第四次制作掩模,利用该掩模在两边未被p+型gan帽层覆盖的势垒层内注入剂量为1×1015~1×1016cm-2的n型杂质,以制作n+注入区10,其中,两个n+注入区的深度均大于势垒层厚度,且小于gan沟道层6与势垒层两者的总厚度;

j.在两个n+注入区上部、两边未被p+型gan帽层覆盖的势垒层上部和p+型gan帽层上部第五次制作掩模,利用该掩模在两个n+注入区上部淀积金属,以制作源极11;

k.在源极11上部、两边未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层上部第六次制作掩模,利用该掩模在p+型gan帽层上淀积金属,以制作栅极12;

l.在n+型gan衬底1的背面淀积金属,以制作漏极13;

m.在除了漏极13底部以外的其他所有区域淀积绝缘介质材料,形成包裹的钝化层14;

n.在钝化层14上部制作第七次掩模,利用该掩模在左、右两边钝化层内进行刻蚀,形成第1个平台;

o.制作第1阶梯至第m阶梯,过程如下:

o1)在钝化层14上部制作一次掩模,利用本次掩模在第1个平台内进行刻蚀,形成第1阶梯,并得到第2个平台;

o2)在钝化层14上部制作一次掩模,利用本次掩模在第2个平台内进行刻蚀,形成第2阶梯,并得到第3个平台;

以此类推,直至形成第m阶梯和第m+1个平台,m根据器件实际使用要求确定,其值为大于等于1的整数;

p.在带有m个阶梯的钝化层14上制作掩模,利用该掩模在左、右两边的阶梯上淀积金属,形成左、右对称的两个阶梯场板15,并将该两侧的阶梯场板与栅极电气连接;该阶梯场板15的上边界所在高度高于第一电流阻挡层41下边界所在高度,n-型gan漂移层与阶梯场板最近处的水平间距t近似满足关系t<si,且e≤3.5a,其中a为第一电流阻挡层41的厚度,e为第二电流阻挡层42的宽度,i为整数且m≥i≥1;

q.在钝化层14和两个阶梯场板15上淀积绝缘介质材料,以制作保护层16,完成整个器件的制作。

本发明器件与传统gan基电流孔径异质结场效应器件比较,具有以下优点:

1.实现击穿电压持续增加。

本发明采用二级台阶形式的电流阻挡层,使器件内部的第一电流阻挡层、第二电流阻挡层与孔径层交界面下方附近均会产生一个电场峰值,且前者电场峰值大于后者电场峰值;由于前者电场峰值非常接近漂移层两侧表面,便可以利用阶梯场板有效调制漂移层两侧表面附近的电场峰值,以在阶梯场板的每个阶梯处漂移层两侧表面附近形成新的电场峰值,电场峰值数目与阶梯场板的阶梯数相等;

通过调整阶梯场板与漂移层之间钝化层的厚度、电流阻挡层的尺寸和掺杂、阶梯的宽度和高度,可以使得电流阻挡层与孔径层交界面下方附近的电场峰值与阶梯场板对应的漂移层内各电场峰值相等,且小于gan基宽禁带半导体材料的击穿电场,从而提高了器件的击穿电压,且通过增加阶梯场板的阶梯数目可实现击穿电压的持续增加。

2.在提高器件击穿电压的同时,器件导通电阻几乎恒定。

本发明通过在器件两侧采用阶梯场板的方法来提高器件击穿电压,由于场板不会影响器件导通电阻,当器件导通时,在器件内部漂移层只存在由电流阻挡层所产生的耗尽区,并未引入其它耗尽区,因此,随着阶梯场板阶梯数目增加,器件的击穿电压持续增加,而导通电阻几乎保持恒定。

3.工艺简单,易于实现,提高了成品率。

本发明器件结构中,阶梯场板的制作是通过在漂移层两侧的钝化层中刻蚀阶梯并淀积金属而实现的,其工艺简单,且不会对器件中半导体材料产生损伤,避免了采用超结的gan基电流孔径异质结场效应器件结构所带来的工艺复杂化问题,大大提高了器件的成品率。

以下结合附图和实施例进一步说明本发明的技术内容和效果。

附图说明

图1是传统gan基电流孔径异质结场效应器件的结构图;

图2是本发明增强型栅场板gan基电流孔径异质结场效应器件的结构图;

图3是本发明制作增强型栅场板gan基电流孔径异质结场效应器件的流程图;

图4是本发明制作第1阶梯至第m阶梯的流程图;

图5是对传统器件和本发明器件仿真所得的二维电场分布图。

具体实施方式

参照图2,本发明增强型栅场板gan基电流孔径异质结场效应器件是基于gan基宽禁带半导体异质结结构,其包括:n+型gan衬底1、n-型gan漂移层2、n型gan孔径层3、左、右两个对称的电流阻挡层4、孔径5、gan沟道层6、势垒层7和钝化层14,势垒层上面两侧淀积有源极11,两个源极下方通过离子注入形成两个n+注入区10,源极之间的势垒层上外延有p+型gan帽层8,p+型gan帽层两侧刻有台阶9,p+型gan帽层上面淀积有栅极12,n+型gan衬底下面淀积有漏极13,钝化层14完全包裹除了漏极底部以外的所有区域。其中:

电流阻挡层4是由第一电流阻挡层41和第二电流阻挡层42共同构成得的二级台阶结构,第一电流阻挡层41位于第二电流阻挡层42外侧,第一电流阻挡层和第二电流阻挡层均采用p型掺杂;第一电流阻挡层的厚度a为0.5~3μm,宽度b为0.2~1μm,第二电流阻挡层厚度d为0.3~1μm,宽度e为1.4~3.4μm,且a>d;孔径5由第一孔径51和第二孔径52构成,第一孔径位于左、右两个第一电流阻挡层之间,第二孔径位于左、右两个第二电流阻挡层之间;

所述器件两边的钝化层14,其上刻有m个阶梯,该m个阶梯上淀积有金属,形成左、右两个阶梯场板15,该阶梯场板15与栅极电气连接,该钝化层14中的各级阶梯自上而下依次为第1阶梯,第2阶梯至第m阶梯,m为大于零的整数,根据使用要求确定;钝化层14中各级阶梯的高度相同,均为l,l的范围为0.5~4μm,且第1阶梯上表面距离第一电流阻挡层下边界的垂直距离也为l,第1阶梯宽度、第2阶梯宽度、第i阶梯宽度和第m阶梯宽度依次为s1、s2、si和sm,满足sm>...>si>...>s2>s1,i为整数且m≥i≥1;阶梯场板以及钝化层上部覆盖有保护层16;钝化层14和保护层16均可采用sio2、sin、al2o3、sc2o3、hfo2、tio2中的任意一种或其它绝缘介质材料;

所述n-型gan漂移层2,位于n+型gan衬底1上部,其厚度为3~100μm,掺杂浓度为1×1015~1×1018cm-3

所述n型gan孔径层3,位于n-型gan漂移层2上部,其厚度为0.5~3μm、掺杂浓度为1×1015~1×1018cm-3;在n型gan孔径层3内的两侧位置注入剂量为1×1015~1×1016cm-2的p型杂质,形成第一电流阻挡层41;在左、右第一电流阻挡层41之间的n型gan孔径层内的两侧位置注入剂量为1×1015~1×1016cm-2的p型杂质,形成第二电流阻挡层42;两个第一电流阻挡层41之间形成第一孔径51,两个第二电流阻挡层42之间形成第二孔径52;

所述gan沟道层6,位于两个电流阻挡层4和孔径5上部,其厚度为0.04~0.2μm;

所述势垒层7,位于gan沟道层6上部,其由若干层相同或不同的gan基宽禁带半导体材料组成,厚度为5~50nm;

所述p+型gan帽层8,其与左右两个电流阻挡层4的水平交叠长度均为h,h>0μm;

所述阶梯场板15,其上边界所在高度高于第一电流阻挡层的下边界所在高度;该阶梯场板与n-型gan漂移层2之间的最小水平间距均为t,满足t<si,si为钝化层中各级阶梯宽度,i为整数且m≥i≥1;t近似满足关系且e≤3.5a,其中,a为第一电流阻挡层的厚度,e为第二电流阻挡层的宽度;各级阶梯的高度l会随着t的增加而相应的增大。

参照图3,本发明制作增强型栅场板gan基电流孔径异质结场效应器件的过程,给出如下三种实施例:

实施例一:制作钝化层和保护层均为sin,且阶梯场板的阶梯数为1的电流孔径异质结场效应器件。

步骤1.在衬底上外延n-型gan,形成n-型gan漂移层2,如图3a。

使用金属有机物化学气相淀积技术,在n+型gan衬底1上外延厚度为100μm、掺杂浓度为1×1015cm-3的n-型gan漂移层2。

外延采用的工艺条件为:温度为950℃,压强为40torr,以sih4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min。

步骤2.在漂移层上外延n型gan,形成n型gan孔径层3,如图3b。

使用金属有机物化学气相淀积技术,在n-型gan漂移层2上外延厚度为0.5μm、掺杂浓度为1×1015cm-3的n型gan孔径层3。

外延采用的工艺条件为:温度为900℃,压强为40torr,以sih4为掺杂源,氢气流量为4200sccm,氨气流量为4200sccm,镓源流量为110μmol/min。

步骤3.制作第一电流阻挡层41,如图3c。

在n型gan孔径层3上第一次制作掩模,使用离子注入技术,在n型gan孔径层内的两侧位置注入剂量为1×1015cm-2的p型杂质mg,制作厚度a为0.5μm,宽度b为0.2μm的两个第一电流阻挡层41,这两个对称的第一电流阻挡层之间形成第一孔径51。

步骤4.制作第二电流阻挡层42,如图3d。

在n型gan孔径层3和两个第一电流阻挡层41上第二次制作掩模,使用离子注入技术,在左、右第一电流阻挡层41之间的n型gan孔径层内侧注入剂量为1×1015cm-2的p型杂质mg,制作厚度d为0.3μm,宽度e为1.4μm的两个第二电流阻挡层42,这两个对称的第二电流阻挡层42之间形成第二孔径52,第一电流阻挡层41和第二电流阻挡层42构成电流阻挡层4,第一孔径51和第二孔径52构成孔径5。

步骤5.外延gan材料制作gan沟道层6,如图3e。

使用分子束外延技术,在两个第一电流阻挡层41、两个第二电流阻挡层42和第二孔径52的上部外延厚度为0.04μm的gan材料,制作gan沟道层6;

所述分子束外延技术,其工艺条件为:真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源。

步骤6.外延al0.5ga0.5n,制作势垒层7,如图3f。

使用分子束外延技术,在gan沟道层6上外延厚度为5nm的al0.5ga0.5n材料,形成势垒层7;

所述分子束外延技术,其工艺条件为:真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯al源。

步骤7.在势垒层7上部外延p+型gan帽层8,如图3g。

使用分子束外延技术,在势垒层7上部外延厚度为0.02μm的p+型gan帽层8;

所述分子束外延技术,其工艺条件为:真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯mg源。

步骤8.在p+型gan帽层8左、右两侧刻蚀制作台阶9,如图3h。

在p+型gan帽层8上第三次制作掩模,使用反应离子刻蚀技术,在p+型gan帽层左、右两侧刻蚀深度为p+型gan帽层厚度的刻蚀区,形成台阶9,且p+型gan帽层8与左右两个电流阻挡层4的水平交叠长度均为0.5μm;

反应离子刻蚀的工艺条件为:cl2流量为15sccm,压强为10mtorr,功率为100w。

步骤9.制作左、右两个n+注入区10,如图3i。

先在p+型gan帽层8的上部及未被p+型gan帽层8覆盖的势垒层7上部第四次制作掩模;

再使用离子注入技术,在未被p+型gan帽层覆盖的势垒层内的两侧注入剂量为1×1015cm-2的n型杂质si,制作深度为0.01μm的n+注入区10;

然后,在1200℃温度下进行快速热退火。

步骤10.制作源极11,如图3j。

先在n+注入区10上部、未被p+型gan帽层8覆盖的势垒层7上部、以及p+型gan帽层8上部第五次制作掩模;

再使用电子束蒸发技术,在n+注入区上部淀积金属,制作源极11,其中所淀积的金属为ti/au/ni金属组合,即自下而上分别为ti、au与ni,其厚度依次为0.02μm、0.3μm、0.05μm;

所述电子束蒸发技术,其工艺条件为:真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于

步骤11.制作栅极12,如图3k。

先在源极11上部、两边未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层8上部第六次制作掩模;

再使用电子束蒸发技术,在p+型gan帽层上淀积金属,制作栅极12,其中所淀积的金属为ni/au/ni金属组合,即自下而上分别为ni、au与ni,其厚度依次为0.02μm、0.2μm、0.04μm;

所述电子束蒸发技术,其工艺条件为:真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于

步骤12.制作漏极13,如图3l。

使用电子束蒸发技术,在整个n+型gan衬底1的背面上淀积金属,制作漏极13,其中:

所淀积的金属为ti/au/ni金属组合,即自下而上分别为ti、au与ni,其厚度依次为0.02μm、0.7μm、0.05μm;

淀积金属所采用的工艺条件为:真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于

步骤13.淀积sin绝缘介质材料,形成包裹的钝化层14,如图3m。

使用等离子体增强化学气相淀积技术,在除了漏极13底部以外的其他所有区域淀积sin绝缘介质材料,形成包裹的钝化层14。

淀积钝化层采用的工艺条件是:气体为nh3、n2及sih4,气体流量分别为2.5sccm、950sccm和250sccm,温度、射频功率和压强分别为300℃、25w和950mtorr。

步骤14.在钝化层内的左、右两边刻蚀第1个平台,如图3n。

在钝化层14上部制作第七次掩模,使用反应离子刻蚀技术在钝化层14左、右两边的钝化层内进行刻蚀,制作第1个平台。

反应离子刻蚀技术采用的工艺条件为:cf4流量为45sccm,o2流量为5sccm,压强为15mtorr,功率为250w。

步骤15.制作第1阶梯,如图3o。

参照图4,本步骤的具体实现如下:

在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第1个平台内进行刻蚀,形成第1阶梯,并得到第2个平台,且第1阶梯与n-型gan漂移层2的最小水平间距t为0.49μm,第1阶梯宽度s1为0.5μm,第1阶梯高度l为4μm,且第1阶梯上表面距离第一电流阻挡层下边界的垂直距离也为4μm,其中:

反应离子刻蚀的工艺条件为:cf4流量为45sccm,o2流量为5sccm,压强为15mtorr,功率为250w。

步骤16.制作阶梯场板15,如图3p。

在带有1个阶梯的钝化层14上制作掩模;

使用电子束蒸发技术,在左、右两边的第1阶梯上淀积连续的金属ni,且所淀积金属的上边界所在高度高于第一电流阻挡层41下边界所在高度0.3μm,制作左、右对称的两个阶梯场板15,并将该两侧的阶梯场板与栅极电气连接;

淀积金属采用的工艺条件为:真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于

步骤17.淀积sin绝缘介质材料,制作保护层16,如图3q。

使用等离子体增强化学气相淀积技术,在钝化层14和两个阶梯场板15上淀积sin绝缘介质材料,制作保护层16,以对阶梯场板以及钝化层上部进行完全覆盖,完成整个器件的制作;

所述等离子体增强化学气相淀积技术,其工艺条件为:气体为nh3、n2及sih4,气体流量分别为2.5sccm、950sccm和250sccm,温度、射频功率和压强分别为300℃、25w和950mtorr。

实施例二:制作钝化层和保护层均为sio2,且阶梯场板的阶梯数为2的电流孔径异质结场效应器件。

第一步.在衬底上外延n-型gan,形成n-型gan漂移层2,如图3a。

在温度为1000℃,压强为45torr,以sih4为掺杂源,氢气流量为4400sccm,氨气流量为4400sccm,镓源流量为110μmol/min的工艺条件下,使用金属有机物化学气相淀积技术,在n+型gan衬底1上外延厚度为20μm、掺杂浓度为1×1016cm-3的的n-型gan材料,完成n-型gan漂移层2的制作。

第二步.在漂移层上外延n型gan,形成n型gan孔径层3,如图3b。

在温度为1000℃,压强为45torr,以sih4为掺杂源,氢气流量为4400sccm,氨气流量为4400sccm,镓源流量为110μmol/min的工艺条件下,使用金属有机物化学气相淀积技术,在n-型gan漂移层2上外延厚度为1.5μm、掺杂浓度为5×1016cm-3的n型gan材料,完成n型gan孔径层3的制作。

第三步.制作第一电流阻挡层41,如图3c。

3.1)在n型gan孔径层3上第一次制作掩模;

3.2)使用离子注入技术,在n型gan孔径层内的两侧位置注入剂量为6×1015cm-2的p型杂质mg,制作厚度a为1.5μm,宽度b为0.5μm的两个第一电流阻挡层41,这两个对称的第一电流阻挡层之间形成第一孔径51。

第四步.制作第二电流阻挡层42,如图3d。

4.1)在n型gan孔径层3和两个第一电流阻挡层41上第二次制作掩模;

4.2)使用离子注入技术,在左、右第一电流阻挡层41之间的n型gan孔径层内侧再注入剂量为4×1015cm-2的p型杂质mg,制作厚度d为0.5μm,宽度e为2μm的两个第二电流阻挡层42,这两个对称的第二电流阻挡层42之间形成第二孔径52,第一电流阻挡层41和第二电流阻挡层42构成电流阻挡层4,第一孔径51和第二孔径52构成孔径5。

第五步.外延gan材料制作gan沟道层6,如图3e。

在真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源的工艺条件下,使用分子束外延技术,在第一电流阻挡层41、第二电流阻挡层42和左、右第二电流阻挡层42之间的n型gan孔径层3上部,外延厚度为0.1μm的gan材料,完成gan沟道层6的制作。

第六步.外延al0.3ga0.7n,制作势垒层7,如图3f。

在真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯al源的工艺条件下,使用分子束外延技术,在gan沟道层6上外延厚度为25nm的al0.3ga0.7n材料,完成势垒层7的制作。

第七步.在势垒层7上部外延p+型gan帽层8,如图3g。

在真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯mg源的工艺条件下,使用分子束外延技术,在势垒层7上部外延厚度为0.15μm的p+型gan材料,完成p+型gan帽层8的制作。

第八步.在p+型gan帽层8的左、右两侧,刻蚀制作台阶9,如图3h。

8.1)在p+型gan帽层8上第三次制作掩模;

8.2)在cl2流量为15sccm,压强为10mtorr,功率为100w的工艺条件下,使用反应离子刻蚀技术,在p+型gan帽层左、右两侧进行刻蚀,且刻蚀区深度为0.15μm,形成台阶9,且p+型gan帽层8与左右两个电流阻挡层4水平交叠长度均为0.4μm。

第九步.制作左、右两个n+注入区10,如图3i。

9.1)在p+型gan帽层8的上部及未被p+型gan帽层8覆盖的势垒层7上部第四次制作掩模;

9.2)使用离子注入技术,在未被p+型gan帽层覆盖的势垒层内的两侧注入剂量为1×1016cm-2的n型杂质si,制作深度为0.05μm的n+注入区10;然后在1200℃温度下进行快速热退火。

第十步.制作源极11,如图3j。

10.1)在n+注入区10上部、两边未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层8上部,第五次制作掩模;

10.2)在真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在两侧的n+注入区上部淀积ti/au/ni组合金属,完成源极11的制作,且自下而上,ti的厚度为0.02μm、au的厚度为0.3μm、ni的厚度为0.05μm。

第十一步.制作栅极12,如图3k。

11.1)在源极11上部、未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层上部第六次制作掩模;

11.2)在真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在p+型gan帽层上淀积ni/au/ni组合金属,完成栅极12的制作,且自下而上,ni的厚度为0.02μm、au的厚度为0.2μm、ni的厚度为0.04μm。

第十二步.制作漏极13,如图3l。

在真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在整个n+型gan衬底1背面依次淀积金属ti、au、ni,形成ti/au/ni组合金属,完成漏极13的制作,且ti的厚度为0.02μm、au的厚度为0.7μm、ni的厚度为0.05μm。

第十三步.淀积sio2绝缘介质材料,形成包裹的钝化层14,如图3m。

在n2o流量为850sccm,sih4流量为200sccm,温度为250℃,射频功率为25w,压力为1100mtorr的工艺条件下,使用等离子体增强化学气相淀积技术,淀积sio2绝缘介质材料,以包裹除了漏极13底部以外的其他所有区域,完成钝化层14的制作。

第十四步.在钝化层内的左、右两侧刻蚀第1个平台,如图3n。

14.1)在钝化层14上部第七次制作掩模;

14.2)在cf4流量为20sccm,o2流量为2sccm,压强为20mtorr,偏置电压为100v的工艺条件下,使用反应离子刻蚀技术,在左、右两边钝化层内进行刻蚀,完成第1个平台的制作。

第十五步.制作第1阶梯至第2阶梯,如图3o。

参照图4,本步骤的具体实现如下:

15.1)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第1个平台内进行刻蚀,形成第1阶梯,并得到第2个平台,且第1阶梯与n-型gan漂移层2的最小水平间距t为0.193μm,第1阶梯宽度s1为0.3μm,第1阶梯高度l为1.5μm,且第1阶梯上表面距离第一电流阻挡层下边界的垂直距离也为1.5μm;

15.2)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第2个平台内进行刻蚀,形成第2阶梯,并得到第3个平台,第2阶梯宽度s2为0.8μm,第2阶梯高度l为1.5μm;

反应离子刻蚀的工艺条件为:cf4流量为45sccm,o2流量为5sccm,压强为15mtorr,功率为250w。

第十六步.制作阶梯场板15,如图3p。

16.1)在钝化层14、第1阶梯和第2阶梯上制作掩模;

16.2)在真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件下,使用电子束蒸发技术,在钝化层14左、右两边的第1阶梯至第2阶梯上淀积连续的金属au,且所淀积金属的上边界所在高度高于第一电流阻挡层41下边界所在高度0.5μm,完成阶梯场板15的制作,并将阶梯场板与栅极电气连接。

第十七步.淀积sio2材料,制作保护层16,如图3q。

在n2o流量为850sccm,sih4流量为200sccm,温度为250℃,射频功率为25w,压力为1100mtorr的工艺条件下,使用等离子体增强化学气相淀积技术,在钝化层14和两个阶梯场板15上淀积sio2,制作保护层16,以对阶梯场板以及钝化层上部进行完全覆盖,完成阶梯场板的阶梯数为2的整个器件的制作。

实施例三:制作钝化层为sio2,保护层为sin,且阶梯场板的阶梯数为4的电流孔径异质结场效应器件。

步骤a.采用温度为950℃,压强为40torr,以sih4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min的工艺条件,使用金属有机物化学气相淀积技术,在n+型gan衬底1上外延厚度为3μm、掺杂浓度为1×1018cm-3的n-型gan漂移层2,如图3a。

步骤b.采用温度为950℃,压强为40torr,以sih4为掺杂源,氢气流量为4000sccm,氨气流量为4000sccm,镓源流量为100μmol/min的工艺条件,使用金属有机物化学气相淀积技术,在n-型gan漂移层2上外延厚度为3μm、掺杂浓度为1×1018cm-3的n型gan孔径层3,如图3b。

步骤c.在n型gan孔径层3上第一次制作掩模,再使用离子注入技术,在n型gan孔径层内的两侧位置注入剂量为1×1016cm-2的p型杂质mg,制作厚度a为3μm,宽度b为1μm的两个第一电流阻挡层41,这两个对称的第一电流阻挡层之间形成第一孔径51,如图3c。

步骤d.在n型gan孔径层3和两个第一电流阻挡层41上第二次制作掩模,再使用离子注入技术,在左、右两个第一电流阻挡层41之间的n型gan孔径层内侧位置注入剂量为1×1016cm-2的p型杂质mg,制作厚度d为1μm,宽度e为3.4μm的两个第二电流阻挡层42,这两个对称的第二电流阻挡层之间形成第二孔径52,第一电流阻挡层41和第二电流阻挡层42构成电流阻挡层4,第一孔径51和第二孔径52构成孔径5,如图3d。

步骤e.采用真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源的工艺条件,使用分子束外延技术,在两个第一电流阻挡层41、两个第二电流阻挡层42和第二孔径52上部外延厚度为0.2μm的gan沟道层6,如图3e。

步骤f.采用真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯al源的工艺条件,使用分子束外延技术,在gan沟道层6上外延厚度为50nm的al0.1ga0.9n材质的势垒层7,如图3f。

步骤g.采用真空度小于等于1.0×10-10mbar,射频功率为400w,反应剂采用n2、高纯ga源、高纯mg源的工艺条件,使用分子束外延技术,在势垒层7上部外延厚度为0.25μm的p+型gan帽层8,如图3g。

步骤h.在p+型gan帽层8上第三次制作掩模,再采用cl2流量为15sccm,压强为10mtorr,功率为100w的工艺条件,使用反应离子刻蚀技术,在p+型gan帽层左、右两侧进行刻蚀,且刻蚀区深度为0.25μm,制作台阶9,且p+型gan帽层8与左右两个电流阻挡层4的水平交叠长度均为1μm,如图3h。

步骤i.在未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层8上部,第四次制作掩模,再使用离子注入技术,在两边未被p+型gan帽层覆盖的势垒层内注入剂量为1×1016cm-2的n型杂质si,制作深度为0.08μm的n+注入区10;然后,在1200℃下进行快速热退火,如图3i。

步骤j.在n+注入区10上部、p+型gan帽层8上部以及两边未被p+型gan帽层8覆盖的势垒层7上部,第五次制作掩模;再采用真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件,使用电子束蒸发技术,在两侧的n+注入区上部淀积金属,制作源极11,其中所淀积的金属为ti/au/ni金属组合,即自下而上分别为ti、au与ni,其厚度依次为0.02μm、0.3μm、0.05μm,如图3j。

步骤k.在源极11上部、两边未被p+型gan帽层8覆盖的势垒层7上部以及p+型gan帽层8上部,第六次制作掩模;再采用真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件,使用电子束蒸发技术,在p+型gan帽层上淀积金属,制作栅极12,其中所淀积的金属为ni/au/ni金属组合,即自下而上分别为ni、au与ni,其厚度依次为0.02μm、0.2μm、0.04μm,如图3k。

步骤l.采用真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件,使用电子束蒸发技术,在n+型gan衬底1的背面上淀积金属,制作漏极13,其中所淀积的金属为ti/au/ni金属组合,且ti的厚度为0.02μm,au的厚度为0.7μm,ni的厚度为0.05μm,如图3l。

步骤m.采用n2o流量为850sccm,sih4流量为200sccm,温度为250℃,射频功率为25w,压力为1100mtorr的工艺条件,使用等离子体增强化学气相淀积技术,淀积sio2绝缘介质材料,以包裹除了漏极13底部以外的其他所有区域,完成钝化层14的制作,如图3m。

步骤n.在钝化层14上部制作第七次掩模,再采用cf4流量为20sccm,o2流量为2sccm,压强为20mtorr,偏置电压为100v的工艺条件,使用反应离子刻蚀技术,在左、右两边钝化层内刻蚀,形成第1个平台,如图3n。

步骤o.制作第1阶梯至第4阶梯,如图3o。

参照图4,本步骤的具体实现如下:

o1)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第1个平台内进行刻蚀,形成第1阶梯,并得到第2个平台,且第1阶梯与n-型gan漂移层2的最小水平间距t为0.18μm,第1阶梯宽度s1为0.2μm,第1阶梯高度l为0.5μm,且第1阶梯上表面距离第一电流阻挡层下边界的垂直距离也为0.5μm;

o2)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第2个平台内进行刻蚀,形成第2阶梯,并得到第3个平台,第2阶梯宽度s2为0.4μm,第2阶梯高度l为0.5μm;

o3)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第3个平台内进行刻蚀,形成第3阶梯,并得到第4个平台,第3阶梯宽度s3为1.1μm,第3阶梯高度l为0.5μm;

o4)在钝化层14上部制作一次掩模,使用反应离子刻蚀技术,在钝化层14左、右两边的第4个平台内进行刻蚀,形成第4阶梯,并得到第5个平台,第4阶梯宽度s4为2μm,第4阶梯高度l为0.5μm;

反应离子刻蚀的工艺条件为:cf4流量为45sccm,o2流量为5sccm,压强为15mtorr,功率为250w。

步骤p.在钝化层14上部制作掩模,再采用真空度小于1.8×10-3pa,功率范围为200~1000w,蒸发速率小于的工艺条件,使用电子束蒸发技术,在左、右两边的各阶梯上淀积连续的金属ti,且所淀积金属的上边界所在高度高于第一电流阻挡层41下边界所在高度0.6μm,完成阶梯场板15的制作,并将阶梯场板与栅极电气连接,如图3p。

步骤q.采用气体为nh3、n2及sih4,气体流量分别为2.5sccm、950sccm和250sccm,温度、射频功率和压强分别为300℃、25w和950mtorr的工艺条件,使用等离子体增强化学气相淀积技术,在钝化层14和两个阶梯场板15上淀积sin绝缘介质材料制作保护层16,完全覆盖阶梯场板以及钝化层上部,完成阶梯场板的阶梯数为4的整个器件的制作,如图3q。

本发明的效果可通过以下仿真进一步说明。

仿真:对传统gan基电流孔径异质结场效应器件和本发明器件在击穿情况下的二维电场分布进行仿真,结果如图5,其中图5(a)为传统器件,其击穿电压为410v,图5(b)为本发明器件,采用了4个阶梯,其击穿电压为1780v。

由图5(a)可以看出,击穿情况下,传统器件中电场强度分布极不均匀,在电流阻挡层与孔径区域交界面下方附近的半导体材料中出现了极高的电场峰值,从而引起器件过早击穿,因此器件的击穿电压仅为410v。由图5(b)可以看出,击穿情况下,本发明器件中电场分布更加均匀,在器件内部以及漂移层两侧表面附近形成了连续平缓的高电场区,说明采用二级台阶形式的电流阻挡层后,阶梯场板可以有效调制器件内部和漂移层两侧表面附近的电场峰值,因此本发明器件的击穿电压可高达1780v。

以上描述仅是本发明的几个具体实施例,并不构成对本发明的限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1