具有石墨烯掩埋散热层和源接地的GaNMMIC器件及制备方法与流程

文档序号:11252591
具有石墨烯掩埋散热层和源接地的GaNMMIC器件及制备方法与流程

本发明涉及一种新型具有石墨烯掩埋散热层和源接地的GaN MMIC器件结构,属于H01L 27/00类半导体器件技术领域。



背景技术:

单片微波集成电路(Monolithic Microwave Integrated Circuits,MMIC)是采用外延、注入、光刻、蒸发和溅射等半导体工艺方法在同一块半绝缘衬底上集成有源器件、无源器件、传输线和互连线等,构成的具有单一或多种功能的微波集成电路,其最适合的工作频率从高频段的分米波到毫米波和亚毫米波。它最早是由Texa Instrument公司T.M.Hyltin提出的,由于受到当时的材料工艺的限制,硅衬底的半绝缘性质经氧化、扩散等高温工艺后不复存在,使得 Si衬底不能用于制造高可靠性的电路。因此,直到1968年,才由 R.W.Wacker和E.Mehal首次实现了在GaAs衬底上MMIC电路。作为第三代半导体的杰出代表,氮化镓的室温禁带宽度为3.45eV,远大于Si和GaAs的禁带宽度,使得其电场击穿强度比之大了一个数量级,非常适合制作高耐压大功率器件。除了很大的禁带宽度这一优势外, GaN还具备很高的电子饱和速度及热导率,使它十分适合于微波/毫米波大功率应用的场合。AlGaN/GaN异质结高电子迁移率晶体管HEMT 及GaN MMIC单片微波集成电路(Monolithic Microwave Integrated Circuits,MMIC)在高温器件及大功率微波器件方面已显示出了得天独厚的优势,追求器件高频率、高压、高功率吸引了众多的研究。

近年来,制作更高频率高压大功率高可靠性能的AlGaN/GaN HEMT 及MMIC成为关注的又一研究热点。民用商业以及消费等领域,特别是对于即将在2020年实现商用的5G技术而言,GaN功放管及 MMIC必将占据重要地位。但就目前而言,由于器件衬底材料,器件设计和工艺等问题,GaN HEMT及MMIC的高温可靠性和高成本在一定程度上严重阻碍了其发展和普及。GaN HEMT功率器件一直没有能够突破其高温可靠性问题,散热问题制约着GaN HEMT功率器件的性能,如功率密度以及效率等。特别是对于大功率GaN HEMT器件,自热效应会导致热量在器件有源区中心迅速积聚,引起器件性能恶化失效,其高温失效原理可参阅文献Manju K C,Sanjiv T.Temperature and polarization dependent polynomial based non-linear analytical model for gate capacitance of AlGaN/GaN和Jeong P,Moo W S, Chin C L,et al.Thermal modeling and measurement of AlGaN-GaN HFETs built on sapphire and SiC substrates[J].以Si作为衬底的GaN HEMT器件因为成本较低而备受关注,但是因为Si的热导率很低,导致GaN-On-Si HEMT器件自热效应更加严重,束缚了其功率特性和应用。SiC材料具有良好的热导率,以SiC为衬底的GaN HEMT 器件自热效应减轻,但在大功率应用下的高温可靠性仍然是严重的挑战。同时,SiC衬底片十分昂贵,一片四英寸SiC衬底片的售价可高达一千美金以上,这不利于GaN功率管及MMIC在民用商业以及消费等领域的应用发展。

为了提高器件耐压和功率,减小器件热阻,大功率GaN器件往往采用多栅极叉指结构,同时采用背面减薄和背面通孔结构。背面通孔结构在2005年由Masahiro Hikita等人提出,称之为SVG(Source-via Grounding),其具体结构可查看文献M.Hikita,M.Yanagihara,K. Nakazawa,et al.AlGaN/GaN Power HFET on Silicon Substrate With Source-Via Grounding(SVG)Structure[J].IEEE Transctions on Electron Devices,2005,52(9),pp.1963-1968。该结构通过器件旁边打孔,用金属将源极与衬底或背面电极相连。SVG结构可以提高器件耐压,降低器件热阻,使栅极和沟道区的热量能通过SVG金属通孔快速沉降到器件背面基板。SVG在提升耐压方面的原理类似背电极场板的作用,可在一定程度上缓解栅极与漏极之间的电场集中现象。此外,版图设计中无需存在源极的互连线,从而大大降低了源极互联电阻和源极接触电感,对提升器件整体性能提升有很大帮助。但是,背面减薄(往往需要将几百微米的衬底片从背面研磨减薄到几十微米) 和深通孔的刻蚀,以及使用镀金工艺填充通孔,一方面工艺复杂成本高,造成GaN功率管和MMIC成本高昂;另外,背面减薄和几十微米深通孔的刻蚀容易造成器件的损伤,使良率和器件可靠性降低。通孔中填充的金在器件温升剧烈时,由于金的膨胀系数与GaN及衬底材料的差异也容易导致器件受到损伤,可靠性降低。

器件需经空气桥金属蒸镀、背孔刻蚀和背面金蒸镀工艺;工艺示意图分别如图1至图3所示。示意图参考自西安电子科技大学曹梦逸博士的论文“高效率和大功率氮化镓半导体放大器研究”。



技术实现要素:

本发明的目的在于克服上述已有技术的缺点,提供一种优化的具有石墨烯掩埋散热层和源接地的GaN MMIC器件结构。具体技术方案为:

一种具有石墨烯掩埋散热层和源接地的GaN MMIC器件结构的制备方法,包括如下步骤:

1)放置衬底,在衬底片上生长一层AlN层;

2)在AlN层上淀积生长一层石墨烯掩埋散热层;

3)在石墨烯掩埋层上依次淀积生长AlN隔离层,GaN缓冲层和沟道层,AlGaN势垒层;

4)再进行GaN和MMIC器件的常规制作工艺;

5)源极旁边刻孔到石墨烯层;用金属将源极与石墨烯掩埋散热层相连;

6)整个器件有源区边缘刻蚀露出石墨烯层,并用金属与器件背面相连,并将连接用所述金属烧结到背板和热沉上。

进一步,步骤1)中所述AlN层厚度为1至100纳米之间。

进一步,步骤2)中所述石墨烯掩埋散热层厚度为1至100纳米之间。

进一步,步骤6)中用锡金焊膏或纳米银焊膏将连接用所述金属烧结到背板和热沉上。

本发明还公开了一种具有石墨烯掩埋散热层和源接地的GaN MMIC器件,包括衬底和依次向上生长的AlN隔离层、GaN缓冲层、沟道层和AlGaN势垒层;所述衬底与所述AlN隔离层还依次生成有AlN 层和石墨烯掩埋散热层。

进一步,所述石墨烯掩埋散热层与源极通过金属连接。

进一步,所述石墨烯掩埋散热层与背板和热沉通过金属连接。

进一步,所述GaN MMIC器件由半导体材料GaN外延片或单晶片制成。

进一步,所述GaN MMIC器件的衬底由Si、SiC或者蓝宝石中的一种材料制成。

本发明具有石墨烯掩埋散热层和源接地的GaN MMIC器件结构,这种新型器件结构避免了背面深孔刻蚀的复杂工艺,可以实现正面直接源接地,同时利用石墨烯优越的热导率迅速将器件有源区产生的热量导走,可以有助于实现大功率GaN器件,增长器件的高温可靠性。

附图说明

图1为现有技术中的工艺示意图(空气桥金属蒸镀);

图2为现有技术中的工艺示意图(背孔刻蚀);

图3为现有技术中的工艺示意图(背金蒸镀);

图4为具有石墨烯掩埋散热层和源接地的GaN MMIC器件结构示意图;

图5为石墨烯掩埋散热层GaN MMIC器件整体热沉降示意图。

具体实施方式

下面利用实施例对本发明进行更全面的说明。本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。

如图4所示,本实施例中的具有石墨烯掩埋散热层和源接地的GaN MMIC器件,包括衬底和依次向上生长的AlN层和石墨烯掩埋散热层、AlN隔离层、GaN缓冲层、沟道层和AlGaN势垒层。在源极旁边蚀刻有到石墨烯层的通孔,石墨烯掩埋散热层与器件的源极通过穿过上述通孔的金属连接,起到源接地的作用,并利用石墨烯的高导热率将器件沟道区产生的热量迅速导走,使得整个器件有源区温升更均匀,避免出现局域高热点导致的器件高温可靠性问题;同时石墨烯掩埋散热层起到源极背场板作用,可以协助提高器件耐压。在整个器件有源区边缘刻蚀以露出石墨烯层,并用金属将石墨烯掩埋散热层与器件背面相连,石墨烯掩埋散热层与背板和热沉通过金属连接;石墨烯掩埋散热层GaN MMIC器件整体热沉降示意图如图5所示。

本实施例中的具有石墨烯掩埋散热层和源接地的GaN MMIC器件的制备方法,包括如下步骤:

1)放置衬底,在衬底片上生长一层AlN层;

2)在AlN层上淀积生长一层石墨烯掩埋散热层;

3)在石墨烯掩埋层上依次淀积生长AlN隔离层,GaN缓冲层和沟道层,AlGaN势垒层;

4)再进行GaN和MMIC器件的常规制作工艺;

5)源极旁边刻孔到石墨烯层;用金属将源极与石墨烯掩埋散热层相连;

6)整个器件有源区边缘刻蚀露出石墨烯层,并用金属与器件背面相连,并将连接用所述金属烧结到背板和热沉上。

其中,步骤1)中的AlN层厚度应该控制在1至100纳米之间。

步骤2)中的石墨烯掩埋散热层厚度最好控制在1至100纳米之间。

石墨烯和AlN间晶格失配度为4.5%,以AlN为材料可以制成很好的缓冲层。实际工艺制作中,步骤2)中的石墨烯层可以是直接在 AlN缓冲层上通过CVD等方法淀积生长石墨烯层;或者是在铜箔等金属膜上生长石墨烯层后通过电化学分层分离石墨烯并转移到AlN缓冲层上;还可以是直接在AlN缓冲层上先用ALD或溅射等方法淀积一薄层的铜诱导层后,再在铜膜上生长石墨烯层。

步骤6)中最好选用锡金焊膏或纳米银焊膏将连接用的金属烧结到背板和热沉上,有利于整个器件的热沉降,减小整个器件的热阻,实现高功率的GaN功率管和MMIC器件。也可以用其他方式将连接用的金属烧结到背板和热沉上。

本实施例中的具有石墨烯掩埋散热层和源接地的GaN MMIC器件,制作该器件的半导体材料为GaN外延片或单晶片,衬底可以是Si, SiC或者蓝宝石等。

石墨烯材料导热系数可高达5300W/m·K,其常温下其电子迁移率超过15000cm2/V·s,远高于一般的衬底材料和金属。石墨烯和AlN 间晶格失配度为4.5%,以AlN作为缓冲层,可以在石墨烯上通过MOCVD 等工艺生长出质量很好的GaN薄膜。

如表1所示,石墨烯与常见金属的热导率对比表格。

取决与碳含量,纯度,制备的技术,是单层还是多层等因素。

上述示例只是用于说明本发明,除此之外,还有多种不同的实施方式,而这些实施方式都是本领域技术人员在领悟本发明思想后能够想到的,故,在此不再一一列举。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1