薄膜晶体管制造方法及阵列基板的制作方法与流程

文档序号:11214208阅读:877来源:国知局
薄膜晶体管制造方法及阵列基板的制作方法与流程

本发明涉及薄膜晶体管制造技术领域,尤其涉及薄膜晶体管制造方法及阵列基板的制作方法。



背景技术:

tftlcd(thin-film-transistorliquidcrystaldisplay,薄膜晶体管液晶显示器)由于其高速度、高亮度、高对比度等优点,目前已经得到普遍的应用。其中,在顶栅金属氧化物薄膜晶体结构中,可以减少寄生电容的存在具有明显优势,但是,其中的金属导体氧化物薄膜对酸非常敏感,即便是弱酸也能快速腐蚀氧化物半导体,而等离子注入掺杂处理稳定性较差,金属掺杂存在氧化物不均匀的问题,所以目前导体化处理工艺是目前急需解决的问题。



技术实现要素:

本发明提供一种薄膜晶体管制造方法,可以提高金属掺杂在氧化物半导体的均匀性。

本发明还提供一种阵列基板的制作方法。

本发明的薄膜晶体管制造方法,所述方法包括,在基板上依次形成缓冲层、氧化物半导体层、依次层叠于所述氧化物半导体层的第一区域上的栅极绝缘层及栅极;其中所述氧化物半导体层的第一区域的两侧为第二区域并露出所述栅极;

采用物理气相沉积方法形成覆盖所述缓冲层、氧化物半导体层的第二区域及栅极的铝层,并且对该铝层进行退火处理,使所述氧化物半导体层的第二区域被掺杂铝离子形成导体区域;

蚀刻掉残留在覆盖所述缓冲层、氧化物半导体层的第二区域的经过所述退火处理后的剩余的铝层;

采用退火对所述缓冲层、栅极及导体区域被蚀刻的表面进行修复以及对导体区域进行氧化处理;

在所述缓冲层、栅极及导体区域上层叠绝缘层并在所述绝缘层上形成通过通孔分别连接两个导体区域的源极和漏极。

其中,所述采用物理气相沉积方法形成覆盖所述缓冲层、氧化物半导体层的第二区域及栅极的铝层,并且对该铝层进行退火处理的步骤中,所述铝层厚度为20~200a,退火温度为100~400度。

所述采用退火对所述缓冲层、栅极及导体区域被蚀刻的表面进行修复以及对导体区域进行氧化处理的步骤中,退火温度为100~400度。

其中,所所述在基板上依次形成缓冲层、氧化物半导体层、依次层叠于所述氧化物半导体层的第一区域上的栅极绝缘层及栅极的步骤包括:

采用等离子化学气沉积方式形成所述缓冲层;

利用物理气相沉积方式在缓冲层上沉积形成氧化物材料层;

以退火温度为150~450℃进行退火处理氧化物材料层;

图案化所述氧化物材料层形成所述氧化物半导体层。

其中,所所述在基板上依次形成缓冲层、氧化物半导体层、依次层叠于所述氧化物半导体层的第一区域上的栅极绝缘层及栅极的步骤还包括:

采用等离子化学气沉积方式形成所述栅极绝缘层;

采用物理气相沉积方式在栅极绝缘层上沉积金属层并图案化金属层形成所述栅极。

其中,所所述栅极绝缘层为氧化硅(siox)或者氮化硅(sinx)和氧化硅(siox)的复合层;,所述栅极材料为铝、钼、铜、钛中的一种或复合金属。

其中,所所述在所述缓冲层、栅极及导体区域上层叠绝缘层并在所述绝缘层上形成通过通孔分别连接两个导体区域的源极和漏极的步骤包括:采用等离子化学气相沉积工艺沉积所述绝缘层,并通过图案化工艺在绝缘层上形成与所述导体区域连通的通孔;

采用物理气相沉积方式在绝缘层上沉积金属层;

图案化所述金属层形成所述源极和漏极。

其中,所所述利用物理气相沉积方式在缓冲层上沉积形成氧化物材料层的步骤中,所述氧化物材料层的厚度为300~1000埃。

其中,所所述绝缘层为氧化硅(siox)或者氮化硅(sinx)和氧化硅(siox)的复合层。

其中,所所述缓冲层材料为氧化硅(siox),沉积厚度2000~5500埃。

本方法提供的阵列基板的制作方法,包括:

提供一基板,在所述基板表面上形成所述的薄膜晶体管;

在所述的薄膜晶体管上形成显示元件。

本发明所述的薄膜晶体管制造方法采用退火处理将覆盖氧化物半导体层的金属离子注入氧化物半导体层内形成导体结构,保证了金属掺杂在氧化物的均匀性,进而保证了薄膜晶体管的性能。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明所述的薄膜晶体管制造方法流程图。

图2至图5为图1所述的薄膜晶体管制造方法各个步骤示意图。

图6为本发明所述的阵列基板制造方法流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参阅图1,本发明提供一种薄膜晶体管制造方法,特别适用于制作顶栅金属氧化物薄膜晶体。所述方法包括:

如图2,步骤s1,在基板10上依次形成缓冲层11、氧化物半导体层12、依次层叠于所述氧化物半导体层12的第一区域121上的栅极绝缘层13及栅极14;其中所述氧化物半导体层12的第一区域121的两侧为第二区域122并露出所述栅极14。

本步骤具体包括:

采用等离子化学气沉积方式形成所述缓冲层11;

利用物理气相沉积方式在缓冲层11上沉积形成氧化物材料层(图未示);所述氧化物材料层的厚度为300~1000埃。

以退火温度为150~450℃进行退火处理氧化物材料层;

图案化所述氧化物材料层形成所述氧化物半导体层12。

还包括:

采用等离子化学气沉积方式形成所述栅极绝缘层13;

采用物理气相沉积方式在栅极绝缘层13上沉积金属层并图案化金属层形成所述栅极14。其中,所述图案化是指通过黄光工艺、曝光、蚀刻等工艺加工整层形成图案。

本实施例中,所述栅极绝缘层13为氧化硅(siox)或者氮化硅(sinx)和氧化硅(siox)的复合层。所述栅极14材料为铝、钼、铜、钛中的一种或复合金属。当然,栅极绝缘层13、栅极14的材料不限定上述所述的材料类型。

所述缓冲层11材料为氧化硅(siox),沉积的厚度为2000~5500埃。

请参阅图3,步骤s2,采用物理气相沉积方法形成覆盖所述缓冲层11、氧化物半导体层12的第二区域122及栅极14的铝层15,并且对该铝层15进行退火处理,使所述氧化物半导体层12的第二区域122被掺杂铝离子形成导体区域16。通过退火处理将铝离子输入到氧化物半导体层中形成导体层,可以保证离子注入的均匀性,进而保证了导体层的稳定性。

本实施例中,所述铝层厚度为20~200a,退火温度为100~400度。本步骤目的是使铝扩散到氧化物半导体层12的第二区域122中进行导体化。

参阅图4,步骤s3,蚀刻掉残留在覆盖所述缓冲层11、氧化物半导体层12的第二区域122的经过所述退火处理后的剩余的铝层。本步骤中,主要是在上一步退火后,部分铝离子进入了氧化物半导体层12的第二区域122,但是缓冲层11、氧化物半导体层12的第二区域122(也就是导体区域16)及栅极14的表面上还残留有铝层,所以通过蚀刻的方式去除剩余的铝层,避免影响薄膜晶体管后续制程及性能。

步骤s4,采用退火对缓冲层11、栅极14及所述氧化物半导体层12的形成导体区域16被蚀刻的表面进行修复以及对导体区域16进行氧化处理。本步骤中,退火温度为100~400度。经过退火处理的导体区域16的表面平整,同时对导体区域16进行氧化,是促进铝离子充分结合保证导体区域的性能。

请参阅图5,步骤s5,在所述缓冲层11、栅极14及导体区域16上层叠绝缘层17并在所述绝缘层17上形成通过通孔171分别连接两个导体区域16的源极18和漏极19。所述绝缘层为氧化硅(siox)或者氮化硅(sinx)和氧化硅(siox)的复合层。当然,不限定上述所述的材料类型。

包括:采用等离子化学气相沉积工艺沉积所述绝缘层17,并通过图案化工艺在绝缘层17上形成与所述导体区域16连通的通孔;

采用物理气相沉积方式在绝缘层17上沉积金属层;

图案化所述金属层形成所述源极18和漏极19。源极18和漏极19通过通孔与对应的导体区域16连接。

本发明所述的薄膜晶体管制造方法采用退火处理将覆盖氧化物半导体层的金属离子注入氧化物半导体层内形成导体结构,保证了金属掺杂在氧化物的均匀性,进而保证了薄膜晶体管的性能。

请参照图6,本发明还提供一阵列基板的制作方法,包括

步骤s21,提供一基板。所述基板为玻璃板。

步骤s22,在所述基板表面上形成所述的薄膜晶体管。

步骤s23,在所述的薄膜晶体管上形成显示元件。所述显示元件为有机发光二极管或者像素电极和公共电极。

以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1