等效离子阻雷单元、阻雷漏电压检测装置及综合防雷系统的制作方法

文档序号:15659353发布日期:2018-10-13 00:23阅读:508来源:国知局
本实用新型属于等效离子阻雷设备结构创新
技术领域
,尤其是一种等效离子阻雷单元、阻雷漏电压检测装置及综合防雷系统。
背景技术
:雷电是带异性电荷的雷云间或是带电荷雷云与大地间的放电现象,在所有雷击放电形式中,雷云对大地的负极性放电或大地对雷云的正极性放电具有较大的电流和较高的能量,雷击保护最关注的是每一次雷击放电的电流波形和雷电参数,具体是:1.峰值电流:当雷电流流过被击物时,会导致被击物温度的升高,导致被击物的损坏,当雷电流流过被击物时还能产生很大的电磁力,电磁力的也能使被击物弯曲甚至断裂,另外,雷电流通道中产生的电弧的强烈高温对被击物也能产生极大的破坏;2.转移电荷:物体遭受雷击时,大多数的电荷转移都发生在持续时间较长而幅值相对较低的雷电流过程中,这些持续时间较长的电流将在被击物表面产生局部金属熔化和灼蚀斑点,如果电流足够大还可能导致金属熔化;3.电流陡度:感应过电压会损坏被击物的控制系统或电子器件而感应过电压与雷电流的陡度密切相关,雷电流陡度越大,感应电压就越高。随着电子设备遭受雷电过电压(标准中又常称大气过电压)和投切过电压(电网的投入或切除,又称操作过电压)的损失日趋严重。目前,主要的防雷设备为避雷针,是富兰克林在260多年前实用新型的一种装置,时至今日,通过避雷针引雷入地泄放电荷的理论以及实践已经深入人心,国际电工组织和各国防雷界,都以此理论为基础作为防雷工程标准。在GB50057-94中,大量引用IEC的术语和定义,如防雷装置在IEC中为“用于对需要防雷的空间作防雷电效应的整个装置,它由外部防雷装置和内部防雷装置组成”、“外部防雷装置由接闪器、引下线和接地装置组成”、“内部防雷装置是除外部防雷装置以外的全部附加措施。它们可能减小雷电流在需要防雷的空间内所产生的电磁效应”。标准中第一句话是;“防雷装置不能阻止雷闪的形成”,这句话被我国防雷专家进行了如下修改:“应该注意到,到目前为止还没有一种装置(或方法)能阻止雷电的产生,也没有能阻止雷击到建筑物上的器具和方法,采用金属材料接闪、引下并导入大地是目前唯一有效的外部防雷方法。”尽管严格按照国际防雷标准施工操作,它们也只是可能减小雷电流在需要防雷的空间内所产生的电磁效应”,雷击事故依然不断发生。近几年,国内国际研究开发新的防雷技术层出不穷,但都没有大范围推广,究其原因就是到目前为止还没有一种新的避雷针或者防雷技术,能够用科学数据准确的验证比目前IEC/TC81制定的标准更安全可靠。自上个世纪末开始,我国科学家们在防雷理论与实践研究方面进行了多方面的探讨,主要目的是想利用外部防雷手段解决大气过电压、雷电流在局部空间所产生的电磁效应。比如以下中国专利公开的技术方案:1.专利号:CN201520423922.3,
专利名称:无源复合强电离放电等离子拒雷装置;2.专利号:CN200410022185.2,
专利名称:综合有源及无源等离子避雷方法及装置;3.专利号:CN200810056106.8,
专利名称:电荷引雷的方法和装置;4.专利号:CN03103706.2,
专利名称:开关型电荷放大器等离子避雷系统。以上几种技术一个共同点,就是试图脱离现行的引雷不接地或者不依赖接地等电位泄放雷云电荷防雷标准来解决外部防雷目的,类似的专利还有许多,这些专利的创新目的都是为了解决雷云电荷高电压和雷云电流对被保护体的破坏作用。国外一些避雷针的改进也是为了解决或者缓解直击雷的破坏作用,目前只有法国、西班牙和南斯拉夫分别批准了E.S.E(具有提前放电功能的避雷针)标准,但在IEC/TC81会议上,都没有作出明确的决定,只是呼吁各国科学家对这类避雷装置作更深入的研究。综上所述,还没有即包含区别于现有技术的有效阻雷设备以及同步验证、统计雷击的系统问世,急需一种防雷措施能够定性、定量的证明自身能够替代或修改现行的防雷标准并提供充足、有效的证据。技术实现要素:本实用新型的目的在于克服现有技术的不足,提供雷云接近时即能提前进行能量的捕获、利用产生的等离子体分别中和雷云电荷及地面电荷、阻断雷电下行通道且泄放电压非常低的一种等效离子阻雷单元。本实用新型采取的技术方案是:一种等效离子阻雷单元,其特征在于:包括上电极、下电极和绝缘介质,绝缘介质下端嵌入下电极上端内,绝缘介质上端嵌入上电极下端内且绝缘介质上端面与上电极内的顶面之间保留空腔,所述上电极下端面与上电极上端面保留间隙,所述上电极上端面设置多个接闪杆。而且,所述绝缘介质由上至下设置一个通孔,该通孔的内缘设置一个环形极板。而且,所述环形极板外缘与上电极下端面之间的距离、上电极下端面与下电极上端面之间的距离以及下电极上端面与环形极板外缘之间的距离均相同。而且,所述绝缘介质由上至下设置一个通孔,该通孔的内缘由上至下设置两个相对位的永磁体组,每个永磁体组内设置偶数个永磁体且径向均布设置在所述通孔内缘,每个永磁体组中相邻的两个永磁体的端部的磁极相同,沿通孔轴向相对位的两个永磁体相同端部的磁极相同。而且,所述上电极上端面中部设置一个竖直向上的接闪杆,该接闪杆周围的上电极上端面设置多圈接闪杆,每圈接闪杆均为偶数个。而且,每个接闪杆下端部啮合在上电极上端面设置的安装孔中所装的固定座内,在固定座上方的接闪杆外缘上啮合套装一锁紧帽,该锁紧帽底面压接在所述固定座的上端面。而且,所述接闪杆上端部设置多个导电针。本实用新型的另一个目的是提供一种阻雷漏电压检测装置,其特征在于:包括如权利要求1或2或3或4或6或7所述的等效离子阻雷单元和雷击漏电压检测单元,雷击漏电压检测单元与等效离子阻雷单元电连接,雷击漏电压检测单元用于检测等效离子阻雷单元阻雷时的漏电压并将数据进行远程传输。本实用新型的另一个目的是提供一种综合防雷系统,其特征在于:包括如权利要求8所述的阻雷漏电压检测装置、雷电计数器单元和雷电检测单元,设置多个地区,每个地区内设置至少一个阻雷漏电压检测装置、至少一个雷电计数器单元,一个地区设置一个雷电检测单元或多个地区设置一个雷电检测单元。而且,每个阻雷漏电压检测装置中的等效离子阻雷单元安装其保护范围内的最高的建筑物顶端,每个雷电计数器单元安装在该地区的无阻挡的开阔地处,所述雷电检测单元安装在该一个地区或多个地区的无阻挡的建筑物的顶端。本实用新型的优点和积极效果是:1.本单元中,上电极上端呈向上凸起的圆弧形,在圆弧形的最高点安装一个竖直朝上的接闪杆,该接闪杆周围安装多圈接闪杆,每一圈内的接闪杆均为径向均布设置,该多个接闪杆的上端部高度相同,这些接闪杆在雷云接近后进行雷云电荷的吸引,并在上电极和下电极之间的绝缘介质处形成阻挡放电,从而将周围的空气迅速电离,电离后产生的正离子和负离子分别与雷云的负电荷和地面的正电荷中和,由此将雷电的通道截断,实现了引雷但不入地的处理方式。2.本单元中,绝缘介质阻挡放电产生的带电离子在雷雨天地表的8~20米/秒的上升气流作用下散开,快速的进行带电离子的中和,而在绝缘介质通孔内设置的环形极板在雷云电荷积聚时也会产生放电现象,从而进一步将空气电离后的等离子体推动扩散,使雷云负电荷和地面正电荷被快速的中和,上述环形电极可以替换为永磁体组,利用磁场的作用力进一步将使等离子体加速扩散,也能够实现雷云负电荷和地面正电荷的快速中和。3.本装置中,阻雷单元阻雷时,大部分的电荷在阻雷单元处被中和,但仍然存在一定的漏电压,检测这些漏电压可以证明阻雷单元的工作装态,而且可以根据漏电压的大小进行阻雷单元工作时的最大电流、平均电流、起止时间、环境温度等参数,这些数据可以存储或进行后期分析。4.本系统中,利用漏电压接收装置检测阻雷单元的工作状态,利用雷电计数器单元检测等效离子阻雷单元保护范围内是否发生雷击,以提供阻雷单元阻雷工作是否正常的数据,再配合雷电检测单元进行大面积的监控,能够进一步检测阻雷单元保护范围周边不低于25公里半径出现的雷击的距离、位置、强度等参数,供技术人员验证阻雷单元是否工作正常,是否存在保护死角等问题。5.本实用新型中,等效离子阻雷单元安装在保护范围内最高的建筑物的顶端,比如高楼、电视塔、电力塔架、无线电信发射塔、旅游景区设置的塔架、烟囱等处,利用其上端等高的接闪杆进行能量的聚集,然后在绝缘介质周围进行电荷的中和,使雷云能量消耗在设备周边有效半径处,而无法形成下行的泄放通道,阻雷后的漏电压小于或接近120伏,极大的小于正常情况时雷击泄放的电压,保证了建筑物内外及周边电气设备和通信设施的工作安全。附图说明图1是本实用新型的结构示意图;图2是图1的等效离子阻雷单元的主视图;图3是图2的俯视图;图4是图2的绝缘介质内设置环形极板的示意图;图5是图4的绝缘介质的俯视图(取下堵盖);图6是图2的绝缘介质内设置永磁体组的示意图;图7是图6的绝缘介质的俯视图(取下堵盖);图8是图2的下电极的俯视图;图9是图2的下电极径向视图的局部放大图;图10是综合防雷系统的原理图;图11是与避雷针的对比试验,等效离子阻雷单元位于高压电极板边缘处;图12是与避雷针的对比试验,等效离子阻雷单元位于高压电极板下方;图13是图12中多个导电针同时吸引能量的示意图;图14是实施例1的雷击检测示意图。具体实施方式下面结合实施例,对本实用新型进一步说明,下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本实用新型的保护范围。一种等效离子阻雷单元,如图1~10所示,本实用新型的创新在于:包括上电极19、下电极22和绝缘介质20,绝缘介质下端嵌入下电极上端内,绝缘介质上端嵌入上电极下端内且绝缘介质上端面与上电极内的顶面之间保留空腔28,上电极下端面与上电极上端面保留间隙,该间隙大小为W,上电极上端面设置多个接闪杆17、24。本实施例中,上电极为筒形,上端面为向上凸出的半圆形,其下端部内缘制出内螺纹,该内螺纹与绝缘介质上端的外螺纹啮合连接,该处螺纹的螺距较小,使绝缘介质可以进行微量的上升或下降,绝缘介质下端直接嵌入下电极内并通过下电极底面23的多个绝缘螺栓33固定,下电极的底面为一法兰,该法兰通过多个螺栓与建筑物上端的基座连接。绝缘介质由上至下设置一个通孔34,该通孔的内缘的凸台32上设置一个环形极板31。环形极板如图4中所示,其外缘与上电极下端面之间的距离W1、上电极下端面与下电极上端面之间的距离W以及下电极上端面与环形极板外缘之间的距离W2均相同。该结构的目的是:上电极、绝缘介质和下电极之间产生第一处阻挡放电,并由此产生电子崩,而环形极板处也会在雷云大电荷的感应下产生第二处阻挡放电,该第二处阻挡放电进一步推动第一处阻挡放电产生的带电离子向绝缘介质外扩散,由此实现了第一处阻挡放电后的正电荷在雷雨天地表的8~20米/秒的上升气流作用下和雷云负电荷的吸引下迅速上升并与雷云底部的负电荷结合,而负电荷由于其自身的活跃性,迅速被地面正电荷捕获并中和。除了环形极板可以实现加速作用以外,还可以在通孔的内缘由上至下设置两个相对位的永磁体组36,两个永磁体组之间的间隙X为20~30毫米,每个永磁体组内设置偶数个永磁体且径向均布设置在通孔内缘,每个永磁体组中相邻的两个永磁体的端部的磁极相同,沿通孔轴向相对位的两个永磁体相同端部的磁极相同。具体是:位于上方的永磁体组为2、4、6、8或10个,位于下方的永磁体组也使同样的数量,上下的永磁体组中具有相同数量的永磁体且每个永磁体在通孔轴向上对位,比如:每个永磁体组有四个永磁体,上方的是N-S、S-N、N-S和S-N,下方的也同样排列。经过这样的排列设置,使第一处阻挡放电产生的带电离子在磁场的推动下快速扩散,也增加了电荷的中和速度,能更快的将雷云的能量消耗掉。无论是环形极板的结构,还是永磁体的结构,在通孔上端和下端均设置有堵盖30,两个堵盖向通孔内延伸的凸出相互对位,两个堵盖形成了一个通道29,该通道将上电极内的空腔通过下电极底面开出的透气孔35连通大气。上电极上端面中部设置一个竖直向上的接闪杆24,该接闪杆周围的上电极上端面设置多圈接闪杆17,每圈接闪杆均为偶数个。每个接闪杆下端部啮合在上电极上端面设置的安装孔27中所装的固定座26内,在固定座上方的接闪杆外缘上啮合套装一锁紧帽25,该锁紧帽底面压接在所述固定座的上端面。具体是:固定座外具有外螺纹且啮合在上电极内,固定座内具有内螺纹且啮合连接接闪杆下端部,锁紧帽具有内螺纹且啮合连接固定座上方的接闪杆下端。在接闪杆上端部的安装座16上设置多个导电针15(导电针一般为5~7只),在安装座最高点设置一个竖直朝上的导电针,该导电针外侧的安装座上设置一圈导电针,该圈导电针中的导电针与竖直朝上的导电针之间的夹角为60度左右。图中的接闪杆数量为五个,最多可以设置二十五个(大致的排列方式是:竖直方向1个,与竖直接闪杆夹角为35~45的4~8支,与竖直接闪杆夹角为80~90度的8~16支),无论接闪杆、导电针各具有多少个,需要所有接闪杆上端的处于最高位置的导电针的上端处于大致的一个水平面内,这样可以使所有的接闪杆在雷云下行时能够同时进行雷云电荷的吸引,同时可以有效吸引产生侧击雷的电荷并迅速聚集能量。上电极最高点距下电极底面的高度为150~600毫米,上电极及下电极的外径为80~400毫米,上电极和下电极之间的间隙W为25~45毫米。绝缘介质的竖直高度为60~100毫米,在间隙处的绝缘介质外缘同轴制出1~5个环形凸棱21,每个凸棱外侧端部为弧形过渡,绝缘介质的竖直高度优选80,凸棱优选3个,每个环形凸棱的竖直方向上的高度为5~10毫米,凸棱的上端部衔接处、凸棱外缘表面和凸棱的下端部衔接处均为弧形过渡。由于上电极下端面和下电极上端面处产生电荷中和的放电现象,为了避免下电极上端面长期在某处放电,将下电极上端面制成径向均布的凸齿形37,每个凸齿性的顶角以及两个凸齿形之间的夹角β均小于60度。阻雷单元与避雷针的对比试验如图11、12、13所示,高压电极板40处于十几万伏的高电位,基面44模拟低电位的地面,避雷针安装在基面上,上端为尖端引雷机构41,阻雷单元安装在小车42上并通过绝缘牵引绳43实现往复运动,小车车轮为金属制成,与基面导电。1.将高压电极板通电,拉动小车,使其向高压电极板方向运动;2.当小车靠近高压电极板边缘时,如图11所示,导电针和高压电极板之间出现电弧39,小车继续运动;3.当如图12所示的小车完全进入高压电极板下方时,避雷针处的电弧消失,而上电极板和下电极板之间的绝缘介质处出现放电电弧45,该放电电弧在上电极和下电极的径向方向随机出现。由上述实验可知,小车如图11的刚靠近高压电极板时,由于上电极和下电极之间没有足够的能量电离空气,所以仍然会有电弧出现,而如图12所示的能量充足后,放电电弧出现并消耗了高压电极板下行的能量,所以高压电极板与避雷针之间不会再有电弧出现,此时避雷针已经完全失效。经过计算,上述实验中,最高点的导电针上端和避雷针上端的高度相同,即阻雷单元的保护范围大致为图1所示的夹角α覆盖的174度范围内建筑物,距阻雷单元800米以内的建筑物均能受到有效的保护。在实验过程中,如图13所示,小车靠近高压电极板边缘时,多个导电针和高压电极板边缘之间出现多个电弧39,这意味着所有导电针均能吸引高压电极板处的电荷,能很快的完成初始能量的蓄积,尽快使空气电离并中和正负电荷。由上述对比试验可知:1.贯通放电速度快:由于多导电针效应和感应产生的等离子体,产生异性带电粒子位置更接近高压电极板的模拟雷云电荷所以比一般避雷针更快速贯通放电。这个试验验证,等效离子阻雷单元贯通放电越快,雷云电荷泄放越快,雷云电荷累积能量得到缓解,对地面危害降低。2.保护夹角大:该夹角几乎达到90度,绝缘介质阻挡放电过程产生带电粒子,快速吸附雷云、地面的电荷能量,使同等高度避雷针失效。3.中和效果好:高压电极板的电压为18~22千伏,雷击漏电压检测单元处的漏电压值小于120伏,约99%以上被中和,漏电压小于1%。在实际使用时,等效离子阻雷单元安装其保护范围内的最高的建筑物顶端,如图1所示,高楼6、烟囱11、电力塔架13上的基座4均可以安装阻雷单元3,而其上的导电针能够吸引雷云此处的多个下行先导1、2的电荷,使能量快速蓄积,而烟囱、电力塔架上的导电针也同时吸引下行先导10、12的电荷进行能量的快速蓄积。当能量快速蓄积好后,上电极和下电极处产生放电电弧,经过实地测量,雷云电场20千伏时,99%以上的电荷被中和掉,仅有极小部分的漏电压产生。为了检测具体有多高的漏电压,可与等效离子阻雷单元对应的设置多个雷击漏电压检测单元,具体是:在下电极的法兰处可以安装一个金属螺栓,使其连接一导线5的一端,然后该导线的另一端可以连接一个雷击漏电压检测单元7,该单元用于检测等效离子阻雷单元阻雷时的漏电压并将数据进行远程传输。具体结构如图11所示:该单元包括电压电流检测模块、中央控制模块、存储模块、温感模块、GPS模块、北斗模块和无线传输模块,电压电流检测模块可以使用电压互感器、电流互感器以检测导线上的电压和电流,中央控制模块分别连接电压电流检测模块、存储模块、温感模块、GPS模块、北斗模块和无线传输模块,存储模块用于暂存电压、电流、温度、时间等数据,温感模块用于测定环境温度,GPS模块、北斗模块用于获取当前位置的数据,中央控制模块定期的通过无线传输模块将电压、电流、温度、起止时间、定位信息等数据通过无线传输方式输送到上位机38处。在每个阻雷漏电压检测装置中还设置有太阳能电池板37、太阳能发电智能控制模块和电池组模块,太阳能电池板接受光信号并转换为电信号,然后通过太阳能发电智能控制模块存储到电池组模块中,太阳能发电智能控制模块同时进行个模块的供电。在实际使用时,除了可以对某几个相邻建筑物进行防雷保护以外,还可以对比如:供电线路、高铁、建筑群、变电站、军事设施、移动物体、森林防雷、旅游景区、体育场及校区、移动通信发射塔等占地面积广大的地区进行有效的防雷,其结构是:将某个输电线路设置为地区1、相邻的设置为地区2,以此类推,设置多个地区,每个地区可以只有一个阻雷漏电压检测装置,也可以按照等效离子阻雷单元的保护范围进行划分,设置多个阻雷漏电压检测装置,与阻雷漏电压检测装置配合的设置至少一个雷电计数器单元9,也可以设置多个,每个雷电计数器单元安装在该地区的等效离子阻雷单元的下方或该地区的无阻挡的开阔地处。图1中,地区1具有三个建筑物,分别是高楼6、烟囱11和电力塔架13,每个建筑物上设置一个等效离子阻雷单元3,配套的设置有三个雷击漏电压检测单元7,雷云的负电荷以及地面8的正电荷在等效离子阻雷单元中被等离子体分别中和,以此实现了三个建筑物及周边附属建筑物的保护。地区1、2、3、4、5占用了较大的面积,比如半径25公里的区域,此区域内的所有地区共享一个雷电检测单元14,雷电检测单元是对雷击漏电压检测单元的补充,其用于监控较大面积的区域是否发生雷击现象,而雷电计数器单元检测的是其附近是否发生雷击,通过雷电计数器单元和雷电检测单元,能够进一步的确认等效离子阻雷单元工作是否正常,是否存在死角,是否有效的阻雷。上述雷电检测单元安装在该一个地区或多个地区的无阻挡的建筑物的顶端,其结构如图10所示:包括雷击闪光检测部分和雷击电场检测部分,前者包括光敏二极管组模块、电流电压变换模块、放大滤波模块和A/D转化模块;后者包括电场天线模块、放大滤波模块和A/D转换模块。光敏二极管组模块通过电流电压变换模块和放大滤波模块连接A/D转换模块的一端,电场天线模块通过放大滤波模块连接另一个A/D转换模块的一端,两个A/D转换模块的另一端均连接中央控制模块,该中央控制模块通过无线传输模块与上位机进行数据传输,中央控制模块连接有存储模块、GPS模块和北斗模块。光敏二极管组安装在一个地区或多个地区的无阻挡的建筑物的较高处,可以朝向各个方向,通过其接收闪电产生的光线,由于闪光的能量集中在近紫外到近红外谱段,光敏二极管组可以接收到较远距离的闪光,尤其是变化非常快的闪光信号。电场天线接收到快速的电场变化后再参考光敏二极管组的输出信号,最终确认为雷击发生,并计算出雷击的方向、变化强度等信息。实施例1地点:华北某发射基地(由于表格、附图中涉及具体的地理信息,为了防止泄密,地名、经纬度等信息经过处理),该基地位于山区地带。设备:等效离子阻雷单元、雷击漏电压检测单元、雷电计数器单元和雷电检测单元,等效离子阻雷单元分别设置在30米、92米铁塔上,对应的每个铁塔设置一个雷击漏电压检测单元,该基地及周边地区内设置多个雷电计数器单元和一个雷电检测单元,雷电计数器单元安装在开阔地处和铁塔上,雷电检测单元安装在92米铁塔上。在2017年8月中旬,该基地所在地区出现连续三天的强雷暴天气,降水达到700毫米,三天内由雷电计数器单元和雷电检测单元测得的云地闪电和云间闪电共26000多次,三天雷电的检测数据见表1~3:S20170811雷电开始时间雷电结束时间正云地闪负云地闪云间闪雷电总计0:15:2818:37:3529025216482190表1:8月11日雷电检测数据S20170812雷电开始时间雷电结束时间正云地闪负云地闪云间闪雷电总计7:53:2020:46:5068995583895321435表2:8月12日雷电检测数据S20170813雷电开始时间雷电结束时间正云地闪负云地闪云间闪雷电总计8:35:3821:09:5618819825872973表3:8月13日雷电检测数据如图14所示,图中闪电符号为检测到的雷击,哑铃符号代表需要重点关注的位置,该基地中分为两个部分,第一部分是位于上方的哑铃符号密集区,第二部分是位于中下方的哑铃符号密集区,两个部分分别有30米铁塔和92米铁塔,两个部分大致为折线包住的区域(受山区地形的影响,不是规则的形状),该两个部分内分别具有30米铁塔和92米铁塔。2017年08月12日强雷暴天气过程如下:以4号气象台站为中心,半径30公里范围内,雷暴持续时间为13小时,落雷强度为1.66~90.26KVA,雷电总数为21435,表4为雷电检测单元测得的数据,由于数据过多,只提供部分数据,其中自动记录的经纬度信息省略。表4:雷电检测单元测得的数据从表4中可知,8月12日发生的雷击非常密集,而且区域非常大,参看图14,经过雷电计数器单元和雷电检测单元的检测,折线区域右侧上方和右侧中部为雷击高发区域,而折线区域左侧均为雷击高发区域,相应的两个雷击漏电压检测电压检测到的多个漏电压均小于120伏,对铁塔自身和周边的电气设备无影响。在检测过程中出现了一个云地闪电的直击雷,见图14中的三角形标示的闪电符号,经过分析,该直击雷正好处于两个铁塔上的等效离子阻雷单元保护范围之间的区域,即超过等效离子阻雷单元800米的有效半径,导致唯一一个直击雷的出现。由上述内容可知,等效离子阻雷单元有效的保护了该基地的第一部分、第二部分所在地区及其内设置的各种电气设备。实施例2地点:渤海中部某海岛,占地面积2.72平方公里,该岛地处渤海腹地,西北侧灯塔山的海拔高度是180米,每年雷雨季该岛雷电活动频繁,累计概率大大高于所属的烟台地区,雷击严重时,驻岛官兵和百姓所采用的关门上床来躲避雷击的方式已形成了避雷的规范。在灯塔山的山顶基座上安装等效离子阻雷单元,山脚下设置雷击漏电压检测单元,山南、山北以及山脚处安装多个雷电计数器单元,在等效离子阻雷单元下方安装雷电检测单元。检测结果证明,2017年一个雷雨季中,雷电计数器单元和雷电检测单元均没有检测到岛上发生雷击,而雷击漏电压检测单元记录了数十次漏电压,其数值低于120伏。由上述内容可知,等效离子阻雷单元有效的保护了岛屿所在地区及其内设置的各种电气设备。实施例3地点:辽宁110千伏高压输电线路网,该线路网的某线路段处于鸭绿江边与凤凰山坡上,夏季顺江产生的东南风气流沿着山坡上升并影响当地气候,导致当地极易出现雷电,该区域高压线路经常因雷击掉闸。2017年3月前,在上述线路段中的每个高压输电塔架顶端安装一个等效离子阻雷单元,每个高压输电塔架下端安装一个雷击漏电压检测单元,该线路段的每个高压输电塔架旁侧安装一个雷电计数器单元,最高处的高压输电塔架顶端安装一个雷电检测单元,共使用十台等效离子阻雷单元。检测结果证明,2017年一个雷雨季中,雷电计数器单元和雷电检测单元均没有检测到该线路段所在地区内发生雷击,更没有出现往年的雷击掉闸现象,而雷击漏电压检测单元记录了数十次漏电压,其数值低于120伏。上述结构的等效离子阻雷单元送北京雷电防护装置测试中心进行测试,测试报告编号为《2013-针-010J17》,测试内容为1.接闪电压特性测试;2.接闪概率测试;3.贯通放电效果测试。测试地点:北京雷电防护装置测试中心-避雷针试验室。试验标准:GB/T16927.1-1997、GB/T16927.2-1997、IEC61083-1:2001、IEC60060-1:1089主要试验测试仪器、设备:冲击发生器、直流发生器、脉冲测量分压器、云极板、数字脉冲分析系统DiAD733、数字示波器DP03054、模拟高压兆欧表。1.接闪电压特性测试,见下表:注:Vd:云极板上施加的直流电压,Vb:云极板放电电压,Tb:截波时间。表1:接闪电压特性测试测试结果:施加操作波,波头时间为250μs,经测试被测样品的平均接闪电压Vb=318.9kV;平均截波时间Tb=59.62μs。2.接闪概率测试,与上端面等高的避雷针进行比较,见下表:注:Vd:云极板上施加的直流电压,Vb:云极板放电电压,Tb:截波时间。表2:接闪概率测试测试结果:经测试,雷云板至地面之间电场强度:17.5kV/m,满足≤25kV/m,被测样品接闪概率为95%,高于设计指标90%。(注:首次未充分电离情况下,被测样品未接闪。)由于雷云是逐渐形成或逐渐逼近,使等效离子阻雷单元在充分储能的前提下进行空气的电离,在实际使用时不会出现表2中第1项的未接闪的情况。3.贯通放电效果测试:贯通放电是:电压加到阻雷器绝缘介质放电时称之为贯通放电,取样电阻上测量值为贯通时的残留电压。测试方法:阻雷器放置在高压极板下的中央,阻雷器与地绝缘,经分压电阻接地;调整高压极板距阻雷器顶端d=470mm≤500mm;施加直流电压Udc,确保放电间隙导通。测试结果件下表:序号DC(kV)残留电压(V)间隙状态1-15.01-不导通2-17.6-不导通3-20.0097导通4-18.00100导通5-22.60110导通6-19.80114导通7-20.56120导通8-20.56120导通9-20.62120导通10-21.70110导通11-20.74112导通12-20.76104导通表3:贯通放电效果测试测试结果:经测试被测样品在13.3kV/m下贯通放电100%,高于设计指标90%,依据公式:贯穿残留电压比=残留电压/直流电压×100%,贯穿残留电压比≤1%。表3中第1、2项也是等效离子阻雷单元未充分储能时出现的不导通,而储能完成并电离空气后,第3~12项均为导通。实际上测试3的测试原理与等效离子阻雷单元和雷击漏电压检测单元构成的阻雷漏电压检测装置相似。经过上述1、2、3的测试,北京雷电防护装置测试中心给出经测试符合设计要求的测试结论,并根据上述1、2、3的测试给出书面报告。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1