实现高容量、高能量密度和长循环寿命性能的锂离子电池的具有硅氧化物活性材料的电极的制作方法

文档序号:20274988发布日期:2020-04-03 19:31阅读:830来源:国知局
实现高容量、高能量密度和长循环寿命性能的锂离子电池的具有硅氧化物活性材料的电极的制作方法

相关申请的交叉引用

本申请要求venkatachalam等在2018年4月9日提交的名称为“实现高容量、高能量密度和长循环寿命性能的锂离子电池的具有硅氧化物活性材料的电极”的美国专利申请15/948,160的优先权,该美国专利申请要求venkatachalam等在2017年12月22日提交的名称为“实现高容量和长循环寿命性能的锂离子电池的具有硅氧化物活性材料的电极和得到的高能量密度电池”的美国临时专利申请62/609,930的优先权,二者均通过引用并入本文。

联邦资助的研究与开发

本发明利用美国能源部授予的美国先进电池联盟(unitedstatesadvancedbatteryconsortium)项目号:14-2141-abc下的美国政府资助协议号:de-ee0006250的政府支持完成。政府具有本发明中的一定权利。

发明领域

本发明涉及结合有高容量硅氧化物活性材料、同时实现良好循环能力的负极的形成。本发明还涉及电池,其由这些高容量长寿命周期负极组装为具有高能量密度的电池而得到。

发明背景

锂电池由于其较高的能量密度而被广泛地用于消费电子产品。对于一些目前的商业电池来说,负极材料可以为石墨,并且正极材料可以包括锂钴氧化物(licoo2)、锂锰氧化物(limn2o4)、磷酸铁锂(lifepo4)、锂镍氧化物(linio2)、锂镍钴氧化物(linicoo2)、锂镍钴锰氧化物(linimncoo2)、锂镍钴铝氧化铝(linicoalo2)等。对于负极来说,钛酸锂是具有良好循环性能的石墨的替代品,但是其具有较低的能量密度。其他石墨替代品如氧化锡和硅具有提供提高的能量密度的潜力。然而,已经发现一些高容量负极材料在商业上不适用,这是因为与结构变化和异常大的体积膨胀相关的高的不可逆容量损失以及差的放电和再充电循环,对于硅尤其如此,所述结构变化和异常大的体积膨胀与锂嵌入/合金化相关。结构变化和大的体积变化可能会破坏电极的结构完整性,从而降低循环效率。

发明概述

在第一方面,本发明涉及一种锂离子电池,所述锂离子电池包含负极,正极,在负极和正极之间的隔膜;电解质,所述电解质包含锂盐和非水溶剂;和容器,所述容器包封其他电池组件。负极可以包含约75重量%至约92重量%的活性材料、约1重量%至约7重量%的纳米级导电碳和约6重量%至约20重量%的聚合物粘结剂,其中活性材料可以包含约40重量%至约95重量%的硅氧化物系材料和约5重量%至约60重量%的石墨。在一些实施方案中,正极包含富含镍的锂镍钴锰氧化物、导电碳和聚合物粘结剂,所述富含镍的锂镍钴锰氧化物近似地由式linixmnycozo2表示,其中x+y+z≈1,0.45≤x,0.025≤y≤0.35,0.025≤z≤0.35。

在另一个方面,本发明涉及一种用于锂离子电池的负极,所述负极包含约78重量%至约92重量%的活性材料、约1重量%至约7重量%的纳米级导电碳和约6重量%至约20重量%的聚合物粘结剂,其中所述聚合物粘结剂包含至少约50重量%的聚酰亚胺和至少约5重量%的弹性模量不大于约2.4gpa的不同的第二聚合物粘结剂。在一些实施方案中,不同的第二聚合物粘结剂具有至少约35%的伸长率。

在另外的方面,本发明涉及一种锂离子电池,所述锂离子电池包括:包含硅氧化物、石墨、纳米级导电碳和聚合物粘结剂的负极,包含锂镍钴锰氧化物、导电碳和聚合物粘结剂的正极,在负极和正极之间的隔膜,包含锂盐和非水溶剂的电解质,和包封其他电池组件的容器。在一些实施方案中,锂离子电池在30℃以c/3的倍率从至少约4.25v的选定的充电电压放电至2.5v时具有至少235wh/kg的能量密度,并且当以c/3的倍率在2.3v和选定的充电电压之间从第5次循环循环至第450次循环时,锂离子电池在450次循环时的容量为在第5次循环时的容量的至少约80%。

在其他方面,本发明涉及一种锂离子电池,所述锂离子电池包括:包含硅氧化物、石墨、纳米级导电碳和聚合物粘结剂的负极,包含锂镍钴锰氧化物、导电碳和聚合物粘结剂的正极,在负极和正极之间的隔膜;包含锂盐和非水溶剂的电解质;和包封其他电池组件的容器。在一些实施方案中,锂离子电池在30℃以c/3的倍率从4.35v放电至2.3v时具有至少235wh/kg的能量密度,并且当以c/3的倍率在2.3v和4.35v之间从第5次循环循环至第450次循环时,锂离子电池在450次循环时的容量为在第5次循环时的容量的至少约80%。

附图简述

图1是具有与袋式壳体的两个部分分开的电池芯的袋式电池(pouchbattery)的展开图。

图2是组装的图1的袋式电池的透视下表面视图。

图3是图2的袋式电池的仰视图。

图4是包括电极堆叠体的电池芯的一个实施方案的图示。

图5是一组具有活性材料的电极的一组半电池(锂箔电极)的比容量(作为循环次数的函数)的图形,所述活性材料具有siox/si/c复合材料和任选的选定共混量的石墨。

图6是具有用于正极活性材料的锂金属氧化物的共混物以及一组负极的全纽扣电池的比容量(作为循环次数的函数)的图形,所述负极具有siox/si/c复合材料和任选的选定共混量的石墨。

图7是基于图6的比容量图形的标准化比容量(作为循环的函数)的图形。

图8是一组具有活性材料共混物和不同的纳米级碳导电添加剂的半电池的比容量(作为循环的函数)的图形。

图9是图8的具有用于正极活性材料的锂金属氧化物的共混物的硅系电极的全纽扣电池的比容量(作为循环的函数)的图形。

图10是关于图9中比容量的标准化比容量(作为循环的函数)的图形。

图11是具有包含不同聚合物粘结剂制剂的电极的半电池的比容量(作为循环的函数)的图形。

图12是具有与在图11的半电池中使用的那些相对应的负极和包含锂金属氧化物共混物的正极的全电池的比容量(作为循环的函数)的图形。

图13是图12的全电池的标准化容量(作为循环的函数)的图形。

图14是相对于图11-13的电池具有备选活性材料制剂的半电池的比容量相对于循环的图形,其中电极包含具有四种不同粘结剂组合物的5种不同制剂。

图15是具有与在图14的半电池中使用的那些相对应的负极和包含锂金属氧化物共混物的正极的全电池的比容量(作为循环的函数)的图形。

图16是图15的全电池的标准化容量(作为循环的函数)的图形。

图17是在图中所指示的电压窗口内循环的具有负极和正极的纽扣电池的电池电压(作为比容量的函数)的一组图形,所述负极具有硅氧化物/碳复合材料粒子和石墨的共混物,所述正极具有lini0.6mn0.2co0.2o2(nmc622)或lini0.8mn0.1co0.1o2(nmc811)。

图18是图17所指示的三种纽扣电池形式的放电比容量(作为循环次数的函数)的一组图形。

图19是用于产生图18中描绘的结果的三种纽扣电池的标准化放电比容量(作为循环次数的函数)的一组图形。

图20是具有nmc811系正极和硅氧化物-石墨共混物负极的纽扣电池在充电和放电倍率为c/20的情况下在第一次循环内的电池电压(作为比容量的函数)的图形。

图21是用于产生图20的纽扣电池在充电倍率为c/6并且放电倍率为c/10的情况下在第二充电/放电循环内的电压(作为比容量的函数)的图形。

图22是与用于产生图20中的图形的那些类似的两个等同纽扣电池的放电比容量(作为循环的函数)的图形。

图23是用于产生图22的纽扣电池的标准化容量(作为循环的函数)的图形。

图24是设计用于以大约21ah运行的袋式电池的正视图。

图25是图24的袋式电池的侧视图。

图26是设计用于以大约11ah运行的袋式电池的正视图。

图27是图26的袋式电池的侧视图。

图28是图24-27的袋式电池的标准化容量(作为循环的函数)的图形。

图29是在4.3v至2.3v的电压窗口内循环的使用与石墨共混的硅氧化物/碳以及nmc622系正极的袋式电池的比能量(作为循环次数的函数)的图形。

图30是用于产生图29中的结果的两种袋式电池的标准化比能量(作为循环次数的函数)的图形。

图31是用于产生图29中的结果的两种袋式电池的放电容量(作为循环次数的函数)的图形。

图32是用于产生图29中的结果的两种袋式电池的标准化放电容量(作为循环次数的函数)的图形。

图33是使用具有nmc811活性材料的正极和如在本文中所描述的改善的硅氧化物系阳极的具有“11ah设计”的两种袋式电池的比能量(作为循环的函数)的图形。

图34是用于产生图33的图形的电池的标准化比能量(作为循环的函数)的图形。

图35是用于产生图33的图形的电池的容量(作为循环的函数)的图形。

图36是用于产生图33的图形的电池的标准化容量(作为循环的函数)的图形。

发明详述

电极设计的改善提供了更长期循环性能的实现,同时利用硅系活性材料例如硅氧化物的高比容量。为了使循环稳定,已经发现可以适当地考虑阳极(负极)设计的特定特征以实现出人意料地改善的循环性能。尤其是,活性材料可以设计为包含具有硅系活性材料的共混物,但是具有明显的石墨组分。此外,已经发现粘结剂特性在一些实施方案中对于循环稳定性也作出显著贡献,并且在本文中描述了高机械强度的聚酰亚胺与更弹性的聚合物的有利的共混物。尽管石墨是导电的,但是也可以适量地使用纳米级碳以为电极提供导电性,以提供出乎意料的循环改善。之后可以将这些改善单独或组合用于形成具有理想容量、同时实现显著的循环稳定性的负极。在电极的一些实施方案中,可以形成实现大于600次充电/放电循环、同时保持初始(形成后)放电比容量的至少80%的电池。还发现这些负极改善与申请人的电池设计相容,从而对于使用适当正极设计的相应电池也相应地实现高能量密度。描述了良好循环的高能量密度电池具有结合富含镍的锂镍钴锰氧化物正极活性材料的正极。因此,可以以适用于汽车应用和其他适合应用的更大的电池形式形成长循环稳定性的电池,同时实现至少约235wh/kg的初始形成后能量密度。

在一次电池和二次电池两者中一直使用锂。用于电池或电池组用途的锂的引人注目的特征是其轻的重量以及以下事实:它是最电正性的金属,并且在锂系电池中也可以有利地带有这些特征的方面。已知某些形式的金属、金属氧化物和碳材料通过嵌入、合金化或类似机制将来自电解质的锂离子并入到其结构中。锂系电池的正极通常包含可逆地嵌入锂/与锂合金化的活性材料。锂离子电池通常是指其中负极活性材料也是锂嵌入/合金化材料的电池。除非记载了一些明确的区别,如本文中使用的且为了方便,术语电池(cell)和电池组(battery)以及其变体可交换地使用。

本文中所述的电池是使用包含锂阳离子和合适阴离子的非水电解质溶液的锂离子电池。对于在充电期间的二次锂离子电池,在阴极(正极)发生氧化,其中提出锂离子并且释放电子。在放电期间,在阴极发生还原,其中插入锂离子并且消耗电子。类似地,在充电期间,在阳极(负极)处发生还原,其中吸入锂离子并且消耗电子,并且在放电期间,在阳极处发生氧化,其中释放锂离子和电子。除非另外指明,本文中提到的性能值是在室温即约23±2℃的。如以下描述的,硅系活性材料的一些测试在具有锂金属电极的锂电池(称为半电池)中或在具有包含锂金属氧化物的正极的锂离子电池(称为全电池)中进行。在具有硅系电极的半电池中,锂电极作为负极,并且硅系电极作为正极,这与其在锂离子电池中通常作为负极的作用相反。

词语“元素”在本文中以其常规方式用作指元素周期表中的成员,其中如果元素在组合物中,则该元素具有适当的氧化态,并且其中当陈述为处于元素形式时,则该元素处于其元素形式m0。因此,金属元素通常仅是处于其元素形式的金属态,或金属的元素形式的适当合金。换言之,除了金属合金以外,金属氧化物或其他金属组合物通常是非金属。

当锂离子电池在使用中时,锂从正极和负极的吸收和释放引起电活性材料的结构变化。只要这些变化本质上是可逆的,材料的容量就不随循环改变。然而,观察到活性材料的容量随着循环不同程度地降低。因此,在多个循环后,电池的性能下降到低于可接受的值,并且更换电池。另外,在电池的第一次循环,通常存在不可逆容量损失,其明显大于在后续循环时的每次循环容量损失。不可逆容量损失(ircl)是新电池的充电容量和第一次放电容量之间的差。基于锂金属氧化物的正极可能会表现出一些ircl,这导致了在可用于循环的锂方面对负极的一些补偿。不可逆容量损失可能由于电池材料在初始循环期间的变化而导致电池的容量、能量和功率的相应降低。

元素硅以及其他硅系活性材料由于硅在锂的吸入和释放方面非常高的比容量而作为潜在的负极材料已经引起大量关注。元素硅与锂形成合金,其理论上可以具有对应于大于4个锂原子/硅原子的锂含量(例如li4.4si)。因此,硅的理论比容量在4000至4400mah/g的等级,其显著大于石墨的约370mah/g的理论容量。据信石墨中嵌入锂达到对于6个碳原子具有大约1个锂原子的水平(lic6)。另外,元素硅、硅合金、硅复合材料等可以类似于石墨那样具有低的相对于锂金属的电势。然而,硅在与锂合金化时发生非常大的体积变化。已经观察到为原始体积的两到三倍等级或更大的大体积膨胀,并且大体积变化与具有硅系负极的电池的循环稳定性的显著降低相关。还已经发现硅低价氧化物(suboxide)(即siox,x<2)是理想的用于锂系电池的活性材料,其在一些实施方案中相对于锂合金化可以具有高的比容量。硅低价氧化物的提及提供了对作为硅的完全氧化形式的二氧化硅的认可。除非具体指明,为了方便,硅低价氧化物通常可以称为硅氧化物,其不限于一氧化硅(sio)。

在特别关注的实施方案中,硅系活性材料可以包含元素硅和/或硅低价氧化物作为主要活性材料。已经发现硅低价氧化物对于实现更长久的循环稳定性特别有效。为了使硅系活性材料稳定以及为了提高导电性,可以将碳掺入复合活性材料中。对于具有纳米级元素硅和/或硅氧化物的碳复合材料,长久的循环稳定性仍是难得的,但是申请人已经实现了对于消费电子产品应用的中等的循环稳定性,如上所述。基于电活性石墨和硅系复合材料的混合物连同其他电极设计改善,本文中描述了更长久的循环稳定性。如以下详细讨论的,稳定的硅系电极还可以包含另外的导电源,比如纳米级碳以及也对循环稳定性作出突出贡献的改善的粘结剂共混物。

本文中用于锂离子二次电池的活性材料通常包括例如相对于锂具有适度高的平均电压的正极(即阴极)活性材料和用于负极(即阳极)的硅系活性材料。通常,可以使用多种阴极材料。例如,可商购的阴极活性材料可以以现有商业生产可用性使用。这样的阴极活性材料包括例如钴锂氧化物(licoo2)、lini1/3mn1/3co1/3o2(l333或nmc111)、linicoalo2(nca)、其他锂镍锰钴氧化物(nmc)、limn2o4(锂锰氧化物尖晶石)、它们的改性形式或它们的混合物。

由于相对于锂钴氧化物较低的成本和较低的易燃性风险以及在更高电压下循环的能力,富含镍的锂镍钴锰氧化物(linixmnycozo2,0.45≤x,0.05≤y,z≤0.35)可以引起关注。呈现出以下结果:与改善的硅系负极配对的富含镍的锂镍锰钴氧化物活性材料形成具有良好循环稳定性和高能量密度的电池。此外,例如,在venkatachalam等人的名称为“用于具有高放电比容量的锂离子电池的正极材料和用于合成这些材料的方法”的美国专利8,389,160(在下文中的'160专利)和lopez等人的名称为“用于高放电容量锂离子电池的正极材料”的美国专利8,465,873(在下文中的'873专利)中,描述了最近开发的具有高比容量的材料,其具有层状晶体结构并且相对于limo2(m=非锂金属)参考组成富含锂,这两篇专利均通过引用并入本文。如以下进一步讨论的,已经发现富含锂+富含锰的nmc和富含镍的nmc正极活性组合物的共混物可以提供特别理想的电池性能和良好的循环稳定性。

具体地,可以由富含镍的锂镍锰钴氧化物(n-nmc)得到理想的循环结果,所述富含镍的锂镍锰钴氧化物可以由式linixmnycozo2表示,其中x≥0.45并且x+y+z≈1。这些化合物的可商购的制剂包括例如lini0.5mn0.3co0.2o2(basf)、lini0.6mn0.2co0.2o2(targray,加拿大)、lini0.8mn0.1co0.1o2(targray,加拿大和lgchemical)。在本行业中,在以相应顺序列出钴和锰的情况下,ncm和nmc二者可互换使用,并且陈述是等同的并且仅基于个人偏好。可以使用富含镍的nmc和富含锂+富含锰的锂镍锰钴氧化物(可以称为高容量富含锰的组合物)的共混物实现改善的循环稳定性。通常,具有电活性组合物的组合的电极包含显著量的这两种材料,通常相对于电极的总活性材料各自为至少约5重量%。电池性能表明,在较高的充电电压,这些活性材料的共混物比单独的n-nmc材料更好地循环,同时n-nmc材料提供其他理想的电池性能。

正极活性材料可以具有稳定化涂层。在lopez等人的名称为“用于锂离子电池的涂覆的正极材料”的公布的美国专利申请2011/0111298、karthikeyan等人的名称为“用于锂系电池的金属氧化物涂覆的正极材料”的美国专利8,535,832和venkatachalam等人的名称为“在锂离子电池正极材料上的金属卤化物涂层和相应的电池”的美国专利8,663,849中,进一步描述了用于正极活性材料的稳定化纳米涂层,这三篇专利都通过引用并入本文。具体地,可以使用这些稳定化涂层显著地改善富含锂+富含锰的镍锰钴氧化物电极的循环。

如上所述,硅系电极在得到适合于商业应用的循环方面提出挑战。对于消费电子产品应用,合理的循环目标可以是在没有不可接受的性能损失的情况下大约250-450次循环,但是对于交通工具和类似的较大容量应用,需要更大的循环稳定性。申请人已经实现了适用于消费电子产品应用的电池设计,其通过使用硅系阳极可以实现合适的性能。在公布的amiruddin等人的名称为“具有高容量阳极材料和用于消费电子产品的良好循环的锂离子电池”的美国专利申请2015/0050535(在下文中称为'535申请)中描述了这些电池,该专利申请通过引用并入本文。本文中的新型电池设计提供超过用于消费电子产品的目标循环稳定性的循环,并且同时实现适用于交通工具和其他高容量应用的性能。

关于硅,缺氧的硅氧化物,例如硅氧化物siox,0.1≤x≤1.9,可以嵌入锂/与锂合金化,以使得缺氧的硅氧化物可以在锂系电池中作为活性材料起作用。硅氧化物可以掺入较大量的锂以使得材料可以表现出大的比容量。然而,通常还观察到硅氧化物的容量随着电池循环较快衰减。来自一些供应商的可以与碳和硅纳米晶体复合的包含sio的商业硅系材料可由alfaaesar(美国)、sigma-aldrich(美国)、shin-etsu(日本)、osakatitaniumcorporation(日本)和nanostructuredandamorphousmaterialscorp.(美国)获得。以下进一步描述硅系组合物的另外具体的合适制剂。申请人已经通过使用本文所述的电极配方实现了硅氧化物系活性材料的循环稳定。在一些实施方案中,可以理想地具有包含石墨碳活性材料和硅系活性材料的组合的负极以在可接受的比容量降低的情况下延长循环寿命,并且本文中优异的循环性能使用这样的活性材料共混物。

为了实现本文所述的结果,独立地或组合地检验了多种设计改善,以提供改善的循环性能,并且至少对于一些实施方案来说,特定电极特征的组合可以为更长久的循环稳定性提供出人意料的协同性能改善。具体地,负极可以设计为含有具有高拉伸强度同时引入一些伸长能力的复合材料粘结剂。已经发现,纳米级导电碳,如碳纳米管、碳黑、碳纳米纤维或它们的组合作为导电电极添加剂改善了具有硅系活性材料的负极的循环。可以提供在>4.3v的较高电压具有出色循环的电解质。可以将这些特征与电极负载和密度的设计组合,所述设计为所得的消费电子产品电池设计提供良好的基于能量密度的性能。借助向电池中加入补充锂和/或借助调节各电极中的活性材料的平衡,可以进一步改善循环。

负极中的活性材料共混物的石墨组分可以提供导电性。然而,发现适当量的纳米级碳可以在循环方面进一步使负极稳定。纳米级碳可以采用碳纳米管、碳纳米纤维或碳纳米粒子比如炭黑的形式。如在lopez等人的名称为“用于锂离子电池的高容量阳极材料”的美国专利9,190,694b2和masarapu等人的名称为“采用高容量阳极材料和阴极材料的电池设计”的美国专利9,780,358b2中所描述的,先前发现了纳米级导电碳对于硅系负极的循环稳定性的有用性,这两篇专利均通过引用并入本文。通常,电极包含至少约1重量%的纳米级导电碳以实现稳定的循环。

在锂离子电池中,通常在正极活性材料中提供用于循环的反应性锂,其在电池的初始充电期间转移至负极,然后在那里可用于电池的放电。硅系负极通常在电池的第一次充电期间可能表现出大的不可逆容量损失。容量损失通常可能与在电池的第一次充电期间与材料相对应的不可逆变化相关。例如,作为与电池中使用的典型电解质的反应的结果,固态电解质界面(sei)层与负极活性材料一起形成。如果形成稳定的sei层,则sei层可以在循环期间使电池稳定。可推测关于硅系活性组合物发生其他不可逆的变化。第一次循环不可逆容量损失通常显著大于与电池的后续循环相关的任何每次循环容量损失,尽管第二次、第三次和其它几次的循环也可能具有较大的每次循环容量损失,是因为初始变化被携带进入了前几次循环中而不是完全在第一次循环中完成。较大的不可逆容量损失(ircl)可能降低循环容量以及电池在循环期间的能量输出和功率输出。在较大形式的电池中,容量由于实际效果而在较低循环次数时可能增加,所述实际效果可以是例如电解质通过电极堆叠体的改进渗透。

为了减少由于不可逆容量损失的电池的能量输出和功率输出的损失,可以加入补充锂以将另外的锂提供到电池中。补充锂的引入可以减少由于与ircl相关的活性锂容量损失而不循环的阴极活性材料的引入。补充锂是指与正极活性材料不同的直接或间接引入到电池中以代替不可逆过程损耗的锂以及提供其他有益效果的活性锂。申请人已经发现,以比对应于补偿不可逆容量损失的量大的量提供的补充锂可以进一步使循环稳定。在正极活性材料为富含锂+富含锰的镍锰钴氧化物的情况下,在amiruddin等人的名称为“使用补充锂的锂离子电池”的美国专利9,166,222(在下文中称为'222专利)中描述了该循环稳定化,该专利通过引用并入本文。

可以使用多种用于引入补充锂的方法,包括例如将锂活性材料(例如锂金属粉末或箔)加入负极中,将牺牲锂源加入正极中,将牺牲锂电极包括到电池结构中,负极的电化学预锂化等。在'222专利和lopez等人的名称为“用于锂离子电池的高容量阳极材料”的公布的美国专利申请2011/0111294(在下文中的'294申请)中进一步描述了这些方法,这两篇专利均通过引用并入本文。在一些实施方案中,已经发现,电化学方法可以是方便的,比如在公布的grant等人的名称为“用于将阳极碱化的方法”的pct申请wo2013/082330中描述的方法,该申请通过引用并入本文。通常,补充锂可以一定量引入,以补偿一部分不可逆容量损失、几乎全部不可逆容量损失或比不可逆容量损失大的量,但是其通常比不可逆容量损失高出不超过负极活性材料的容量的30%。在一些实施方案中,补充锂可以补偿约90%至约200%的阳极第一次循环不可逆容量损失。

申请人的在前工作已经发现,通过使用高抗拉强度聚合物粘结剂明显有利于硅系阳极的循环,所述高抗拉强度聚合物粘结剂可以通过适当的聚酰亚胺来满足。具体地,聚合物粘结剂的抗拉强度可以是至少约60mpa。为了甚至更久地延长循环稳定性,发现聚合物粘结剂共混物可以提供进一步改善的循环性能。聚合物粘结剂共混物的一种组分可以是高抗拉强度聚合物,比如聚酰亚胺,并且第二聚合物可以具有较低的杨氏模量(弹性模量)值以提供更弹性的聚合物,比如聚偏二氟乙烯、羧甲基纤维素、苯乙烯-丁二烯橡胶、锂化的聚丙烯酸或它们的混合物。在提供抗拉强度的同时,聚合物粘结剂还应提供良好的粘附力,以使得电极保持与集电体层合。所需的共混物可以包含至少约50重量%的高抗拉强度聚合物和至少约5重量%的聚合物粘结剂,所述聚合物粘结剂的杨氏模量不超过约2.4gpa并且对于一些实施方案来说伸长率为至少约35%。

阳极设计通常涉及多种因素的平衡以实现目标能量密度和功率密度,同时仍提供合理的循环。如在以下实施例中的结果中看到的,具有硅系阳极活性材料的电池能够循环超过六百次循环,同时保持超过80%的电池容量。同时,现实的负极设计可以与合理的正极设计匹配以实现良好的循环以及高的能量密度值。以下详细地描述电池设计以及用于实现这些成就的设计特征的平衡。

通常,本文所述的电池设计可以适合于圆柱形电池或更多矩形或棱柱形样式的电池。圆柱形电池通常具有卷绕(wound)的电极结构,而棱柱状电池可以具有卷绕或堆叠的电极。通常,为了采用在电极负载和密度方面合适的电极设计来实现所需的性能,电池可以包括多个各种极性的电极,其可以与在电池电极之间的隔膜材料一起堆叠。电极的卷绕由于电子传导性和离子迁移性以及电极在适当容器内的良好堆叠而可以提供具有合理内阻的类似效果。电池的尺寸通常影响电池的总容量和能量输出。本文所述的设计基于得到理想的高能量密度,同时提供基于硅系活性材料的电池的理想循环。

电极结构

电池的电极包含活性材料以及粘结剂和导电添加剂。将电极形成为片材,干燥并且压制以达到所需的密度和孔隙率。电极片通常直接形成在金属集电体比如金属箔或薄金属网格上。对于多种电池结构,电极层形成在集电体的两侧以在组装的电池或电池组中提供理想的性能。在集电体的每一侧的电极层都可以被认为是相同电极结构的元件,因为它们在电池中处于相同的电势,但是集电体本身尽管是电极结构的一部分,但是通常不被认为是电极的一部分,因为其是电化学惰性的。因此,提到电极的物理方面(physicalaspects)通常是指在电极结构内的一层电极组成。导电的集电体可以促进电子在电极和外部电路之间的流动。

在一些实施方案中,当正极或负极使用高负载水平时,可以降低电极的密度以提供良好的电极循环稳定性。电极的密度在合理的范围内是压制压力的函数。通常,在不牺牲关于负载水平的性能且同时实现所需循环性能和在较高放电倍率下的容量的情况下,电极的密度不能任意地增大。在以下部分中提供特定负极层和正极层的特征。

在一些实施方案中,集电体可以由镍、铝、不锈钢、铜等形成。电极材料可以作为薄膜流延到集电体上。然后将具有集电体的电极材料干燥,例如在烘箱中干燥,以从电极移除溶剂。在一些实施方案中,可以使与集电体箔或其他结构接触的干燥的电极材料经受约2至约10kg/cm2(千克/平方厘米)的压力。用于正极的集电体的厚度可以是约5微米至约30微米,在其他实施方案中约10微米至约25微米,并且在进一步的实施方案中约14微米至约20微米。在一个实施方案中,正极使用铝箔集电体。用于负极的集电体的厚度可以是约2微米至约20微米,在其他实施方案中约4微米至约14微米,并且在进一步的实施方案中约6微米至约10微米。在一个实施方案中,负极使用铜箔作为集电体。本领域普通技术人员将认识到,在上述明确范围内的集电体厚度的另外范围要被考虑并且在本公开内。

负极

基本电极设计包括活性组合物、聚合物粘结剂和导电稀释剂的共混物。如上所述,在一些实施方案中,改善的电极设计可以涉及聚合物粘结剂共混物和活性组合物的共混物以及纳米级导电碳添加剂。活性材料共混物可以包含大部分的硅系活性材料比如硅氧化物复合材料和至少10重量%的区别的(distinct)石墨。另外,已经发现,利用提供高机械强度的聚酰亚胺与一部分在协同粘结剂共混物中仍提供良好电极性能的更易变形聚合物的共混物,可以得到利用硅系活性材料的电极循环的稳定化。尽管石墨可以向电极提供导电性,但是还已经发现,在一些实施方案中,然而一定量的区别的(distinct)纳米级导电碳对于产生循环久的负极的能力可以是重要的。通常,纳米级导电碳不被认为是电化学活性的,而石墨是电化学活性的。然后将这些改善的设计方面结合到进一步具有先前发现的硅系电极改善的电极中。

已经将重要的关注引导向基于硅的高容量负极活性材料。对于含有显著量硅的电池来说,硅系活性材料通常未实现适用于汽车用途的循环稳定性。'535申请已经证明成功的适用于消费电子产品应用等的循环,其中在至少80%初始容量的值的情况下循环多达大约200至300次循环。申请人在循环稳定性方面特别成功,使用主要基于硅氧化物复合材料的材料实现了循环稳定性。在本文中,提供了可以在大电压范围内在合理的倍率(rate)下循环的情况下顺利循环超过600次循环而容量不下降至低于80%的电极。因此,本工作涉及将循环稳定性延长到适用于汽车用途的范围。

如本文所述的,利用与硅系活性材料和石墨碳共混的活性组合物得到了改善的循环结果。通常,以c/3的倍率相对于锂金属从5毫伏(mv)至1.5v循环时,负极共混活性材料的总容量可以是至少约750mah/g,在进一步的实施方案中至少约900mah/g,在另外的实施方案中至少约1000mah/g,并且在其他实施方案中至少约1100mah/g。共混的活性材料可以包含至少约40重量%的硅系活性材料,在进一步的实施方案中至少约50重量%的硅系活性材料,在其他实施方案中约55重量%至约95重量%的硅系活性材料,并且在另外的实施方案中约60重量%至约90重量%的硅系活性材料。相应地,共混的活性材料可以包含约5重量%的石墨至约60重量%的石墨,在进一步的实施方案中约7重量%的石墨至约50重量%的石墨,在另外的实施方案中约8重量%的石墨至约45重量%,并且在其他实施方案中约10重量%的石墨至约40重量%的石墨。本领域普通技术人员将认识到,在上述明确范围内的硅系活性材料的放电比容量和浓度的另外的范围要被考虑并且在本公开内。

如上所述以及以下详细描述的,合适的硅系活性材料可以包括具有碳组分的复合材料。在以下部分中详细地讨论硅系活性材料。与涉及利用聚合物粘结剂保持在一起的混合物的共混物不同,复合材料是指其组分在适当尺度内紧密结合成具有有效均匀性的整体材料的粒状材料。复合材料组分可以包括例如硅、氧、碳等。虽然不希望受理论限制,但是通常认为,具有硅的复合材料的碳组分在电化学方面是活性的并且通常不是石墨的,尽管考虑到在复合材料中的紧密组合,活性是抽象概念,并且晶体结构可能极复杂且难以评价。在任何情况下,本领域普通技术人员容易理解,复合材料的碳组分与不在活性材料共混物中的复合材料中的区别石墨是可区分的。以下实施例基于被认为包含主要的硅低价氧化物与一些量的在组合复合粒状材料中的元素硅晶体和元素碳的商业复合材料组合物。

石墨是以天然形式和合成形式可商购的,并且合适的石墨包括天然石墨或合成石墨等。石墨是具有片状共价键合碳的碳的结晶形式。如本文中使用的,石墨是指不需要完美结晶度的石墨碳,并且一些天然石墨材料可以具有一些结晶杂质。但是石墨通常是指由石墨结构占主导的材料,如本领域将会认识到的。石墨沿着在晶体中堆叠的共价碳片的平面是导电性的。石墨形式的结晶碳可以嵌入锂,以使得其是确定的用于锂离子电池的电化学活性材料。

石墨粒子的平均粒径可以是约1微米至约30微米,在进一步的实施方案中约1.5微米至约25微米,并且在其他实施方案中约2微米至约20微米。通常,对于石墨来说理想的是不包含大于电极厚度的粒子以避免凹凸不平的电极表面,并且尺寸显著小于微米的石墨粒子可能是较少结晶的。在一些实施方案中,石墨碳的d50(质量中值直径)可以是约5微米至约50微米,在进一步的实施方案中约7微米至约45微米,并且在另外的实施方案中约10微米至约8微米至约40微米。另外,在一些实施方案中,石墨碳活性材料的bet表面积(其可以根据iso4652评价)可以是约1m2/g至约100m2/g,在进一步的实施方案中约5m2/g至约85m2/g,并且在另外的实施方案中约7.5m2/g至约60m2/g。本领域普通技术人员将认识到,石墨碳活性材料的粒度和表面积的其它的范围要被考虑并且在本公开内。相比之下,导电炭黑等(其被称为次晶(paracrystalline))的表面积通常为至少约40m2/g至1000m2/g或更大。

关于聚合物粘结剂,申请人已经使用高抗拉强度粘结剂例如聚酰亚胺粘结剂得到了硅系电池的合理循环。参见deng等人的名称为“用于锂离子电池的硅氧化物系高容量阳极材料”的美国专利9,601,228(在下文中称为'228专利),其通过引用并入本文。在得到较长时间的循环稳定性的一些实施方案中,已经出人意料地发现聚合物粘结剂共混物进一步使循环稳定。特别地,可以将提供较低弹性模量(对应于更大的弹性)的第二聚合物或聚合物的组合与高抗拉强度聚酰亚胺共混。粘结剂共混物通常包含至少约50重量%的聚酰亚胺,在进一步的实施方案中至少约55重量,并且在其他实施方案中约60重量%至约95重量%的聚酰亚胺。类似地,粘结剂共混物通常包含至少约5重量%的具有较低弹性模量的聚合物,在进一步的实施方案中至少约10重量%,并且在其他实施方案中约12重量%至约40重量%的具有较低弹性模量的聚合物,这如以下进一步说明的。本领域普通技术人员将认识到,在上述明确范围内的聚合物量的另外的范围要被考虑并且在本公开内。共混物的聚合物可以选择为可溶于相同的溶剂。

聚酰亚胺是基于酰亚胺单体结构的重复单元的聚合物。聚酰亚胺聚合物链可以是脂族的,但是对于高抗拉强度应用来说,聚合物主链通常是芳族的,其中聚合物主链沿聚酰亚胺结构的n原子延伸。对于在循环期间表现出明显的形貌变化的硅系阳极,已经发现可热固化的聚酰亚胺聚合物对于高容量负极是理想的,这可能是由于它们的高机械强度。以下表格提供高抗拉强度聚酰亚胺聚合物的供应商以及相应聚酰亚胺聚合物的名称。

聚酰亚胺聚合物的抗拉强度可以是至少约60mpa,在进一步的实施方案中至少约100mpa,并且在其他实施方案中至少约125mpa。一些具有高抗拉强度的商业聚酰亚胺也可以具有较高的伸长率值,其是在聚合物撕裂前承受的伸长率的量。在一些实施方案中,聚酰亚胺的伸长率可以是至少约40%,在进一步的实施方案中至少约50%,并且在其他实施方案中至少约55%。抗拉强度和伸长率值可以根据用于塑料的抗拉性质的astmd638-10标准测试方法或用于薄塑料片的抗拉性质的astmd882-91标准测试方法中的程序测量,两者均通过引用并入本文。基于由商业供应商报告的值,聚酰亚胺的来自这些备选astm方案的结果看上去彼此类似。本领域普通技术人员将认识到,在上述明确范围内的聚合物性质的另外的范围要被考虑并且在本公开内。

合适的更柔性的聚合物组分可以选择为在电池的电化学方面是惰性的并且与利用聚酰亚胺的处理相容。特别地,合适的更柔性的聚合物组分包括例如:聚偏二氟乙烯(pvdf)、羧甲基纤维素(cmc)、苯乙烯-丁二烯橡胶(sbr)、锂化的聚丙烯酸(lipaa)或它们的混合物。关于聚合物性质,在以下表格中概述了用于高容量负极应用的一些重要性质。

pvdf是指聚偏二氟乙烯,cmc是指羧甲基纤维素钠,sbr是指苯乙烯-丁二烯橡胶,并且lipaa是指锂化的聚丙烯酸。pvdf、cmc和sbr可由多种来源商购获得。lipaa可以由lioh和商业聚丙烯酸(paa)制成。例如,可以以每单体单元paa为一摩尔的lioh的量,将化学计量量的lioh加入paa的溶液。在li等,“lithiumpolyacrylateasabinderfortin-cobalt-carbonnegativeelectrodesinlithium-ionbatteries(作为用于锂离子电池中的锡-钴-碳负极的粘结剂的聚丙烯酸锂)”,electrochemicaacta55(2010)2991-2995中进一步描述了lipaa的形成和使用,该文献通过引用并入本文。

伸长率是指在聚合物撕裂之前的伸长百分比。通常,为了容纳硅系材料,需要具有至少约30%的伸长率,在一些实施方案中至少约50%并且在进一步的实施方案中至少约70%的伸长率。对于聚合物粘结剂共混物,对于更弹性的聚合物粘结剂组分,可能需要具有不大于约2.4gpa、在进一步的实施方案中不大于约2.25gpa、在其他实施方案中不大于约2gpa并且在另外的实施方案中不大于约1.8gpa的弹性模量(备选地,称为杨氏模量或拉伸模量)。本领域普通技术人员将会认识到,在上述明确范围内的更弹性聚合物组分性质的另外的范围要被考虑并且在本公开内。

为了形成电极,可以将粉末与聚合物在合适的液体比如用于溶解聚合物的溶剂中共混。通常可以在n-甲基吡咯烷酮(nmp)中处理聚酰亚胺和pvdf,但是可以使用其他合适的有机溶剂。水可处理的聚酰亚胺是可商购的,并且这些水可处理的聚酰亚胺适合于与各种其他聚合物共混。可以将电极的粒状组分即活性材料和纳米级导电碳与聚合物粘结剂共混物在溶剂中共混以形成糊剂。可以将所得糊剂压成电极结构。

粘结剂中的活性材料负载量可以较大。在一些实施方案中,负极具有约75重量%至约92重量%的负极活性材料,在其他实施方案中约77重量%至约90重量%的负极活性材料,并且在进一步的实施方案中约78重量%至约88重量%的负极活性材料。在一些实施方案中,负极具有约6重量%至约20重量%的聚合物粘结剂,在其他实施方案中约7重量%至19重量%的聚合物粘结剂,并且在进一步的实施方案中约8重量%至18重量%的聚合物粘结剂。另外,在一些实施方案中,负极包含约1重量%至约7重量%的纳米级导电碳,在进一步的实施方案中约1.5重量%至约6.5重量%,并且在另外的实施方案中约2重量%至约6重量%的纳米级导电碳。本领域普通技术人员将认识到,在上述明确范围内的聚合物负载的另外的范围要被考虑并且在本公开内。

对于负极的改善循环,已经发现纳米级碳添加剂或其组合是特别理想的。纳米级导电碳通常是指一次粒子的至少两个尺寸为亚微米的高表面积元素碳的粒子。合适的纳米级导电碳包括例如炭黑、碳纳米管和碳纳米纤维。在一些实施方案中,在负极中使用的纳米级导电碳添加剂可以包括碳纳米管、碳纳米纤维、碳纳米粒子(例如炭黑)或它们的组合。在一些实施方案中,为了实现改善的性能,导电添加剂可以具有至少约40s/cm、在一些实施方案中至少约50s/cm并且在进一步的实施方案中至少约60s/cm的电导率。本领域普通技术人员将认识到,在上述明确范围内的粒子负载和电导率的另外的范围要被考虑并且在本公开内。

作为电阻率的倒数的电导率可以由经销商报告,并且通常使用由经销商开发的特定技术来测量电导率。例如,炭黑电阻的测量在两个铜电极之间用superptm炭黑进行,参见timcalgraphite&carbon,asynopsisofanalyticalprocedures(分析工序概要),2008,www.timcal.com。还可以加入合适的补充导电添加剂以有利于更长期的循环稳定性。备选地,一些供应商描述了实现导电逾渗阈值(conductivepercolationthreshold)的导电碳浓度。

炭黑是指合成的碳材料,并且可以备选地称为乙炔黑、炉黑、热炭黑或表明合成方法的其他名称。炭黑通常是指无定形碳,但是存在以下的迹象:在至少一些形式的炭黑中的具有与石墨或金刚石晶体结构对应的短或中等范围序列的小结构域,但是对于实际用途,该材料可以被认为是非晶的。在iso技术规范80004-1(2010)下,炭黑是纳米结构的材料。炭黑的一次粒子可以在数十纳米以下的等级,但是一次粒子通常硬融合为链或其他聚集体,并且最小的可分散单元可以被认为是约80nm至800nm,其仍是亚微米的。炭黑是可商购的,它们已经被合成出来以提供所需导电性水平,比如(timcal)、(akzonobel)、shawinigan(chevron-phillips)和blackpearls(cabot)。

碳纳米纤维是高长宽比纤维,其通常包括板、圆锥体或其他形式的石墨烯层,碳纳米管包括折叠成管的石墨烯片。碳纳米纤维可以具有250nm以下的直径,并且是可商购的,例如,碳纳米纤维(pyrografproducts,inc.),或来自americanelements,inc。已经发现碳纳米管是理想的导电添加剂,其可以改善正极或负极的循环性能。单壁或多壁碳纳米管也可由americanelements,inc.(ca,美国)、cnanotechnologies(中国)、fuji,inc.(日本)、alfaaesar(ma,美国)或nanolabs(ma,美国)得到。

用于本文中所述的电池的正极和负极可以具有高的活性材料负载水平以及合理高的电极密度。对于特定的活性材料负载水平,密度与厚度负相关,以使得具有较大密度的电极比具有较低密度的电极薄。负载量等于密度乘以厚度。在一些实施方案中,电池负极的负极活性材料负载水平为至少约1.5mg/cm2,在其他实施方案中约2mg/cm2至约8mg/cm2,在另外的实施方案中约2.5mg/cm2至约6mg/cm2,并且在其他实施方案中约3mg/cm2至约4.5mg/cm2。在一些实施方案中,电池的负极的活性材料密度在一些实施方案中为约0.5g/cc(cc=立方厘米(cm3))至约2g/cc,在其他实施方案中约0.6g/cc至约1.5g/cc,并且在另外的实施方案中约0.7g/cc至约1.3g/cc。类似地,硅氧化物系电极的平均干燥厚度可以是至少约15微米,在进一步的实施方案中至少约20微米,并且在另外的实施方案中约25微米至约75微米。所得硅氧化物系电极可以表现出至少约3.5mah/cm2、在进一步的实施方案中至少约4.5mah/cm2并且在另外的实施方案中至少约6mah/cm2的容量/单位面积。本领域普通技术人员将认识到,在上述明确范围内的活性材料负载水平和电极密度的另外的范围要被考虑并且在本公开内。

高容量硅系阳极材料

通常,本文中的电池设计基于高容量阳极活性材料。具体地,当以c/10的倍率相对于锂金属从0.005v至1.5v循环时,阳性活性材料的比容量通常为至少约800mah/g,在进一步的实施方案中至少约900mah/g,在另外的实施方案中至少约1000mah/g,在一些实施方案中至少约1150mah/g,并且在其他实施方案中至少约1400mah/g。如其隐含的,负极活性材料的比容量可以在具有锂金属对电极的电池中评价。然而,在本文所述的电池中,当相对于高容量锂金属氧化物正极活性材料循环时,负极可以表现出合理相当的比容量。在具有非锂金属电极的电池中,各电极的比容量可以通过将电池容量除以各活性材料重量来评价。如本文所述的,理想的循环结果可以利用硅系活性材料和石墨碳活性材料的组合得到,而且观察到良好的容量。

元素硅、硅合金、硅复合材料等可以具有类似于石墨的低的相对于锂金属的电势。然而,元素硅通常在与锂合金化时发生非常大的体积变化。已经观察到大体积膨胀为原始体积的两到四倍等级或更大,并且大体积变化与具有硅系负极的电池的循环稳定性的显著降低相关。

在本文所述的电池中可以使用可商购的硅低价氧化物、元素硅和碳的复合材料。另外,已经开发了具有高容量和合理循环性能的硅系负极活性材料的其他制剂。以下描述了一些硅系组合物,其对可商购sio系组合物提供可能且有前景的替代物。

另外,在锂系电池的负极中的硅系高容量材料在一些制剂中在电池的第一次充电/放电循环中可能表现出大的不可逆容量损失(ircl)。硅系阳极的高ircl可以消耗可用于电池的能量输出的容量的很大一部分。由于在常规锂离子电池中阴极(即正极)供应所有的锂,阳极(即负极)中的高ircl可能导致低能量电池。为了补偿大的阳极ircl,可以将补充锂直接或间接地加入到负极材料中以抵消ircl。在'294申请和'228专利中也描述了使用补充锂改善硅系电极的性能,以上两篇专利均在上文中引用并且通过引用并入本文。以下进一步描述补充锂在改善的电池设计中的使用。

本文所述的电池的阳极可以使用纳米结构的活性硅系材料以较好地适应于体积膨胀并且由此保持电池的机械电极稳定性和循环寿命。在'294申请、'228专利以及anguchamy等人的名称为“使用金属还原形成的多孔硅系阳极材料”的美国专利9,139,441('441专利)(这些通过引用并入本文)中公开了纳米结构的硅系负极组合物。合适的纳米结构的硅可以包括例如纳米多孔硅和纳米粒状硅。另外,纳米结构的硅可以与碳形成为复合材料和/或与其他金属元素形成为合金。改善的硅系材料的设计的目标是在循环过程进一步使负极材料稳定,同时保持高比容量并且在一些实施方案中减少在第一次充电放电循环中的不可逆容量损失。此外,还观察到热解碳涂料在电池性能方面使硅系材料稳定。

理想的高容量负极活性材料可以包括多孔硅(psi)系材料和/或多孔硅系材料的复合材料。通常,psi系材料包括高度多孔结晶硅,其相对于本体硅(bulksilicon)可以提供高表面积和/或高空隙体积。尽管纳米结构的多孔硅可以通过多种方法比如硅晶片的电化学刻蚀来形成,但是已经由通过硅氧化物粉末的金属还原得到的纳米结构的多孔硅得到了特别好的电池性能。特别地,该材料具有特别好的循环性能,同时保持高比容量。psi系材料与碳系材料或金属的复合材料的形成可以另外地使负极机械稳定以改善循环。可以在以上引用的'441专利中找到来自硅氧化物还原的psi系材料的另外的描述。

关于复合材料,可以在紧密复合材料内将纳米结构的硅组分与例如碳纳米粒子和/或碳纳米纤维组合。例如可以将组分研磨以形成复合材料,其中材料紧密缔合(associated)。通常,认为缔合具有机械特征,比如涂覆在较硬的碳材料上或与较硬的碳材料机械附着的较软的硅。在另外或备选的实施方案中,可以将硅与金属粉末一起研磨以形成合金,其可以具有相应的纳米结构。可以将碳组分与硅-金属合金组合以形成多组分复合材料。

另外,可以将碳涂料涂覆在硅系材料上以改善导电性,并且碳涂料显示在改善循环和减少不可逆容量损失方面使硅系材料稳定。理想的碳涂料可以通过使有机组合物热解而形成。可以在较高温度例如约800℃至约900℃使有机组合物热解以形成硬的非晶涂层。在一些实施方案中,可以将所需有机组合物溶解在合适的溶剂比如水和/或挥发性有机溶剂中以用于与硅系组分组合。可以将分散体与硅系组合物充分混合。在将混合物干燥以移除溶剂后,可以将具有涂覆有碳前体的硅系材料的干燥混合物在无氧气氛中加热以使有机组合物比如有机聚合物、一些较低分子固体有机组合物等热解,并且由此形成碳涂层。

关于硅,缺氧的硅氧化物,例如硅氧化物siox,0.1≤x≤1.9,可以嵌入锂/与锂合金化,以使得缺氧的硅氧化物可以在锂离子电池中作为活性材料起作用。这些缺氧的硅氧化物材料通常被称为硅氧化物系材料,并且在一些实施方案中可以含有不同量的硅、硅氧化物和二氧化硅。缺氧的硅氧化物可以掺入较大量的锂以使得材料可以表现出大的比容量。然而,观察到硅氧化物通常具有随着电池循环快速下降的容量,这如对于元素硅所观察到的。

硅氧化物系组合物已经形成为具有高容量和非常好的循环性能的复合材料,如在以上引用的'228专利中所描述的。特别地,缺氧的硅氧化物可以与导电材料比如导电碳或金属粉末形成为复合材料,这出人意料地显著改善了循环,同时提供高的比容量值。此外,将硅氧化物研磨成较小的粒子比如亚微米结构的材料可以进一步改善材料的性能。

通常,可以使用多种复合材料,并且其可以包括硅氧化物、碳组分比如石墨粒子(gr)、惰性金属粉末(m)、元素硅(si)特别是纳米粒子、热解碳涂料(hc)、碳纳米纤维(cnf)或它们的组合。组分结构可以或可以不与在复合材料内的组分的结构相对应。因此,复合材料的一般组成可以表示为αsio-βgr-χhc-δm-εcnf-φsi,其中α、β、χ、δ、ε和φ为相对重量,可以被选择以使得α+β+χ+δ+ε+φ=1。通常,0.35<α<1,0≤β<0.6,0≤χ<0.65,0≤δ<0.65,0≤ε<0.65,并且0≤φ<0.65。这些复合材料范围的某些子组特别令人关注。在一些实施方案中,具有sio和一种或多种碳系组分的复合材料是理想的,其可以由式αsio-βgr-χhc-εcnf表示,其中0.35<α<0.9,0≤β<0.6,0≤χ<0.65,并且0≤ε<0.65(δ=0并且φ=0),在进一步的实施方案中0.35<α<0.8,0.1≤β<0.6,0.0≤χ<0.55,并且0≤ε<0.55,在一些实施方案中0.35<α<0.8,0≤β<0.45,0.0≤χ<0.55,并且0.1≤ε<0.65,并且在另外的实施方案中0.35<α<0.8,0≤β<0.55,0.1≤χ<0.65,并且0≤ε<0.55。在另外或备选的实施方案中,可以形成具有sio、惰性金属粉末和任选的一种或多种导电碳组分的复合材料,其可以由式αsio-βgr-χhc-δm-εcnf表示,其中0.35<α<1,0≤β<0.55,0≤χ<0.55,0.1≤δ<0.65,并且0≤ε<0.55。在进一步的另外或备选的实施方案中,可以形成sio与元素硅和任选的一种或多种导电碳组分的复合材料,其可以由式αsio-βgr-χhc-εcnf-φsi表示,其中0.35<α<1,0≤β<0.55,0≤χ<0.55,0≤ε<0.55,并且0.1≤φ<0.65,并且在进一步的实施方案中0.35<α<1,0≤β<0.45,0.1≤χ<0.55,0≤ε<0.45,并且0.1≤φ<0.55。本领域普通技术人员将认识到,在上述明确范围内的另外的范围要被考虑并且在本公开内。如本文中使用的,提到复合材料隐含了施加明显的结合力,比如由hemm研磨,以使材料紧密缔合,这与不被认为形成复合材料的简单共混不同。

在公布的han等人的名称为“用于锂离子电池的硅系活性材料以及利用溶液加工的合成”的美国专利申请2014/0308585中描述了用于合成各种si-siox-c-m(m=金属)复合材料的溶液类方法,该申请通过引用并入本文。在公布的anguchamy等人的名称为“用于锂电池电极的硅-硅氧化物-碳复合材料以及形成该复合材料的方法”的美国专利申请2014/0370387中描述了具有石墨烯片的硅系碳复合材料,该申请通过引用并入本文。在实施例中的电池中使用被认为包含siox-si-c或siox-si复合材料的商业材料。

阳极的容量明显影响电池的能量密度。在相同输出的电池中,越高的阳极材料的比容量导致越低的阳极的重量。当负极由硅系材料制成时,相对于锂金属以c/3从1.5v放电至5mv,电极在以c/3的倍率的放电比容量可以是约800mah/g至2500mah/g,在进一步的实施方案中约900mah/g至约2300mah/g,并且在其他实施方案中约950mah/g至约2200mah/g。本领域普通技术人员将认识到,在上述明确范围内的放电比容量的另外的范围要被考虑并且在本公开内。

正极

利用上述改善的负极,可以有效地引入多种正极化学。可以将所选择的组合物连同合适的粘结剂和导电材料一起共混到正极中。该部分关注对于高压循环和适度高的容量特别理想的正极活性材料。另外,该部分描述了整个电极组成和性质。

在某种程度上,最终电池的期望应用可以影响正极组成的选择。从这个角度来看,在以下描述了宽范围的组合物。对于汽车用途以及对于类似应用,已经发现特定的正极化学性质对于实现高能量密度以及循环至超过600次循环同时保持至少80%容量是理想的,尽管一些材料以稍微较低的循环稳定性提供有前景的结果。具体地,将富含镍的锂镍钴锰氧化物和富含(锂+锰)的锂镍钴锰氧化物的共混物共混以在可用于提供高能量密度和长久循环稳定性的电压范围内提供理想的正极性能。此外,当与本文所述的硅系负极配对时,单独作为活性材料的所述富含镍的锂镍钴锰氧化物由于具有良好循环的平均放电电压而可以提供理想地高的能量密度。与一些富含(锂+锰)的锂镍钴锰氧化物共混可以改善循环稳定性,并且由于平均电压的一些降低造成能量密度的一些损失。以下提供关于活性材料共混物以及两种单独的富含镍的锂镍钴锰氧化物的实例。

富含镍的锂镍锰钴氧化物(n-nmc)可以为本文所述的锂离子电池提供理想的循环和容量性能。特别地,富含镍的锂可以近似地由式linixmnycozo2表示,x+y+z≈1,0.45≤x,0.025≤y,z≤0.35,在进一步的实施方案中,0.50≤x,0.03≤y,z≤0.325,并且0.55≤x,0.04≤y,z≤0.3。镍的量可以影响选定的充电电压,从而平衡循环稳定性和放电能量密度。对于在0.525≤x≤0.7范围内的x的值,选定的充电电压可以是4.25v至4.375v。对于在0.7≤x≤0.9范围内的x的值,选定的充电电压可以是4.05v至4.325v。本领域普通技术人员将认识到,在上述明确范围内的组成和选定的充电电压的另外的范围要被考虑并且在本公开内。已经发现这些组合物提供相对稳定的较高压循环、良好的容量和理想的阻抗。n-nmc粉末可以使用诸如以下进一步描述的共沉淀的技术合成,并且它们是可商购的,比如来自basf(德国)、toda(日本)、l&fmaterialscorp.(韩国)、unicore(比利时)和jinhematerialscorp.(中国)。

对于n-nmc组合物,平均电压倾向于随着镍的量增大而稍微更高,但是关于稳定循环的充电电压倾向于随着镍增加而稍微更低。因此,关于活性材料选择可以存在折衷处理,尽管n-nmc活性材料可以提供良好的循环和合理高的容量和能量密度。对于一些实施方案,已经发现可以通过与富含锂和富含锰的nmc组合物(lm-nmc)形成物理共混物来改善包含n-nmc组合物的活性材料的循环稳定性,以下更详细地描述了这些材料的组成。当与本文所述的硅系负极组合时,共混物可以引入理想的电池性能。

如上所述,理想的共混物可以包含n-nmc和(富含锂+富含锰)的锂镍锰钴氧化物(lm-nmc或)。这些组合物可以近似地由式li1+bniαmnβcoγaδo2-zfz表示,其中b+α+β+γ+δ≈1,b在约0.04至约0.3的范围内,α在0至约0.4的范围内,β在约0.2至约0.65的范围内,γ在0至约0.46的范围内,δ在约0至约0.15的范围内,并且z在0至0.2的范围内,条件是α和γ不同时为0,并且其中a是与锂、锰、镍和钴不同的金属。在一些实施方案中,a可以是mg、sr、ba、cd、zn、al、ga、b、zr、ti、ca、ce、y、nb、cr、fe、v或它们的组合。此外,在另外或备选的实施方案中,其中0.05≤b≤0.125、0.225≤α≤0.35、0.35≤β≤0.45、0.15≤γ≤0.3、0≤δ≤0.05并且具有多达5摩尔%的氧的li1+bniαmnβcoγaδo2可以用氟掺杂剂取代。本领域普通技术人员将认识到,在上述明确范围内的组成的另外的范围要被考虑并且在本公开内。

lm-nmc正极材料可以有利地通过在‘160专利和‘873专利中详述的共沉淀和溶胶-凝胶过程合成。在一些实施方案中,正极材料通过将混合的金属氢氧化物或碳酸盐组合物从包含+2阳离子的溶液沉淀来合成,其中氢氧化物或碳酸盐组合物具有选定的组成。然后对金属氢氧化物或碳酸盐沉淀物进行一个或多个热处理以形成结晶层状锂金属氧化物组合物。在‘873专利中描述的碳酸盐共沉淀过程得到所需的富含锂的金属氧化物材料,其在组成中具有钴并且表现出高比容量性能以及优异的振实密度。这些专利还描述了有效使用金属氟化物涂层来改善性能和循环。

以上概述的用于高容量正极活性材料的合成方法已经显示为适合形成具有高振实密度的材料。这在以上引用的'873专利中进一步描述。由于较高的振实密度和出色的循环性能,当将活性材料掺入阴极中时,电池可以展现出高的总容量。通常,如果高振实密度材料具有理想的性能,则较高的振实密度可以有利地用于得到高电极密度而不牺牲材料的性能。

发现对于lm-nmc正极活性材料,在材料上的涂层可以改善相应电池的性能。通常被认为在电池循环期间是电化学惰性的合适的涂层材料可以包含金属氟化物、金属氧化物或金属非氟化物卤化物。以下实施例中关于lm-nmc的结果利用涂覆有金属氟化物的lm-nmc材料得到。

例如,在sun等人的名称为“用于锂二次电池的涂覆有氟化合物的阴极活性材料及其制备方法”的公布的pct申请wo2006/109930a中描述了金属氟化物组合物作为用于阴极活性材料(具体为licoo2和limn2o4)的涂层的一般用途,该申请通过引用并入本文。在lopez等人的名称为“用于锂离子电池的涂覆正极材料”的公布的美国专利申请2011/0111298(‘298申请)中描述了具有合适设计厚度的改善的金属氟化物涂层,该申请通过引用并入本文。例如,在karthikeyan等人的名称为“用于锂系电池的金属氧化物涂覆正极材料”的美国专利8,535,832b2中进一步描述了合适的金属氧化物涂层,该专利通过引用并入本文。在venkatachalam等人的名称为“在锂离子电池正极材料上的金属卤化物涂层以及相应的电池”的美国专利8,663,849b2中描述了非氟化物金属卤化物作为用于阴极活性材料的理想涂层的发现,该专利通过引用并入本文。合成方法连同涂层一起提供了材料在容量以及循环性能方面的优异性能。活性材料的理想性质连同本文所述的理想阳极材料的使用提供了改善的电池性能。

对于这些活性材料,已经在较高循环电压下实现了长久的循环稳定性,如在amiruddin等人的名称为“具有富含锂的阴极材料的锂电池的非常长的循环”的美国专利8,928,286中所述,该专利通过引用并入本文。在此范围的lm-nmc组合物中,已经发现一些特定的组合物得到了特别理想的性能。参见例如lopez等人的名称为“具有高比容量和出色循环的层-层富含锂的复杂金属氧化物”的美国专利8,394,534b2,该专利通过引用并入本文。已经发现,一些lm-nmc组合物可以表现出较低的dc电阻,同时保持较高的容量和出色的循环,如在amiruddin等人的名称为“具有高能量密度、出色的循环性能和低内阻抗的锂离子电池”的美国专利9,552,901b2(在下文中称为'901专利)所述,该专利通过引用并入本文。

关于用于正极的活性材料共混物,活性材料可以包含约3重量%至约85重量%的lm-nmc,在进一步的实施方案中约5重量%至约75重量%的lm-nmc,在另外的实施方案中约6重量%至约70重量%的lm-nmc,并且在其他实施方案中约7重量%至约65重量%的lm-nmc。类似地,在正极活性材料共混物中,活性材料可以包含约15重量%至约97重量%的n-nmc,在进一步的实施方案中约25重量%至约95重量%,在另外的实施方案中约30重量%至约94重量%,并且在其他实施方案中约35重量%至约93重量%的n-nmc。正极活性材料可以任选地包含0至25重量%的另外的活性材料,比如锂钴氧化物、lini0.33mn0.33co0.33o2(nmc111)、lini0.8co0.15al0.05o2(nca)、它们的混合物等。本领域普通技术人员将认识到,在上述明确范围内的组合物共混物的另外的范围要被考虑并且在本公开内。

关于性能,正极活性材料共混物可以在高比容量和较高能量密度的情况下提供改善的循环性能,以使得可以实现循环至大于600次循环,并且与高容量硅系活性材料组合。这些共混物的性能在下文中进一步阐述,并且在实施例中关于具体实施方案进行描述。对于单独n-nmc以及n-nmc和lm-nmc的共混物二者,证实了理想的循环性能。

如上所述,正极通常包含活性材料,以及在粘结剂内的导电材料。电极中的活性材料负载可以较大。在一些实施方案中,正极包含约85%至约99%的正极活性材料,在其他实施方案中约90%至约98%的正极活性材料,并且在进一步的实施方案中约95%至约97.5%的正极活性材料。在一些实施方案中,正极具有约0.75%至约10%的聚合物粘结剂,在其他实施方案中约0.8%至约7.5%的聚合物粘结剂,并且在进一步的实施方案中约0.9%至约5%的聚合物粘结剂。正极组合物通常还可以包含与电活性组合物不同的导电添加剂。在一些实施方案中,正极可以具有0.4重量%至约12重量%的导电添加剂,在进一步的实施方案中约0.45重量%至约7重量%,并且在其他实施方案中约0.5重量%至约5重量%的导电添加剂。本领域普通技术人员将认识到,在上述明确范围内的粒子负载量的另外的范围要被考虑并且在本公开内。以上描述了正极活性材料。适用于正极的聚合物粘结剂包括例如:聚偏二氟乙烯、聚环氧乙烷、聚酰亚胺、聚乙烯、聚丙烯、聚四氟乙烯、聚丙烯酸酯、橡胶例如乙烯-丙烯-二烯单体(epdm)橡胶或苯乙烯丁二烯橡胶(sbr)、它们的共聚物或它们的混合物。对于正极,可以使用聚偏二氟乙烯(pvdf)得到好的结果,并且实施例中的正极使用pvdf粘合剂。详细描述了用于负极的导电添加剂,并且纳米级导电碳可以有效地用于正极。

对于特定的负载水平,(活性材料的)电极密度与厚度负相关,以使得具有较大密度的电极比具有较低密度的电极薄。负载量等于密度乘以厚度。在一些实施方案中,电池正极的正极活性材料负载水平为约10至约40mg/cm2,在其他实施方案中约12至约37.5mg/cm2,在另外的实施方案中约13至约35mg/cm2,并且在其他实施方案中20至约32.5mg/cm2。在一些实施方案中,电池正极的活性材料密度在一些实施方案中为约2.5g/cc至约4.6g/cc,在其他实施方案中约3.0g/cc至4.4g/cc,并且在另外的实施方案中约3.25g/cc至约4.3g/cc。在进一步的实施方案中,正极在正极活性材料的压缩和干燥后在集电体每侧的厚度可以是约45微米至约300微米,在一些实施方案中约80微米至约275微米,并且在另外的实施方案中约90微米至约250微米。本领域普通技术人员将认识到,在上述明确范围内的活性材料负载水平、电极厚度和电极密度的其它范围要被考虑并且在本公开内。

补充锂

本文所述的改善的高能量电池设计通常包括补充锂,并且这个部分涉及适当的实施方案的用于掺入补充锂的方法。通常,包含补充锂对于具有硅系负极活性材料的电池是理想的,因为材料在电池的初始充电期间表现出较高的不可逆容量损失。另外,补充锂出人意料地还使lm-nmc的循环稳定。可以采用多种方法将补充锂引入到电池中,尽管在相应的初始反应和/或充电之后,负极变得与来自补充锂的用于循环的过量锂缔合。关于具有补充锂的电池中的负极,在第一次循环之后以及在另外的循环之后,负极的结构和/或组成可以相对于其初始结构和组成改变。

根据用于引入补充锂的方法,正极可以最初包含补充锂的来源,和/或可以引入包含补充锂的牺牲电极。另外地或备选地,补充锂可以与负极缔合。在一些实施方案中,与纯化学或机械方法不同,可以使用电化学方法将补充锂引入到负极中。如果补充锂最初位于正极或单独的电极中,则负极在没有锂存在的情况下可以是不变的形式,直到电池充电,或者至少直到在电解质和隔膜的存在下负极和具有补充锂的电极之间的电路闭合。例如,除了其他电极组分以外,正极或补充电极可以包含元素锂、锂合金和/或其他牺牲锂源。

如果在正极中包含牺牲锂,则来自牺牲锂源的锂在充电反应期间加载到负极中。基于牺牲锂源的充电期间的电压可以与在基于正极活性材料进行充电时的电压明显不同。例如,正极中的元素锂可以在不施加外电压的情况下将负极活性材料充电,因为只要电路闭合,元素锂的氧化就可以驱动反应。对于一些牺牲锂源材料,施加外电压以将正极中的牺牲锂源氧化并且将锂驱动到负极活性材料中。充电通常可以使用恒电流、逐步恒电压充电或其他方便的充电方案进行。然而,在充电过程结束时,电池应充电至所需电压,因而其还涉及锂从正极活性材料的脱出(例如脱嵌或去合金化)。

在进一步的实施方案中,至少一部分补充锂最初与负极缔合。例如,补充锂可以是金属锂、锂合金或与负极活性材料比更电负性的其他锂源的形式。元素锂可以是薄膜比如通过蒸镀、溅射或烧蚀形成的薄膜,锂或锂合金箔和/或粉末的形式。可以涂覆元素锂特别是粉末形式的元素锂以使用于处理目的的锂稳定,并且以用于稳定性的专用涂料销售商业锂粉末,比如来自fmccorporation的粉末。涂层通常不改变用于电化学应用的锂粉末的性能。在负极与电解质接触后,可以发生反应,并且补充锂转移至负极活性材料。因为电极是内部导电的,所以不需要闭合电路来提供由反应得到的电子流。在该过程期间,还可以形成固态电解质界面(sei)层。因此,将补充锂加载到负极活性材料中,通常在sei层的形成中消耗至少一部分。在电池的最终充电期间,也可以将从富含锂的正极活性材料释放的过量锂沉积到负极活性材料中。位于负极中的补充锂应比负极中的活性材料更电负性,因为没有办法通过施加电压使补充锂源与同一电极中的活性材料反应。

在一些实施方案中,与负极缔合的补充锂可以作为粉末掺入负极内。具体地,负极可以包含处于聚合物粘结剂基体内的活性负极组合物和补充锂源,以及任何导电粉末(如果存在的话)。在另外或备选的实施方案中,补充锂沿电极的表面布置。例如,负极可以包括具有活性负极组合物的活性层和在活性层表面上的补充锂源层。补充锂源层可以包括锂或锂合金的箔片、在聚合物粘结剂内的补充锂粉末和/或布置在活性层表面上的补充锂源材料的粒子。在备选的配置中,补充锂源层在活性层和集电体之间。另外,在一些实施方案中,负极可以包括在活性层的两个表面上的补充锂源层。

用于进行锂的电化学预加载的布置可以包括具有形成在集电体上的硅系活性材料的电极,将其放在含有电解质和接触电极的锂源材料片的容器中。锂源材料片可以包括锂箔、锂合金箔或任选地连同导电粉末一起在聚合物粘结剂中的锂源材料,其直接与待用锂预加载的负极接触,以使得电子可以在材料之间流动,从而保持电中性,同时发生各个反应。在接着发生的反应中,通过嵌入、合金化等将锂加载到硅系活性材料中。在备选或另外的实施方案中,可以将负极活性材料在与聚合物粘结剂形成为电极之前混入电解质和用于掺入补充锂的锂源材料中,以使得各材料可以在电解质中自发反应。

在一些实施方案中,可以将在电极内的锂源与待用锂预加载的电极一起组装成电池。可以将隔膜放在各电极之间。可以使电流在电极之间流动以提供受控的电化学预锂化。根据锂源的组成,可以或可以不必须施加电压以驱动在硅系活性材料内的锂沉积。用于进行该锂化过程的装置可以包括容纳电解质和电池的容器,所述电池包括要在最终电池中用作负极的电极、集电体、隔膜和包含锂源比如锂金属箔的牺牲电极,其中隔膜在牺牲电极和具有硅系活性材料的电极之间。方便的牺牲电极可以包含锂箔、嵌入聚合物中的锂粉末或锂合金,但是可以使用具有可脱出锂的任何电极。用于锂化电池的容器可以包括常规电池外壳、烧杯或任何其他方便的结构。该配置提供能够测量电流以计量负极的锂化程度的优点。此外,可以将负极循环一次或多于一次,其中负极活性材料用锂加载至接近于满负载。以此方式,可以在负极活性材料的锂预加载期间以所需的控制程度形成sei层。然后,在负极的制备期间以选定的锂预加载完全形成负极。

通常,对于其中使用补充锂的实施方案,预加载或可用于加载到活性组合物中的补充锂的量可以是容量的至少约2.5%的量,在进一步的实施方案中容量的约3%至约55%,在另外的实施方案中容量的约5%至约52.5%,并且在一些实施方案中为负极活性材料容量的约5%至约50%。补充锂可以选择为大致平衡负极的ircl,但是可以根据需要使用其他量的补充锂。在一些实施方案中,以具有与负极的第一次循环ircl的60%至180%对应的氧化容量的量加入补充锂,在进一步的实施方案中,其为80%至165%,并且在其他实施方案中90%至155%。本领域普通技术人员将认识到,在上述明确范围内的百分比的另外的范围要被考虑并且在本公开内。因此,对负极的ircl的贡献可以由于补充锂的加入而有效地降低或消除,使得所测量的电池的ircl部分地或大部分地表示来自正极的ircl的贡献,其未由于补充锂的存在而被减小。本领域普通技术人员将认识到,在上述明确范围内的ircl的另外的范围要被考虑并且在本公开内。

阴极和阳极的平衡

已经发现电池的总体性能取决于负极和正极两者的容量以及它们的相对平衡。已经发现电极的平衡对于实现特别高的电池能量密度以及实现良好的循环性能来说是重要的。在一些实施方案中,对于实现较长久的循环稳定性和能量密度可以存在折衷。为了实现较长久的循环稳定性,使电池平衡以实现相对较低的能量密度,但是电池适合于在较宽范围的运行参数下稳定长期使用可以是理想的。利用改善的活性材料和理想的电极设计,仍可实现高能量密度,同时得到在不超过80%容量下降的情况下循环超过600次循环。电极平衡可以以多种备选方式评价,其可以在适当地考虑特定评价方法时有效地工作。

正极活性材料容量可以由材料的容量进行估算,而材料的容量可以通过使材料相对于锂金属箔循环来测量。例如,对于给定的正极,容量可以通过确定在第一次充电/放电循环期间的插入和脱出能力来评价,其中锂以c/20的倍率从正极脱嵌或脱出而达到基于材料化学和选定的电池设计的充电电压(通常为4.2v至4.5v)选择的电压,并且嵌入或插入回到正极而达到2v,基于最终阳极相对于锂金属的电压具有稍微的调整,例如通常为0.1v,达到更高的相对于锂金属的充电电压。类似地,对于给定的硅系电极,插入和脱出能力可以用具有包含硅系活性材料的正极和锂箔负极的电池进行评价。容量通过确定电池在第一次充电/放电循环期间的插入和脱出能力来评价,其中锂以c/20的倍率嵌入/合金化至硅系电极达到5mv并且脱嵌/去合金化达到1.5v。在实际使用中,由于多种因素比如高倍率运行和电压范围变化,观察到的容量可能从所测试的容量改变,这可能是由于电池设计以及由于不是锂金属的对电极的组成造成的。对于一些评价方法,在第一次循环后的后续容量可以用于评价电极平衡,并且如果需要可以使用更大的放电倍率,比如c/3或c/10。在形成循环或几次形成循环之后的平衡的使用可以是理想的,因为平衡更多地基于在电池使用期间的条件。

在大部分可商购的碳系电池中,采用相对于阴极大约7%至10%过量的阳极以防止锂电镀。过多过量阳极的一个重要问题是电池的重量将增加,降低了电池的能量密度。与第一次循环ircl为~7%的石墨相比,高容量硅系阳极的ircl可以是约10%至约40%。在第一次充电-放电循环后,电池中很大一部分容量可能变得失活,并且给电池增加了大量的自重(deadweight)。

对于高容量阳极材料,负极不可逆容量损失通常大于正极不可逆容量损失,这对于电池来说产生了另外的锂可用性。如果负极具有显著高于正极的不可逆容量损失,则负极的初始充电不可逆地消耗锂,使得在后续放电时,负极不能供应足够的锂而为正极提供充足的锂,从而满足正极的完全锂接受容量。这导致正极容量的浪费,其相应地增加了对循环没有贡献的重量。如上所述可以通过补充锂补偿来自净ircl(负极ircl减去正极ircl)的锂损失中的大部分或全部。在第1次形成循环期间的电极平衡的评价可以或可以不考虑补充锂。在形成循环或几次循环之后的后续循环中,未消耗用于ircl的任何过量补充锂通常合金化到阳极材料中。可以在形成后的循环阶段比如在选定倍率下的第4次循环时评价电极平衡,并且这些容量可以由电极性能估算。

从提供稳定的更长期循环性能的角度来看,使电极平衡以提供两种电极容量的有效使用以及避免锂金属在循环期间的电镀可以是理想的。通常,参照电极相对于锂金属的初始容量,在电极组装时考虑电极的平衡。

通常,电池寿命可以选择为在能量输出在恒定放电倍率下从初始容量下降大约20%时结束,但是可以根据需要选择其他值。对于本文所述的材料,与正极相比,在负极循环情况下的容量下降通常更大,因而对于随着循环的锂金属沉积的避免表明了负极的较大过量容量,从而进一步使循环稳定。大体上,如果负极容量衰减的速度是正极容量衰减的速度的大约两倍,则理想的是包含至少10%的额外负极容量以用于循环。在稳健的电池设计中,在多种放电条件下,可以需要至少约10%的额外负极。通常,可以选择平衡,以使得相对于以c/20的倍率从开路电压到电池设计的充电电压(通常为4.2v至4.6v)的初始正极充电容量加上任何补充锂的氧化容量的和,以c/20的倍率从开路电压到相对于锂的1.5v评价的初始负极充电容量为约110%至约195%,在进一步的实施方案中约120%至约185%并且在另外的实施方案中约130%至约190%。备选地,电极平衡可以在c/10或c/3的放电倍率下的第四次循环时评价,其中相对于正极容量的负极容量为约110%至195%,在进一步的实施方案中约120%至约185%并且在另外的实施方案中约130%至约190%。本领域普通技术人员将认识到,在上述明确范围内的平衡的另外的范围要被考虑并且在本公开内。在下述电池设计中描述了这样的平衡。

一般电池特征

可以将以上所述的负极和正极结构组装成合适的电池。如上所述,电极通常与集电体联合形成以形成电极结构。隔膜位于正极和负极之间以形成电池。隔膜是电绝缘的,同时至少提供在两个电极之间的选定的离子传导。可以使用多种材料作为隔膜。一些商业隔膜材料可以由作为提供离子传导的多孔片的聚合物比如聚乙烯和/或聚丙烯形成。商业聚合物隔膜包括例如来自hoechstcelanese,charlotte,n.c.的系列隔膜材料。此外,已经开发了陶瓷-聚合物复合材料用于隔膜应用。这些陶瓷复合材料隔膜在更高的温度可以是稳定的,并且复合材料可以降低起火风险。用于锂离子电池隔膜的聚合物-陶瓷复合材料以evonikindustries(德国)的商标和tiejinlielsortkoreaco.,ltd.的商标销售。此外,可以使用涂覆有凝胶形成聚合物的多孔聚合物片材来形成隔膜。在wensley等人的名称为“用于锂聚合物电池的电池隔膜”的美国专利7,794,511b2中进一步描述了这样的隔膜设计,该专利通过引用并入本文。合适的凝胶形成聚合物包括例如:聚偏二氟乙烯(pvdf)、聚氨酯、聚环氧乙烷(peo)、聚环氧丙烷(ppo)、聚丙烯腈、明胶、聚丙烯酰胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚乙酸乙烯酯、聚乙烯基吡咯烷酮、聚四甘醇二丙烯酸酯、它们的共聚物以及它们的混合物。

电解质在充电和放电过程期间提供在电池的阳极和阴极之间的离子传输。将包含溶剂化离子的溶液称为电解质,并且将在适当液体中溶解形成溶剂化离子的离子组合物称为电解质盐。用于锂离子电池的电解质可以包含一种或多种选定的锂盐。适当的锂盐通常具有惰性阴离子。合适的锂盐包括例如:六氟磷酸锂、六氟砷酸锂、双(三氟甲基磺酰基亚胺)锂、三氟甲烷磺酸锂、三(三氟甲基磺酰基)甲基锂、四氟硼酸锂、高氯酸锂、四氯铝酸锂、氯化锂、二氟草酸硼酸锂以及它们的组合。在一些实施方案中,电解质包含1m至2m的浓度的锂盐,但是可以使用更大或更低的浓度。

对于关注的锂离子电池,通常使用非水液体溶解一种或多种锂盐。溶剂通常不溶解电活性材料。在一些实施方案中,适当的溶剂可以包括例如:碳酸亚丙酯、碳酸二甲酯、碳酸二乙酯、2-甲基四氢呋喃、二氧杂环戊烷、四氢呋喃、碳酸甲乙酯、γ-丁内酯、二甲亚砜、乙腈、甲酰胺、二甲基甲酰胺、三甘醇二甲醚(三(乙二醇)二甲醚)、二甘醇二甲醚(二乙二醇二甲醚)、dme(单甘醇二甲醚或1,2-二甲氧基乙烷或乙二醇二甲醚)、硝基甲烷以及它们的混合物。在amiruddin等人的名称为“具有高压电解质和添加剂的锂离子电池”的美国专利8,993,177中进一步描述了用于高压锂离子电池的特别有用的溶剂,该专利通过引用并入本文。

对于具有硅系负极活性材料的电池的一些实施方案来说,具有氟化添加剂的电解质已经显示为进一步改善电池性能。氟化添加剂可以包括例如:氟代碳酸亚乙酯、氟化碳酸乙烯酯、一氯代碳酸亚乙酯、一溴代碳酸亚乙酯、4-(2,2,3,3-四氟丙氧基甲基)-[1,3]二氧杂环戊-2-酮、4-(2,3,3,3-四氟-2-三氟甲基-丙基)-[1,3]二氧杂环戊-2-酮、4-三氟甲基-1,3-二氧杂环戊-2-酮、碳酸双(2,2,3,3-四氟-丙基)酯、碳酸双(2,2,3,3,3-五氟-丙基)酯或它们的混合物。在一些实施方案中,电解质可以在电解质中包含约1重量%至约55重量%的卤化碳酸酯、在进一步的实施方案中约3重量%至约50重量%,并且在其他实施方案中约5重量%至约45重量%的卤化碳酸酯作为总电解质重量的一部分。本领域普通技术人员将会认识到,在上述明确范围内的卤化碳酸酯浓度的另外的范围要被考虑并且在本公开内。此外,已经发现具有氟代碳酸亚乙酯的电解质具有出色的低温性能,如在li等人的名称为“用于高容量锂系电池的低温电解质”的公布的美国专利申请2013/0157147('147申请)中所述,该申请通过引用并入本文。另外的氟化添加剂包括例如氟化醚,如在li等人的名称为“作为用于锂金属系阳极的电解质助溶剂的氟化醚”的公布的美国专利申请2018/0062206和takuya等人的名称为“锂二次电池”的wo2018/051675中所述,这两篇申请均通过引用并入本文。氟化电解质可从daikinamerica,inc.获得。

在一些实施例中,使用包含碳酸亚乙酯、碳酸二乙酯和氟化组分的商业消费电子产品电解质配制电解质,并且如以下证实的,得到出色的循环结果。已经发现,相对于为具有石墨阳极的消费电子产品电池提供适合的商业性能的电解质,合适的氟化电解质组分如氟代碳酸亚乙酯、氟化醚和/或氟化胺为硅系电极提供理想的稳定化。

可以将本文所述的电极组装至各种商业电池/电池组设计中,如棱柱形电池、卷绕圆柱形电池、纽扣电池或其他合理的电池/电池组设计。电池可以包括单对电极或以一个或多个并联和/或串联电连接组装的多对电极。为了方便在容器中放置,电极堆叠体可以具有额外的电极以使堆叠体以与堆叠体另一端相同的极性结束。尽管本文所述的电极结构可以在用于一次或单次充电用途的电池中使用,但是所得电池通常在电池的多次循环期间具有理想的用于二次电池用途的循环性能。

在一些实施方案中,可以将正极和负极与在它们之间的隔膜堆叠在一起,并且可以将所得堆叠结构卷绕成圆柱形或棱柱形构造以形成电池结构。可以将适当的导电耳片焊接至或以类似方式连接至集电体,并且可以将所得卷芯状(jellyroll)结构放置到金属罐或聚合物包装中,并且负耳片和正耳片焊接至适当的外部接触。将电解质加入到罐中,并且将罐密封以完成电池。一些目前使用的可再充电商业电池包括例如圆柱形18650电池(直径18mm并且长65mm)和26700电池(直径26mm并且长70mm),但是可以使用其他电池/电池组尺寸以及选定尺寸的棱柱形电池和箔袋式电池/电池组。

袋式电池由于堆叠便利性和较低的容器重量对于多种应用可以是特别理想的,包括某些交通工具应用。在buckley等人的名称为“高能锂离子二次电池”的美国专利8,187,752和kumar等人的名称为“用于交通工具的电池包和用于并入到紧凑电池包中的高容量袋式二次电池”的美国专利9,083,062b2中进一步描述了结合高容量阴极活性材料的用于交通工具电池的袋式电池设计,这两篇专利均通过引用并入本文。尽管袋式电池设计对于在特定的电池包设计中使用特别方便,但是在其他情况下也可以以方便的形式在高容量的情况下有效地使用袋式电池。在使用具有电极堆叠体的棱柱形袋式电池的实例中给出了理想的结果。

袋式电池的代表性实施方案在图1至4中示出。在这个实施方案中,袋式电池100包括袋式外壳102、电极芯104和袋式盖106。以下进一步讨论电极芯。袋式外壳102包括腔110和围绕该腔的边缘112。腔110具有使得电极芯104可以安装在腔110内的尺寸。如在图2和3中所示,可以在边缘112周围将袋式盖106密封以将电极芯104密封在密封的电池内。端子耳片114、116从密封的袋向外延伸以与电极芯104电接触。图3是沿着3-3线截取的图2的电池的横截面的示意图。具有不同构造的边缘和密封的袋式电池的多种另外的实施方案是可行的。

图4示出了通常包括电极堆叠体的电极芯104的一个实施方案。在这个实施方案中,电极堆叠体130包括负极结构132、134、136,正极结构138、140,和设置在相邻的正极和负极之间的隔膜150、152、154、156。隔膜可以作为单次折叠的片材提供,电极结构放置在隔膜折叠中。负极结构132、134、136包括分别设置在集电体172、174、176的两侧的负极160、162、负极164、166和负极168、170。正极结构138、140分别包括分别设置在集电体188、190的相反侧的正极180、182和正极184、186。耳片192、194、196、198、200分别与集电体172、188、174、190、176连接,以促进各个电极串联或并联的连接。对于交通工具应用来说,耳片通常并联连接,以使得耳片192、196、200将会与在容器外可及的电接触电连接,并且耳片194、198将会与在容器外可及的作为相反极的电接触电连接。

电极堆叠体可以具有额外的负极,以使得与容器相邻的两个外电极都是负极。通常,具有本文所述尺寸的堆叠电极的电池具有5至40个负极元件(集电体的两侧涂覆有活性材料)并且在进一步的实施方案中7至35个负极元件,以及通常比负极元件少一个的相应数量的正极元件。本领域普通技术人员将会认识到,在上述明确范围内的电极数量的另外的范围要被考虑并且在本公开内。

如上所述,卷绕电极可以相应地用于圆柱形电池或大致棱柱形的电池。在kobayashi等人的名称为“锂离子二次电池”的美国专利8,277,969中进一步描述了用于圆柱形锂离子电池的卷绕电池,该专利通过引用并入本文。在yeo的名称为“电极组合件和使用该电极组合件的锂离子二次电池”的美国专利7,700,221('221专利)中描述了具有卷绕电极的棱柱形电池,该专利通过引用并入本文。kobayashi的'969专利和yeo的'221专利没有描述如何用硅系活性材料实现合理的循环或高能量密度。例如,在以上引用的'221专利中,进一步描述了用于具有卷绕电极的棱柱形电池的设计。堆叠的电极组或卷绕电池的具体设计可能受电池的目标尺寸和目标容量影响。

改善的负极可以用于一系列的应用和电池/电池组设计。对于电极堆叠体来说,可以基于具体应用的体积和设计约束合理地选择电极的面积。以下讨论集中关注通常设计用于交通工具应用如无人机、汽车、卡车或其他交通工具的较大电池。然而,本文所述的改善的负极可以有效地用于可以基于较小电池形式的消费电子产品应用。此外,应注意,交通工具可以使用较小的消费电子产品电池,并且特斯拉汽车目前以在其电池包中使用数千个小型消费电子产品电池而闻名。通常,较大形式的电池/电池组可以实现在特定范围内的较大能量密度。可以理想地基于具体应用选择正极活性材料以平衡多种考虑因素,如能量密度。

对于选择电极参数,高重量能量密度电池的设计可以结合包括电极面积、电极结构的数量和电池容量的多种因素的平衡。电极面积是指电极之一沿着集电体的一侧的空间范围。图1描绘了电极的长度“l”,并且图3描绘了电极的宽度“w”。如在附图中所示,电极的面积可以定义为lxw。在一些实施方案中,各电极的面积可以是相似的,以使得包括电极堆叠体的电池的尺寸可以具有与在堆叠体中的每个电极的长度和宽度相似的长度和宽度。在一些实施方案中,隔膜可以为片状,其面积稍大于电极的面积,并且在一些实施方案中,可以将隔膜折叠、打褶或形成为具有口袋,其中电极放置在隔膜的折叠或口袋中。

对于一些消费电子产品设备,大致棱柱形的电池的长度和宽度可以独立地为约15mm至500mm,在进一步的实施方案中约17.5mm至约400mm,并且在另外的实施方案中约20至约350mm。电池的厚度可以为约1mm至约15mm,在进一步的实施方案中1.5mm至约13.5mm,并且在另外的实施方案中约2mm至约12mm。电池的体积可以在500mm3至约100,000mm3的范围内,在进一步的实施方案中在约750mm3至约75,000mm3的范围内,并且在其他实施方案中在约1000mm3至约50,000mm3的范围内。对于卷绕电池来说,将两个电极和隔膜放置在一起,之后通常使用适当装置沿着心轴等卷绕。为了得到相应的体积,长度通常基本上大于宽度。宽度通常可以为约15mm至约150mm并且在进一步的实施方案中为约20mm至约120mm。对应于卷绕尺寸的长度与宽度的比率可以为约3至约25并且在进一步的实施方案中为约4至约20。在卷绕之后,螺旋卷绕电极可以是棱柱形、圆柱形或其他方便的形状。圆柱形电池的直径可以为约5mm至约50mm,在进一步的实施方案中为约7mm至约40mm,并且在另外的实施方案中约8mm至约30mm。棱柱形卷绕电极可以具有与以上所述的电极堆叠体一样的整体尺寸。本领域普通技术人员将会认识到,在以上明确范围内的尺寸参数的另外的范围要被考虑并且在本公开内。

通常,较大形式的电池/电池组提供较高的重量和体积能量密度。对于通常对于交通工具应用理想的较大形式的电池来说,袋式电池的期望的面部面积可以在约10,000mm2至约50,000mm2的范围内并且在进一步的实施方案中在约15,000mm2至约40,000mm2的范围内。此外,袋式电池的体积可以为约30,000mm3至约800,000mm3的体积,在进一步的实施方案中为约50,000至约750,000mm3,并且在另外的实施方案中为约100,000mm3至约600,000mm3。袋式电池的宽度可以在约50mm至约500mm的范围内,在进一步的实施方案中在约65mm至约450mm的范围内,并且在其他实施方案中在约75mm至约400mm的范围内。类似地,袋式电池的高度可以在约75mm至约750mm的范围内,在进一步的实施方案中在约85mm至约700mm的范围内,并且在其他实施方案中在约100mm至约650mm的范围内。袋式电池的厚度可以在约3mm至约18mm的范围内,在进一步的实施方案中在约3.25mm至约16mm的范围内,并且在其他实施方案中在约3.5mm至约15mm的范围内。在一些实施方案中,较大形式的电池的总容量可以为约0.5ah至约105ah,在其他实施方案中为约2ah至约80ah,并且在其他实施方案中为约5ah至约65ah。本领域普通技术人员将会认识到,在以上明确范围内的电池尺寸和电池容量的另外的范围要被考虑并且在本公开内。

性能性质

本文所述的设计特征的组合可以提供更长久的循环稳定性,同时维持理想的电池性能。长期循环的实现涉及使用以上所述的改善的电极设计以及电池设计参数的平衡。在能量密度的一些折衷的情况下,本发明的电池设计明显地改善了循环。在较小形式的电池中实现了与在'535申请中描述相当的如在本文中例示的重量能量密度,其在c/10倍率和4.35v至3v的电压窗口下具有适度的循环效率。在特别关注的实施方案中,在本文中的正极通常包含富含镍的锂镍锰钴氧化物,其可以与富含锂+富含锰的锂镍锰钴氧化物共混。n-nmc活性材料的使用与在所使用的电压窗口下良好的循环和高能量密度相符。

可以在半电池构造中用锂箔电极测试负极,以独立于正极特征对其性能进行评价。具体地,可以使负极相对于锂金属在0.005v至1.5v的电压范围内以选定倍率循环。负极比容量是以上所述的。本文中的改善的负极在半电池构造中相对于参考电极更好地循环,但是如果在以下全电池构造中更明确地量化,则表现出改善的循环稳定性。正极性能也影响电池性能,但是在具有硅系电极的全电池的情况下评价正极性能。

已经形成了具有适用于商业应用的高能形式的电池和电池组,如基于高容量正极和高容量负极的电动交通工具应用。如以上所述,已经开发了电极设计以利用高容量材料。当在30℃从选定的充电电压放电至2.5v时,本文中公开的锂离子二次电池在c/3下可以具有至少约235wh/kg的放电能量密度,在进一步的实施方案中为至少约240wh/kg,在另外的实施方案中为至少约245wh/kg,并且在其他实施方案中,当在30℃从选定的充电电压放电至2.5v时,在c/3下具有至少约250wh/kg的放电能量密度。一些电池可以放电至稍微不同的放电电压,如2.4v或2.3v,而所得性能几乎没有差异,因为在这些电压下几乎没有剩余容量,并且可以针对具体应用选择实际放电电压。选定的充电电压可能受正极活性材料影响。通常,这些电池的选定的充电电压为约4.05v至4.4v,并且例示的值包括4.15v(nmc811)、4.2v、4.3v和4.35v。电池可以展现出非常好的循环性能。在一些实施方案中,当在30℃以c/3从选定的充电电压放电至2.5v时,电池可以表现出在第500次循环的放电容量为第6次循环容量的至少约75%,在其他实施方案中为至少约80%,并且在另外的实施方案中,当在30℃以c/3从选定的充电电压循环至2.5v时,在第500次循环的放电容量为相对于第6次循环放电容量的至少约82%。类似地,当在30℃以c/3从选定的充电电压放电至2.5v时,电池可以表现出在第600次循环的放电容量为第6次循环容量的至少约70%,在其他实施方案中为至少约73%,并且在另外的实施方案中,当在30℃以c/3从选定的充电电压循环至2.5v时,在第600次循环的放电容量为相对于第6次循环放电容量的至少约75%。本领域普通技术人员将会认识到,在以上明确范围内的另外的范围要被考虑并且在本公开内。

实施例

实施例1-活性材料组合物

本实施例举例说明了通过掺入显著量的电化学活性石墨连同导电纳米级碳和适当的聚合物粘结剂使硅氧化物复合活性材料循环稳定化。

为了评价负极配方,使用锂箔对电极或包含锂金属氧化物共混物作为活性组合物的正极形成纽扣电池。为了形成具有硅系活性材料的负极,将商业硅氧化物/硅/碳复合材料(以下称为siox/si/c)的粉末和选定量的石墨与1重量%至7重量%的纳米级碳导电添加剂充分混合以形成均匀粉末混合物。使用不同量的石墨(ks6合成石墨,timcal)形成四种样品硅系电极:样品1-70重量%的siox/si/c+30重量%的石墨,样品2-78重量%的siox/si/c+22重量%的石墨,样品3-85重量%的石墨+15重量%的石墨,样品4-100重量%的siox/si/c。单独地,将聚合物粘结剂即聚酰亚胺粘结剂和较低弹性模量的粘结剂的共混物与n-甲基-吡咯烷酮(“nmp”)(sigma-aldrich)混合并且搅拌过夜以形成聚合物粘结剂-nmp溶液。之后将均匀粉末混合物加入至聚合物粘结剂-nmp溶液中并且混合约2小时以形成均匀浆料。将浆料涂布到铜箔集电体上以形成薄的湿膜,并且将层压的集电体在真空烘箱中干燥以移除nmp并使聚合物固化。之后将层压的集电体在薄板轧机的辊之间压制以得到所需的层压厚度。干燥的层压体含有2重量%至20重量%的粘结剂,电极的其余部分由所述粉末贡献。用足够的锂将负极电化学预锂化以补偿由于阳极不可逆容量损失造成的锂损失的100%至160%。

使用锂箔对电极形成初始的一组纽扣电池,其称为半电池。将一部分负极连同隔膜、一部分锂箔和用于锂箔的相应集电体切成所需尺寸(cuttosize)。本文所述的用于纽扣电池的隔膜包含商业三层聚烯烃隔膜。将包含碳酸二甲酯和氟代碳酸亚乙酯的电解质放置在电池中并且将电池密封。之后将纽扣电池在电池中从0.005v循环至1.5v,以进行c/10倍率的第一次循环充电和放电,c/5倍率的第二次循环充电和放电,和在c/3的充电和放电倍率下的剩余循环。初始比容量在表1中给出。在半电池形式中,锂箔最初放电以将锂负载(嵌入或合金化)到硅氧化物系电极中,之后充电步骤将该反应反转以将锂从硅氧化物系电极移除(脱嵌或去合金化)。

表1

在图5中绘制了充电和放电二者的比容量(作为循环次数的函数)。充电和放电容量基本上在约10次循环之后汇合。比容量随石墨的量增加而降低,这是预期的。具有石墨的电池相对于仅具有硅低价氧化物系活性材料的电池展现出循环稳定性的明显改善。在半电池形式中,具有不同量的石墨的电池展现出相似的循环稳定性。

使用四种硅氧化物复合材料系电极样品并且使用利用富含镍的锂镍锰钴氧化物(n-nmc)与富含锂+锰的nmc组合的共混物形成的正极(参见以上'901专利),形成另一系列电池。这些全电池根据它们的负极样品来指称。组装的电池在4.35v和2.3v之间循环。电池在第一次循环中以c/10的倍率充电和放电,在第二次循环中以c/5倍率充电和放电,接着以c/3倍率循环。在图6中绘制了关于比容量的循环结果,并且在图7中给出了标准化容量结果。负极中的具有石墨的电池展现出经过多于600次循环的改善的循环和约60%以上的容量保持率。表2概述了循环性能。对于该电池形式来说,在超过600次循环的较长循环期间,在具有或不具有石墨活性材料的情况下,电池性能变得相似。

表2

使用三种不同的纳米级碳导电添加剂形成另一系列纽扣电池:碳黑、碳纳米纤维或碳纳米管。硅系电极则与以上所述的相同。使用锂金属箔对电极形成第一组纽扣电池。如以上所述形成纽扣电池。对于指出的倍率性能,即在c/10下的第一次放电/充电,在c/5下的第二次放电/充电,和在c/3下的后续放电/充电,在表3中概述了半电池性能。

在图8中绘制了充电和放电比容量。对于低循环次数来说,碳黑比容量较高,但是具有碳纳米纤维的电池在较大循环次数时展现出较高的放电比容量。考察这些电池的倍率性能的比容量在表3中示出。

表3

还使用具有不同导电添加剂的负极和用于形成样品全电池1-4的相同正极形成一组全电池。同样地,全电池根据负极样品指称(5=碳纳米管,6=碳黑,7=碳纳米纤维)。在表4中概述了这些电池的初始性能。比容量结果在图9(比容量)和10(标准化容量)中作为循环的函数绘制。对于这些电池来说,具有碳黑和碳纳米管的电池表现类似,而具有碳纳米纤维的电池在较大循环次数时具有较差的性能。

表4

实施例2-用于负极的粘结剂组合物

本实施例举例说明了使用混合粘结剂制剂的硅系电极的改善的循环性能。

形成四组电池以测试粘结剂组合物。使用第一活性组成比形成两组电池,一组为半电池,且一组为全电池,并且使用第二活性组成比形成两组电池,一组为半电池,且一组为全电池。第一活性组成比为70重量%的sio复合材料和30重量%的石墨,并且包含2重量%至6重量%的碳纳米管作为导电添加剂。如以上实施例1中所述在纽扣电池内将五种半电池与锂箔电极组装。样品8、9和12具有1重量%至7重量%的较低弹性模量的粘结剂和7%至15%的聚酰亚胺,其中样品9和12具有相同量的较低弹性模量的粘结剂,并且样品8具有相对于样品9和12较大量的较低弹性模量的粘结剂(粘结剂2)。样品12具有相对于样品9较大量的聚酰亚胺和相应的较低量的活性材料。样品8、9和12中的粘结剂2与聚酰亚胺的重量比分别为0.714、0.333和0.250。样品10和11不包含任何粘结剂2,并且样品10具有较低量的聚酰亚胺和相应的较大量的导电碳纳米管。

将组装的半电池在0.005v和1.5v之间循环,其中第一次循环在c/10下循环,第二次循环在c/5下循环,并且随后在c/3倍率下循环。初始循环性能在表5中示出。在图11中绘制了充电和放电比容量(作为循环次数的函数)。对于较长的循环来说,具有聚合物共混物的样品展现出改善的容量。

表5

还使用如在实施例1中描述的具有锂金属氧化物的共混物的正极和纽扣电池结构形成一组全电池。这些电池根据它们的负极样品指称。使电池循环,其中第一次循环在c/10下循环,第二次循环在c/5下循环,并且从第三次循环起在c/3下循环。充电和放电容量在图12(比容量)和13(标准化容量)中绘制。还在表6中概述了性能。同样地,具有聚合物粘结剂共混物的电池展现出改善的循环性能。

表6

使用第二活性组成比形成第二两组电池,一组为半电池,且一组为全电池。第二活性组成比为85重量%的siox/si/c复合材料和15重量%的石墨,并且电池还包含2重量%至6重量%的碳纳米管作为导电添加剂。如以上所述在纽扣电池内将五种半电池与锂箔电极组装。样品13、14和17具有1重量%至7重量%的较低弹性模量的粘结剂(粘结剂2)和7重量%至15%的聚酰亚胺,其中样品14和17具有相同量的粘结剂2,并且样品13具有相对于样品14和17较大量的粘结剂2。样品17具有相对于样品14较大量的聚酰亚胺和相应的较低量的活性材料。样品13、14和17中的粘结剂2与聚酰亚胺的重量比分别为0.714、0.333和0.250。样品15和16不包含任何粘结剂2,并且样品15具有较低量的聚酰亚胺和相应的较大量的导电碳纳米管。

将组装的半电池在0.005v和1.5v之间循环,其中第一次循环在c/20下循环,第二次循环在c/5下循环,并且随后在c/3倍率下循环。初始循环性能在表7中给出。在图14中描绘了充电和放电比容量(作为循环次数的函数)。对于较长的循环来说,具有聚合物共混物的样品随活性材料负载降低而展现出最佳的循环,并且仅具有聚酰亚胺且不具有增加的导电添加剂的电池展现出最差的循环容量。

表7

对于第二组负极也使用如在实施例1中描述的正极和纽扣电池结构形成一组全电池。电池根据负极样品序号指称。使电池循环,其中第一次循环在c/10下循环,第二次循环在c/5下循环,并且从第三次循环起在c/3下循环。充电和放电容量在图15(比容量)和16(标准化容量)中绘制。还在表8中概述了性能。同样地,具有聚合物共混物的电池展现出改善的循环性能。

表8

实施例3-具有nmc正极的电池

本实施例举例说明了在非共混正极活性材料的情况下的良好循环性能。

在第一组电池中,用于这些电池的负极与用于以上样品8的负极大致相同。正极与实施例1和2的电极基本等同,不同之处在于使用lini0.8mn0.1co0.1o2(nmc811)或lini0.6mn0.2co0.2o2(nmc622)作为用于电池的仅有活性材料。但是使用不同负载量的正极活性材料形成电池。使nmc622电池在4.30v至2.5v或4.35v至2.5v内循环,并且使nmc811电池在4.20v至2.5v的电压范围内循环。

以c/10的倍率进行初始充电放电循环。在图17中绘制了具有每种阴极材料的一个代表性电池的第一次充电/放电循环的电压相对于比容量。还在表9中概述了所有样品的结果。

表9

此外,使与样品18-25相对应的电池循环。具体地,电池在第一次循环中以c/10的倍率充电和放电,在第二次循环中以c/5倍率充电和放电,接着以c/3倍率循环。在表10中概述了基于在指定放电倍率下的放电容量的电池样品的倍率性能。

表10

在图18绘制了样品19、21和24的放电容量(作为循环的函数),并且在图19中绘制了标准化容量(作为循环的函数)。对于这些纽扣电池来说最佳的循环性能是从4.30v循环至2.5v的基于nmc622的样品,而在整个循环范围内最差的循环性能是从4.35v循环至2.5v的基于nmc622的样品。

使用nmc811作为正极活性材料形成另一组电池。对于这组电池来说,负极包含siox/si/c复合材料而没有任何石墨,并且负极包含聚酰亚胺粘结剂且包含碳纳米管和乙炔黑的混合物作为导电添加剂。电极被设计为实现高能量密度。

在图20中绘制了在c/20的充电和放电倍率下从4.3v至2.5v的电池电压(作为比容量的函数)。电池在c/20下展现出207.6mah/g的放电容量。参照图21,对于以c/6的倍率充电至4.3v并且以c/10的倍率放电的第二次充电/放电循环,示出了电池电压(作为比容量的函数)的图形,其得到稍低的比容量。对于初始充电来说,将电池在恒定电流下充电,直到达到充电电压,之后在恒定电压下充电,直到电流降至低值。

电池(一式两份的两个等同的电池)最初以c/20的倍率充电/放电,之后以c/6的充电倍率和c/10的放电倍率循环。在图22中绘制了比容量(作为循环的函数),并且在图23中绘制了标准化比容量。电池在130至140次循环期间保持其容量的至少80%。

实施例4-大容量长循环电池

本实施例举例说明了基于装载到大形式电池中的改善的负极的长久循环稳定性。

使用两种不同电池尺寸的相同电极形成两对袋式电池。负极包含siox/si/c复合材料与30重量%的石墨活性材料。负极具有聚酰亚胺和较低弹性模量的粘结剂的共混物以及碳纳米管导电材料。正极是富含镍的nmc和hcmr的共混物。基于低倍率(c/20)容量,负极容量最初为正极容量的约150%。还使用以上所述的氟化电解质。

对于两种电池形式,在图24和25中示出了第一形式,其中棱柱形袋式电池具有225mmx165mmx4.5mm(厚)的近似尺寸(忽略耳片),如在附图中指示的(所指示的数字为以mm表示的近似尺寸)。在图26和27中示出了第二形式,其中棱柱形袋式电池具有145mmx64mmx7.7mm(厚)的近似尺寸(忽略耳片),如在附图中指示的(所指示的数字为以mm表示的近似尺寸)。如在实施例1中描述形成电极(10至25个阴极层和11至26个阳极层),并且隔膜片是打褶的,其中镀覆的电极位于隔膜折叠内。用于袋式电池的隔膜是具有凝胶形成聚合物涂层的多孔聚合物片。通过在组装之前将锂粉末(fmccorp.)涂布到负极表面来提供补充锂,以大体上补偿硅系负极活性材料的ircl的100%至160%。电池被设计为在30摄氏度在c/3的放电倍率下具有大致21ah(第一形式)或11ah(第二形式)的总容量。使电池以在c/20的充电和放电倍率下的一个形成循环进行循环。之后使电池在30摄氏度以c/3的充电倍率和放电倍率循环。

11ah电池设计实现了280wh/kg的较高能量密度,而21ah电池实现了245wh/kg的能量密度。对于两种尺寸的电池对,在图28中绘制了这两个电池的循环。较高能量密度的电池(11ah设计)在达到80%容量之前展现出大致550次循环,而21ah电池设计在80%容量保持率的情况下展现出大致750次循环。然而,在观察到的循环性能的情况下,这两个电池均超过在该能量密度范围内的任何电池的已知性能。

此外,目标11ah电池由与以上11ah电池相同的阳极与nmc811系正极形成,并且由nmc622系正极与具有含有85重量%的siox/si/c复合材料和15重量%的石墨的活性材料的阳极形成。除了指出的活性材料替换之外,该电池与以上具有阴极共混物活性材料的电池相当。对于具有nmc622正极的电池来说,使两个相当的代表性电池从4.3v循环至2.5v。在图29-32中绘制了循环结果。在图29和30中,作为循环的函数绘制了比能量和标准化比能量。对于超过300次的循环,比能量仍然超过250wh/kg。图31和32是在相同循环范围内的相应比容量和标准化比容量的图形。

对于具有nmc811正极的电池来说,使相当的电池从4.15v循环至2.5v并且从4.20v循环至2.5v。在图33-36中绘制了循环结果。在图33和34中,作为循环的函数绘制了比能量和标准化比能量。对于从4.20v循环至2.5v的电池来说,在c/3放电倍率下,在几乎前100次循环内的比能量超过300wh/kg。即使对于这些材料将充电电压设定得较低以循环更多次循环,但是平均电压和容量还是较高的,从而产生较高的比能量值。图35和36是在相同循环范围内的相应比容量和标准化比容量的图形。

总而言之,大形式的电池能够实现高达和超过300wh/kg的初始能量密度。具有n-nmc活性材料而没有进行共混的电池实现了较大的初始能量密度值。具有正极活性材料共混物的电池实现了理想的循环稳定性,但是当外推至更大的循环次数时,以4.15v的充电电压循环的nmc811电池得到了非常有前景的结果。

以上实施方案旨在是说明性的而不是限制性的。另外的实施方案也在权利要求内。另外,尽管已经参照具体实施方案描述了本发明,但是本领域技术人员将会认识到,在不背离本发明的精神和范围的情况下,可以在形式和细节方面进行改变。以上通过文件引用的任何结合都是受限的,以使得结合到本文中的主题不会与本文明确的公开内容相反。在本文中用组分、元素、成分或其他划分描述了具体结构、组成和/或过程的程度,应理解,除非另外明确指出,本文中的公开内容涵盖了具体实施方案、包含具体组分、元素、成分、其他划分或它们的组合的实施方案以及主要由这样的具体组分、成分或其他划分或它们的组合组成的实施方案,其可以包括不改变主题的基本性质的另外的特征,如在讨论中所表明的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1