极化不敏感的拓扑绝缘体电磁诱导透明材料的单元结构的制作方法

文档序号:17918126发布日期:2019-06-14 23:55
极化不敏感的拓扑绝缘体电磁诱导透明材料的单元结构的制作方法

本发明涉及二维材料技术领域,具体是一种极化不敏感的拓扑绝缘体电磁诱导透明材料的单元结构。



背景技术:

电磁感应透明效应是材料介质与电磁场相互作用过程中电磁场与原子能级系统之间的一种量子干涉效应。在透射谱的共振激发频率上,这种效应能使透射谱出现透明峰。然而,原子系统中严格的实验条件,如相干高强度泵浦和低温温度极大地限制了它的性能和进一步的研究。为了突破这一限制,近年来人们开始关注超材料中EIT效应的类比,从而扩展了EIT效应的局限性,实现了正常环境中的类EIT效应。近年来,液晶、超导、石墨烯[7]和固态等离子体材料等新材料被引入到超材料中,以实现EIT的韧性。然而,在拓扑绝缘材料中实现EIT的报道很少。

拓扑绝缘体(TI)是近年来发现的一种新型的二维材料,具有绝缘体能带结构和自旋分辨的金属表面态。引起了很大的研究热潮。2006,斯坦福大学的张首晟团队首次提出在二维拓扑绝缘体HgTe/CdTe量子阱系统中实现量子自旋霍尔效应的理论预测。通过改变量子阱的厚度,阱态可以实现从普通绝缘体到拓扑绝缘体的相变,它们的预测得到了德国伍兹堡大学的一个研究小组的证实。拓扑绝缘体在量子自旋器件、太赫兹探测等方面应用前景十分广泛。



技术实现要素:

本发明的目的是克服现有技术中存在的不足,提供一种具有极化不敏感特性的拓扑绝缘体电磁诱导透明材料的单元结构,该材料具有电磁诱导透明特性,同时环境可调谐透明和大角度入射的特性,是一种太赫兹波段的极化不敏感且能实现大角度的电磁诱导透明材料。

为了实现上述目的,本发明采用了如下的技术方案。

所述的极化不敏感的拓扑绝缘体电磁诱导透明材料的单元结构包括介质层,介质层正面涂覆拓扑绝缘体层,所述拓扑绝缘体层为正方形形状,介质层为长方形形状,所述拓扑绝缘体层的材料为硒化铋。

具体的,所述介质层的厚度为0.5-4.5μm,所述拓扑绝缘体层的厚度为0.001-0.1μm。

具体的,所述介质层是尺寸为长30μm,宽15~20μm的长方形材料。

具体的,所述介质层材料为蓝宝石,或二氧化硅、玻纤、碳化硅。

具体的,所述拓扑绝缘体层是边长7-16μm的正方形。

对本结构外加电磁波,当选择外加电磁波为横电波,从所述拓扑绝缘体层向介质层传输时,该单元结构会在一个特定频点产生电磁诱导透明特性;当选择外加电磁波为横磁波,从拓扑绝缘体层向介质层传输时,该单元结构也会在相同或相近的频点产生电磁诱导透明特性。

本发明的优点是:本发明拓扑绝缘体电磁诱导透明材料具有极化不敏感特性,即电磁波的模式对电磁诱导透明频点无影响;本发明具有大角度的电磁诱导透明特性,即电磁波入射角度从0度到60度范围变化,电磁诱导透明频点变化较小。本发明具有尺寸小,厚度薄,结构简单等特点,适用于微型化器件制备。

附图说明

图1是本发明单元结构的正视图。

图2是本发明的侧视图。

图3是本发明对不同模式的电磁波的响应特性。

图4是本发明在TE模式下对不同环境温度的响应特性。

图5是本发明在TM模式下对不同环境温度的响应特性。

图6是本发明在TE模式下对不同介质层材料的电磁波的响应特性。

图7是本发明在TE模式下对不同方向的电磁波的响应特性。

图8是本发明在TM模式下对不同方向的电磁波的响应特性。

附图标记:1.介质层、2.拓扑绝缘体层。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。

本发明的极化不敏感的拓扑绝缘体电磁诱导透明材料的单元结构具有对电磁波极化方式不敏感的特性,即在该结构正面(拓扑绝缘体层)入射TE(横电波)模式和TM(横磁波)模式的电磁波皆可以产生电磁诱导透明现象。且在大角度入射条件下,电磁诱导透明效应依然存在。本发明具备极化不敏感和大角度入射电磁诱导透明效应。

如图1~2所示,本发明包括介质层1,所述的介质层1正面涂覆拓扑绝缘体层2,拓扑绝缘体层2为正方形形状。拓扑绝缘体层2边长l1为7-16μm。介质层1是长l为30μm,宽w为15~20μm的矩形材料。

所述介质层1的厚度d1为0.5-4.5μm,拓扑绝缘体层2厚度d2为0.001-0.1μm。

所述拓扑绝缘体层2的材料为硒化铋(Bi2Se3)。所述介质层1的优选材料为蓝宝石,其他材料如玻纤、二氧化硅、碳化硅等无机材料都会产生类似的效应。

经过对样品的实验,当选择外加电磁波为横电波TE,从所述拓扑绝缘体层2向介质层1传输时,该单元结构会在一个特定频点产生电磁诱导透明特性;当选择外加电磁波为横磁波TM,从拓扑绝缘体层2向介质层1传输时,该单元结构也会在相同或相近的频点产生电磁诱导透明特性。

调整介质层1的材料,电磁诱导透明的频点(简称透明频点)会发生偏移。这是由于介质层1改变时会对整个结构的介电特性产生影响,因此会对本结构的电磁诱导透明窗口的频点产生影响。下面做具体说明。

如图6所示,改变介质层1的材料,电磁诱导透明的频点会发生偏移。当本结构中只有介质层1时,介质层1与入射电磁波之间不能产生耦合,即为暗模,当本结构中只有拓扑绝缘体2时,拓扑绝缘体2与入射电磁波能够产生一个谐振点,即为明模。当介质层1与拓扑绝缘体2组合后,拓扑绝缘体2从入射电磁波耦合的能量耦合到作为暗模的介质层1,介质层1与拓扑绝缘体2之间产生了磁耦合,耦合的磁场方向与入射电磁波的磁场方向相反,产生干涉相消,出现了透明频点,因此产生了电磁诱导透明现象。以玻纤、二氧化硅和蓝宝石为例,三种材料的介电常数不相同,因此产生谐振的频点会发生偏移。

实施例1

本实施例中,以拓扑绝缘体层边长l1为10μm,介质层长l为30μm,宽w为20μm,介质层的厚度d1为2μm,介质层的材料选蓝宝石,拓扑绝缘体层厚度d2为0.1μm,拓扑绝缘体层选择硒化铋为样品进行实验。

如图3所示,对本发明加载TE模式和TM模式的电磁波的响应。

选择拓扑绝缘体工作环境温度为300K,当选择电磁波为TE模式时,透明频点为1.3940THz,透射率为0.9249,当选择电磁波为TM模式时,透明频点为1.3940THz,透射率为0.9196。即无论电磁波为TE还是TM模式,都能够产生电磁诱导透明特性,且透明频点相同,透射率基本一致。

实施例2

采用拓扑绝缘体层边长l1为16μm,其他条件与实施例1条件相同的样品,图4和图5展示了环境温度对电磁诱导透明效应的影响。

如图4所示,在TE模式下,选择工作环境温度分别为5,77,200以及300K时,电磁诱导透明效应都存在。具体来说,选择工作环境温度为5K时,透明频点为1.087THz,透射率为0.9623,低频透射谷点的频率为0.8729THz,透射率为0.4161,高频透射谷点的频率为2.0816THz,透射率为0.6805;选择工作环境温度为77K时,透明频点为1.1217THz,透射率为0.9596,低频透射谷点的频率为0.9084THz,透射率为0.4110,高频透射谷点的频率为2.0816THz,透射率为0.6723;选择工作环境温度为200K时,透明频点为1.0862THz,透射率为0.9460,低频透射谷点的频率为0.8018THz,透射率为0.7077,高频透射谷点的频率为2.1053THz,透射率为0.6689;选择工作环境温度为300K时,透明频点为1.2284THz,透射率为0.8940,低频透射谷点的频率为0.9440THz,透射率为0.7433,高频透射谷点的频率为2.0342THz,透射率为0.7799。

从以上结果可以看出温度对电磁诱导透明频点产生影响较小,但对频点的透射率影响较大。

如图5所示,在TM模式下,选择工作环境温度分别为5,77,200以及300K时,电磁诱导透明效应都存在。具体来说,选择工作环境温度为5K时,透明频点为1.2995THz,透射率为0.9351,低频透射谷点的频率为0.9321THz,透射率为0.2333,高频透射谷点的频率为2.1408THz,透射率为0.4469;选择工作环境温度为77K时,透明频点为1.2995THz,透射率为0.9284,低频透射谷点的频率为0.9558THz,透射率为0.2298,高频透射谷点的频率为2.1408THz,透射率为0.4368;选择工作环境温度为200K时,透明频点为1.2402THz,透射率为0.9255,低频透射谷点的频率为0.8610THz,透射率为0.5036,高频透射谷点的频率为2.1764THz,透射率为0.4342;选择工作环境温度为300K时,透明频点为1.2995THz,透射率为0.9284,低频透射谷点的频率为1.0032THz,透射率为0.5531,高频透射谷点的频率为1.9986THz,透射率为0.5889。

从图4和图5显示的结果来看,在TE和TM模式下,都能产生电磁诱导透明,且在温度相同的条件下,透明频点偏移值也较小。

实施例3

以工作环境温度为77K为例,对实施例2中的样品加载不同入射角不同模式电磁波的响应。

图7为对本发明加载不同入射角TE模式下电磁波的响应。当入射电磁波的角度为0度时,透明频点为1.0861THz,透射率为0.9673,当入射电磁波的角度为30度时,透明频点为1.0861THz,透射率为0.9634,当入射电磁波的角度为60度时,透明频点为1.0861THz,透射率为0.9397,当入射电磁波的角度为85度时,透明频点为1.1099THz,透射率为0.6123,即电磁波入射角达到60度,透明频点几乎不变,且都能够产生电磁诱导透明特性。

图8为对本发明加载不同入射角TM模式下电磁波的响应。当入射电磁波的角度为0度时,透明频点为1.0861THz,透射率为0.9673,当入射电磁波的角度为30度时,透明频点为1.0861THz,透射率为0.9634,当入射电磁波的角度为60度时,透明频点为1.0861THz,透射率为0.9397,当入射电磁波的角度为85度时,透明频点为1.1099THz,透射率为0.7293,即电磁波入射角达到60度,透明频点几乎不变,且都能够产生电磁诱导透明特性。

即,在工作环境温度为77K时,当选择外加电磁波的入射角度从0度到60度之间变化,所述电磁诱导透明频点不变;从60度到85度变化,透明频点1.0861THz变化到1.1099THz。在其他的温度环境下也有类似的结论。

以上实验样品的拓扑绝缘体层2的位置位于介质层1的中心。仿真结果表明,拓扑绝缘体层2涂覆于介质层1的任意位置,其结果无变化。

综上可以看到,本发明能产生极化不敏感和大角度入射电磁诱导透明效应,并且尺寸小,厚度薄,结构简单,非常适合微型化器件制备。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1