制造多层太阳能电池的方法

文档序号:6809747阅读:175来源:国知局
专利名称:制造多层太阳能电池的方法
发明介绍本发明一般涉及太阳能发电领域,特别是,本发明提供一种制造硅或其合金多层太阳能电池的改进方法及利用此方法获得的改进太阳能电池。
背景技术
本申请的受让人于在这里引证的其较早的澳大利亚专利申请NOPM4834中公开了一种极优于已有太阳能电池的多层太阳能电池。然而,用常规方法制造这种太阳能电池出现了问题。本发明提供一种新颖的制造方法和由此所得的太阳能电池,能够在保持多层太阳能电池结构优点的同时克服常规方法中某些或全部困难。
发明概述本发明的第一方案提供一种制造用于多结太阳能电池的多层半导体结构的方法,该方法包括以下步骤直接或间接地在衬底或基片(superstrate)上形成多层非晶半导体材料层,以形成多层结构,其中相邻层掺杂浓度或掺杂类型不同;邻接至少一层非晶层形成成核面;及加热到预定温度处理多层结构,从而使邻接成核层的非晶层固相结晶,结晶从该成核面成核。
本发明的第二方案提供一种制造用于多结太阳能电池的多层半导体结构的方法,该方法包括以下步骤直接或间接地在衬底或基片上形成多层非晶半导体材料层,以形成多层结构,其中相邻层掺杂浓度或掺杂类型不同;邻接至少一层非晶层形成独立的半导体层,作结晶或多晶半导体材料的成核层;加热到预定温度,处理多层结构,从而使邻接成核层的非晶层固相结晶,结晶从该成核层成核。
本发明的第三方案提供一种制造用于多结太阳能电池的多层半导体结构的方法,该方法包括以下步骤直接或间接地在衬底或基片上形成多层非晶半导体材料层,以形成多层结构,其中相邻层掺杂浓度或掺杂类型不同;
邻接至少一层非晶层形成独立的半导体层,作为处于易结晶状态的非晶半导体材料的成核层;处理多层结构,使成核层结晶,及加热到预定温度理一步处理多层结构,从而使邻接成核层的非晶层固相结晶,结晶从成核层成核。
本发明的第四方案提供一种半导体结构,该结构包括衬底或基片,数层形成于衬底或基片上或形成于在衬底或基片上形成的一层或多层中间层上的非晶半导体材料层,及邻接至少一层非晶层形成的成核层。
在本发明的各实施例中,可以将成核面形成为其上形成有非晶层的第一表面、在非晶层上形成的最后表面或在形成非晶层时形成的中间层。
在本发明的优选实施例中,半导体材料将是硅或硅锗合金。然而,本发明也可用其它半导体材料。
在一个实施例中,通过使非晶硅的成核层有一般大于掺杂剂在结晶材料中的固溶度(例如,在硅中对于磷来说为5×1017-3×1021cm-3)的0.1%的高掺杂浓度,使该层处于易结晶的状态,以便在加热该结构时,该层比周围其它层更快地开始成核。
优选固相结晶步骤基本上使所有非晶硅层结晶。
按本发明的一种形式,成核层包括直接形成于衬底或基片上的多晶层,该层上形成有数层非晶层。多晶层可以按晶态形成,或可以通过淀积非晶层并利用固相结晶使该层结晶形成,在后一种情况下,要形成的淀积非晶层具有以下特征,如高掺杂浓度,优选在3×1018-3×1021cm-3,这种浓度可增强低温下该层的结晶能力。
按本发明的另一种形式,成核层形成于数层非晶硅的中间,形成的成核层为先于其它非晶层处于结晶状态的非晶层,以便其它层结晶时从该成核层向外成核。
在本发明的另一实施例中,形成数层成核层,这些成核层为先于其它非晶层处于结晶状态的非晶层,在连续的成核层中间设有介质层,从而将多层结构隔成数组,在完成的结构中,每组皆包括至少限定一个整流结的一层或多层半导体层。
可用于形成成核层的其它技术包括a)用乙硅烷化学汽相淀积工艺(CVD)生长一非晶硅层,并用硅烷生长其余非晶硅层。用乙硅烷生长的层会在高于100℃但比用硅烷生长的层结晶温度低的温度下结晶,从而使用乙硅烷生长的层将首先结晶,并充当将在较高温度(约600℃)下结晶的其它层的成核层;b)生长一层硅-锗合金(SixGe1-x),该层将在高于100℃但低于周围非晶硅层结晶的温度下结晶,以形成用于在较高温度(约600℃)结晶的非晶硅层随后结晶的成核层;c)利用由氢(H2)高度稀释的硅烷(SiH4)或氢加四氟化硅(SiF4),等离子增强CVD(PECVD)直接就地生长微晶硅层。此后该微晶层将用作其余非晶层的成核层。
d)在形成了叠层后,利用激光结晶技术使非晶硅叠层的薄表面区结晶。然后结晶的顶层将用作底层非晶层的成核层;e)象d)一样,除用快速热退火代替激光结晶外,在形成了叠层后使非晶硅叠层的薄表面区结晶;f)象d)一样,除用金属诱发结晶技术代替激光结晶外,使非晶硅叠层顶表面上的一层结晶;g)在形成非晶层叠层期间应用快速热CVD(RTCVD)很短的时间(几秒),以便在RTCVD期间形成结晶硅薄层作为成核层。在较低温度(低于500℃)下形成其余非晶层,然后使它们在较高温度(约600℃)下结晶。
一般认为,技术a、b、c、f和g可以用来形成表面结晶材料层或隐埋结晶材料层,而技术d和e只能用来形成表面层。
附图简述下面将结合附图用实例说明
具体实施例方式

图1展示的是其上已淀积了薄介质层的支撑衬底或基片;图2展示的是淀积了硅引晶层后的图1的衬底或基片;图3展示的是在引晶层上淀积了极性交替变化的非晶硅或硅合金叠层后图2的衬底或基片;图4展示的是多层叠层结晶后的图3的半导体结构;图5展示的是利用图4所示结构的太阳能电池组件的完整剖面;图6展示的是首先以非晶形式淀积整个多层叠层的另一方法的第一步骤;图7展示的是所选层结晶后图6的结构;图8展示的是形成带有如二氧化硅之类介质层的叠层的再一方法的第一步骤,其中介质层插在按它们的结晶特性所选的区域之间;
图9展示的是结晶步骤后图8的叠层。
优选实施例详述参见附图,图1、2、3、4和5示出了利用实现本发明的第一方法制造电池的五个步骤。
该制造电池的方法一般包括以下步骤(a)在衬底或基片12上淀积薄介质层11;(b)在介质层11上淀积掺杂的薄硅引晶层13,所选的淀积条件或随后的处理条件或这两种条件皆应使薄层中产生大晶粒;(c)在低温下按非晶形式淀积极性交替变化的硅材料连续层14、15、16、17,其中每层中引入合理分布的掺杂剂;(d)通过在低温下加热使所淀积的叠层14、15、16、17结晶,结晶从所述引晶层成核;(e)完成电池制造工艺,形成电池接触27和互连(未示出)。
更详细地参见图1,支撑衬底或基片12提供支撑上层薄有源区的机械力。淀积在衬底或基片12上的薄介质层11隔离所淀积的各层与衬底,以防止光学、金属和/或化学穿透。一般情况下,衬底是玻璃,某些实施例中衬底还将构成光接收表面,这种情况下,应选择有良好透明度特性的玻璃。另外,衬底还可以是如陶瓷或金属等其它合适的材料,这种情况下,衬底可以构成部分电池接触结构。
在该第一实施例中,引晶层13必需是首先淀积的半导体材料层。
现参见图2,该图展示的是淀积了n型硅引晶层13并进行了使该层有所要求的大晶粒的合适处理后图1的衬底或基片12及介质层11。该引晶层可以在淀积时结晶,或可以按非晶形式淀积,然后通过进一步处理结晶。后一情况下,该引晶层一般掺有浓度为3×1018-3×1021cm-3的磷,以便在低温下较快地结晶,并生长大晶粒。
图3所示结构展示的是淀积了极性交替变化的非晶硅或硅合金叠层14、15、16、17后图2的结构,其中在各交替层中引入了n型或p型掺杂剂。一般这些层的掺杂浓度为1015-1020cm-3。
另外,该结构还可以包括插入的本征层21、22、23、24,这些层的厚度可以约为零到几微米。
图4示出了多层叠层结晶后图3的结构。
多层电池的结区对于完整电池的特性是尤其重要的。这些区的特性可以通过在连续的掺杂层之间引入轻掺杂层或本征层得以控制。这些层控制穿过完整电池的电场分布及结晶工艺期间掺杂剂的再分布。
通过在低温下持续加热各层可以实现得到3μm或更大所要求粒晶的结晶。例如,发现在550℃加热15小时上述淀积的各层后,便可重结晶得到3μm的晶粒。
另外,通过高温、利用闪光灯或激光脉冲等的转变处理可容易地进行熔融或不熔融的结晶。
由这种方法形成的可能的太阳能电池组件的完整剖面示于图5,其中使用了这种结晶多层掺杂层。根据澳大利亚专利申请PM4834,在多层叠层13、21、14、22、15、23、16、24、17中形成了两组槽28,每个槽的相对面变成要求的掺杂极性,面29为n型掺杂,面30为p型掺杂。然后在槽28中形成金属,以形成接触27。在所示的区域中,一个单元的槽与另一槽重叠,或与另一槽邻近,以在单元金属化步骤中使这些所选区域中的两单元互连。这便提供了相邻单元的串联。
在该实例中,尽管示出了在多层叠层结晶之后形成槽,但可以在结晶之前形成槽,或如果使用如在初始衬底或基片上的选择淀积之类的技术,甚至可以更早地形成槽。
在根据本发明的该实施例和其它实施例中,所淀积的一层或多层可以是硅锗合金,以赋予完整太阳能电池以有益的特性。这些有益特性源于与响应太阳光中较长波长的锗合金的材料层的性能。
小心控制各层中掺杂剂浓度,以促进对从所指定引晶层而不是从未指定层成核的控制。
例如,引晶层和其它层可以利用等离子辅助化学汽相淀积技术或如溅射、真空蒸发或汽相淀积等其它技术,从如乙硅烷、硅烷、二氯硅烷、三氯硅烷、四氯化硅等气或这些气体的混合气之类的硅源气淀积而得,所述源气中带有相应的锗化合物,并带有少量所加入的如乙硼烷、磷烷、或砷烷等掺杂剂。选择淀积或随后处理的条件,以消除从淀积层内产生的可能成核点,以便从引晶层成核。
参见图6和7,图中示出了利用本发明的第二方法制造太阳能电池的两步骤。
根据该第二方法,引晶层可通过选择该层的特性以非晶形式淀积在多层叠层中的任何地方,所以它可以是通过加热所淀积的层结晶的第一层,并且可结晶得到较大晶粒。重掺杂层,特别是用磷掺杂的重掺杂层具有此双重特性。
在根据该另一方法制造的电池中,图6示出了前述实施例中图1所示步骤之后的步骤,首先以非晶形式或淀积后转变成这种形式形成了由p型、n型和本征层31、32、33、34、35、36、37、38、39构成的整个多层叠层。在形成过程中,其中一层(如n型层33)的掺杂浓度高于其余各层,这样在加热该叠层时,该层将首先结晶,提供引晶层,以后成核点将从该层传播。另外,也可以在叠层中提供一层以上引晶层,然而如果不小心会导致晶界问题。选择这些引晶层的特性,包括掺杂浓度,使这些层先于叠层中其它层结晶。
图7示出了结晶始于所选层33的情况。结晶从该层开始,并延及相邻层,直到整个叠层全部结晶为止。然后如上所述形成槽和单元互连,或如上所述在工艺流程中先进行形成槽的工艺。
参见图8和9,这些图中示出了根据本发明的第三种方法制造太阳能电池中的两步骤。按该第三种方法,形成由非晶层57、52、53、54、55、56、57、58、59、60、61、62、63、64构成的组41、42、43、44、45,每组皆借助于介质层71、72、73、74与相邻组隔开。这种结构可以使每组进行快速结晶,同时非晶叠层中所包括的如氧化硅、氮化硅或氧氮化硅等非结晶介质层保证各结晶区彼此隔开。由于这些介质层结晶需要较高温度,所以在结晶期间这些层保持非晶态。这些介质层构成各子区之间的边界,边界中发生结晶,这样便可以防止如晶界等结晶缺陷,如果每个子区的晶体生长影响到其它子区的晶体生长的话,则可能会产生这种缺陷。另外,在淀积期间掺杂这些介质层,在随后的热处理及其它处理期间,掺杂剂从这些介质层扩散,这有利于相邻区的掺杂,在叠层中产生附加层,和/或减少载流子沿有关界面和晶界的复合。已表明在氮气氛中进行处理可以加速有关温度下的扩散。
图8示出了带有插在按其结晶特性所选区之间的如二氧化硅等介质层的叠层。在此情况下,二氧化硅层用硅中的p型掺杂剂作了掺杂,如硼。
图9示出了结晶步骤及介质层释放了掺杂剂后的图8的叠层。例如这一切均可以利用氮气氛进行。然后如上所述形成槽并进行单元互连,或如上所述在工艺流程中先进行形成槽的工艺。
本领域普通技术人员应该明白,在不脱离所具体说明的发明精神或范围的情况下,可以针对各具体实施例所展示的发明做出各种变化和/或改型。但这些实施例仅是说明性的,并非限制性的。例如,尽管在图中展示的各层皆是平整的且厚度几乎相等,但这只是为了方便和清楚地说明本发明的原理。众所周知,其实际的有益效果是从构图或粗糙的界面得到及通过将所示各层设计成不同厚度实现。
权利要求
1.一种制造用于多结太阳能电池的多层半导体结构的方法,该方法包括以下步骤直接或间接在衬底或基片上形成数层非晶半导体材料层,以形成多层结构,其中相邻各层掺杂浓度或掺杂类型不同;邻接至少一个非晶层形成成核面;加热到预定温度处理多层结构,从而使邻接成核层的非晶层固相结晶,结晶从成核面成核。
2.根据权利要求1的方法,其特征在于,邻接至少一个非晶层形成一独立的半导体层,作为结晶或多晶半导体材料的成核层,从而形成成核面。
3.根据权利要求2的方法,其特征在于,形成处于易结晶状态的非晶半导体材料半导体层,并处理多层结构使成核层结晶,从而形成结晶或多晶成核层。
4.根据权利要求3的方法,其特征在于,非晶硅成核层有高掺杂浓度,从而使该成核层处于易结晶的状态,所述掺杂浓度高于相邻非晶层的掺杂浓度,。
5.根据权利要求4的方法,其特征在于,所述高掺杂浓度在所述半导体材料固溶度的0.1%内。
6.根据权利要求5的方法,其特征在于,所述半导体材料是硅,所述掺杂浓度为5×1017-3×1021cm-3(即每立方厘米原子数)。
7.根据权利要求6的方法,其特征在于,所述高掺杂浓度为3×1018-3×1021cm-3
8.根据上述权利要求中任一项的方法,其特征在于,形成所述成核面,该面为其上形成有非晶层的第一层。
9.根据权利要求1-7中任一项的方法,其特征在于,在非晶层上形成所述成核面,该面为所形成的上层的表面。
10.根据权利要求1-7中任一项的方法,其特征在于,在形成非晶层时形成所述成核面,该面为中间层。
11.根据权利要求3-7中任一项的方法,其特征在于,形成数层成核层,该层为先于其余非晶层处于结晶状态的非晶层,在连续的成核层中间设置有介质层,从而将多层结构隔成数组,完成的结构中,每组皆包括一层或多层限定了至少一个整流结的半导体层。
12.根据权利要求11的方法,其特征在于,在每层介质层上形成成核面,该面为第一层,其上形成有各组非晶层。
13.根据权利要求11的方法,其特征在于,在各组非晶层上形成成核面,该面为顶层,其上形成有各介质层。
14.根据权利要求11的方法,其特征在于,每一成核面皆形成为各组非晶层的中间层。
15.根据上述权利要求中任一项的方法,其特征在于,半导体材料为硅或硅锗合金。
16.根据上述权利要求中任一项的方法,其特征在于,随后的固相结晶步骤使所有非晶硅层基本上全部结晶。
17.一种半导体结构,该结构包括衬底或基片,置于衬底或基片上或者置于形成于衬底或基片上的一层或多层中间层上的数层半导体材料非晶层,及邻接至少一层非晶层设置的成核面。
18.根据权利要求17的结构,其特征在于,与至少一层非晶层邻接的结晶或多晶半导体材料的独立成核层的表面为成核面。
19.根据权利要求17的结构,其特征在于,处于易结晶状态下的非晶半导体材料的独立成核层的表面为成核面。
20.根据权利要求19的结构,其特征在于,通过使非晶硅成核层有高掺杂浓度使该层处于易结晶状态,所述掺杂浓度高于相邻非晶层的掺杂浓度。
21.根据权利要求20的结构,其特征在于,所述高掺杂浓度在所述半导体材料固溶度的0.1%内。
22.根据权利要求21的结构,其特征在于,所述半导体材料是硅,掺杂浓度为5×1017-3×1021cm-3(即每立方厘米原子数)。
23.根据权利要求22的结构,其特征在于,所述高掺杂浓度为3×1018-3×1021cm-3。
24.根据权利要求17-23中任一项的方法,其特征在于,所述成核面为其上设置了非晶层的底层。
25.根据权利要求17-23中任一项的结构,其特征在于,所述成核面为置于非晶层上的上表面。
26.根据权利要求17-23中任一项的结构,其特征在于,所述成核面为非晶层结构中的中间层。
27.根据权利要求19-23中任一项的结构,其特征在于,数层成核层为先于其余非晶层处于结晶状态的非晶层,在连续的成核层中间设置有介质层,从而将多层结构隔成数组,最完成的结构中,每组皆包括一层或多层限定了至少一个整流结的半导体层。
28.根据权利要求27的方法,其特征在于,所述处于状态中的非晶层为直接与每层介质相邻的底层,其上设有各组其余非晶层。
29.根据权利要求27的方法,其特征在于,所述处于状态中的非晶层为直接与每层介质相邻的顶层,其下设有各组其余非晶层。
30.根据权利要求27的方法,其特征在于,所述处于状态中的非晶层为各组非晶层的中间层。
31.根据权利要求17-30中任一项的结构,其特征在于,所述半导体材料为硅或硅锗合金。
32.一种使权利要求17-31中任何一项所述的结构固相结晶形成的半导体器件。
33.一种用权利要求1-16中任何一项所述的方法形成的半导体器件。
全文摘要
一种半导体结构及其形成方法,所述结构中,支撑衬底或基片(12)为支撑上层的有源区提供机械力。淀积在衬底或基片(12)上的薄介质层(11)隔离所淀积的层与衬底,以防止光学、金属和/或化学穿透。然后淀积引晶层(13),适当处理引晶层可得到所要求的大晶粒。该层可以在淀积时结晶,或可以以非晶形式淀积,然后通过进一步的处理结晶。然后在引晶层上淀积极性交替变化的非晶硅层或硅合金层(14、15、16、17)的叠层,这些交替层中掺有n型或p型掺杂剂。然后进行固相结晶,获得在低温下持续加热这些层可获得的所要求的3μm或更大的晶粒。
文档编号H01L31/04GK1173241SQ95197426
公开日1998年2月11日 申请日期1995年12月1日 优先权日1994年12月2日
发明者M·A·格林, S·R·韦纳姆, 施正荣 申请人:太平太阳有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1