陶瓷热敏电阻器真空溅射电极及其制造方法

文档序号:9289126阅读:570来源:国知局
陶瓷热敏电阻器真空溅射电极及其制造方法
【技术领域】
[0001] 本发明涉及一种电阻器电极及其制造方法,特别是涉及一种陶瓷热敏电阻器真空 溅射电极及其制造方法。
【背景技术】
[0002] 近年来,陶瓷PTC热敏电阻器作为一种重要的自愈限流元件,越来越受到重视与 发展,随着通讯保安单元中起二级保护作用的PTC热敏电阻器,关键电性能指标耐高压感 应:650VAC,起始电流1. 1A,通电1分钟,断电10分钟,重复10次,阻值变化率小于20%,及 失效模式:650VAC,初始电流10A,通电时间30分钟,次数1次。整个失效模式实验时,允许 PTC热敏电阻器处于开路或高阻状态,但整个实验过程中不得出现低阻或起明火、脱焊。往 往由于欧姆电极层与陶瓷基体的结合原因出现性能波动的情况。
[0003] 在制备PTC热敏电阻器的过程中,高性能的欧姆接触电极是获得高性能元件的保 证。过去制备电极时采用了银浆丝网印刷电极的工艺,此工艺陶瓷PTC电极稳定性差,成 品电性能耐高压感应及失效模式不稳定。不仅能耗大,生产成本高,而且生产工艺存在污 染。日本村田公司曾进行过用直流真空溅射法制备电极的实验,初次证明了溅射电极的可 行性,并发现了诸如抗湿热环境老化及引线抗拉强度高的优越性,因此开发运用真空溅射 技术,以实现它在高性能PTC热敏电阻器生产上,批量生产、降低成本、解决污染将获得较 好的经济效益与社会责任,同时为其他产品的开发提供更好的技术基础,有着犹为重要的 现实意义。
[0004] 中国专利CN102503580A公开了一种热敏陶瓷溅射膜电极的结构和制备方法。其 提出了采用结合层、阻挡层和导电层构成的三层膜系薄膜电极结构及采用磁控溅射金属靶 或合金靶制备上述电极的方法。然而采用该专利公开的技术方案制备溅射电极的电阻器在 电性能指标测试时仍无法达到100 %合格。

【发明内容】

[0005] 针对上述现有技术的不足,本发明的目的是提供一种陶瓷热敏电阻器真空溅射电 极及其制造方法,解决现有真空溅射电极工艺下产生的电性能不稳定的问题。
[0006] 本发明的技术方案是这样的:一种陶瓷热敏电阻器真空溅射电极,包括基片表面 依次溅射的过渡层、阻挡层和导电层,所述过渡层为厚度4000~5000nm的镍铬合金,所述 镍铬合金中按质量百分比计,镍为80~85%,所述阻挡层为厚度4000~5000nm的镍铜合 金,所述镍铜合金中按质量百分比计,镍为25~30 %,所述导电层为厚度2000~3000nm的 银。
[0007] 优选的,所述镍铬合金中按质量百分比计,镍为81%,所述镍铜合金中按质量百分 比计,镍为29%。
[0008] -种陶瓷热敏电阻器真空溅射电极的制造方法,包括基片生产、清洗、真空溅射, 所述真空溅射是先用镍质量占比为80~85%的镍铬合金靶溅射4000~5000nm的镍铬合 金过渡层,然后用镍质量占比为25~30%的镍铜合金靶溅射4000~5000nm的镍铜合金阻 挡层,最后用银革E派射2000~3000nm的银导电层。
[0009] 优选的,所述镍络合金中按质量百分比计,镍为81%,所述所述镍铜合金中按质量 百分比计,镍为29%。
[0010] 进一步的,所述镍铬合金过渡层分三次溅射,所述镍铜合金阻挡层分三次溅射,所 述银导电层分两次溅射。
[0011] 为了促进了基片与溅射膜间的扩散附着,同时又避免了溅射膜层的热应力优选 的,所述真空溅射前对基片进行150°c预热。
[0012] 优选的,所述真空溅射时真空度为3. 2X10°~8. 7X10 3Pa。
[0013] 优选的,所述真空溅射时溅射电流为15~20A。
[0014] 本发明所提供的技术方案的有益效果是:
[0015] 1、电极与陶瓷PTC具有很好的结合力。
[0016] 2、电极有良好的焊接性。在焊接中避免了焊接不良、虚焊、反向熔蚀电极膜层的情 况。
[0017] 3、电极具有良好的导电性能。与其它材料接触时不会发生化学反应或形成化合物 而导致电极性能恶化。
[0018] 4、电极的稳定性好。不易被周围气氛氧化和腐蚀,不易受水汽、盐雾和某些焊剂中 的还原性气体的侵蚀,对热处理温度有髙的稳定性。
[0019] 5、便于生产和控制,生产出的产品环保无污染、生产效率高、低成本、同时产品的 一致性好、成品率高。
[0020] 6、进行【背景技术】所述的关键电性能指标试验能达到100%合格。
【附图说明】
[0021] 图1为陶瓷热敏电阻器真空溅射电极结构示意图。
【具体实施方式】
[0022] 下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
[0023] 实施例1
[0024] 结合图1,本实施例涉及的陶瓷热敏电阻器真空溅射电极,其在基片1表面依次溅 射的过渡层2、阻挡层3和导电层4,其中过渡层2为厚度4000nm的镍铬合金,镍铬合金中 按质量百分比计,镍为80%,阻挡层3为厚度4000nm的镍铜合金,镍铜合金中按质量百分比 计,镍为25%,导电层4为厚度2000nm的银。
[0025]陶瓷热敏电阻器的具体制造过程是这样的,经过配料、湿法球磨、预烧、二次湿法 球磨、制粒、成型、烧结得到派射基片1,基片1的外形尺寸①8. 75X2. 7_。由于基片1的表 面状态对附着力的影响很大,基片1表面的污染会使基片不能直接与薄膜接触,减弱了范 德瓦力,同时也不能有效发生扩散附着。因此采用超声波清洗分别进行预清洗、清洗,并烘 干使溅射基片1表面干净,无残留微粉及脏物。当待溅射基片1装入掩模板后,通过150°C 温度的预热处理溅射基片,然后启动溅射装置。在真空度为3. 2X10°~8. 7X10 3Pa,溅射 电流为15~20A条件下,先分三次溅射镍铬合金过渡层2,然后分三次溅射镍铜合金阻挡层 3,再分两次溅射银导电层4。溅射完成后的基片进行分选、焊接、包封,制成成品。
[0026] 实施例2
[0027] 陶瓷热敏电阻器真空溅射电极,其在基片表面依次溅射的过渡层、阻挡层和导电 层,其中过渡层为厚度4500nm的镍铬合金,镍铬合金中按质量百分比计,镍为81 %,阻挡层 为厚度4500nm的镍铜合金,镍铜合金中按质量百分比计,镍为29 %,导电层为厚度2500nm 的银。其制造过程同实施例1。
[0028] 实施例3
[0029] 陶瓷热敏电阻器真空溅射电极,其在基片表面依次溅射的过渡层、阻挡层和导电 层,其中过渡层为厚度5000nm的镍铬合金,镍铬合金中按质量百分比计,镍为85%,阻挡层 为厚度5000nm的镍铜合金,镍铜合金中按质量百分比计,镍为30%,导电层为厚度3000nm 的银。其制造过程同实施例1。
[0030] 对比例1
[0031] 陶瓷热敏电阻器真空溅射电极,其在基片表面依次溅射的过渡层、阻挡层和导电 层,其中过渡层为厚度4500nm的镍,阻挡层为厚度4500nm的镍铜合金,镍铜合金中按质量 百分比计,镍为30%,导电层为厚度2500nm的银。其制造过程同实施例1。
[0032] 对比例2
[0033] 陶瓷热敏电阻器真空溅射电极,其在基片表面依次溅射的过渡层、阻挡层和导电 层,其中过渡层为厚度2500nm的镍铬合金,镍铬合金中按质量百分比计,镍为81 %,阻挡层 为厚度2500nm的镍铜合金,镍铜合金中按质量百分比计,镍为29%,导电层为厚度2500nm 的银。其制造过程是这样的,经过配料、湿法球磨、预烧、二次湿法球磨、制粒、成型、烧结得 到溅射基片,基片的外形尺寸?8. 75X2. 7_。由于基片的表面状态对附着力的影响很大, 基片表面的污染会使基片不能直接与薄膜接触,减弱了范德瓦力,同时也不能有效发生扩 散附着。因此采用超声波清洗分别进行预清洗、清洗,并烘干使溅射基片表面干净,无残留 微粉及脏物。当待溅射基片装入掩模板后,通过150°C温度的预热处理溅射基片,然后启动 溅射装置。在真空度为3. 2X10°~8. 7X10 3Pa,溅射电流为15~20A条件下,先分两次 次溅射镍铬合金过渡层,然后分两次溅射镍铜合金阻挡层,再分两次溅射银导电层。溅射完 成后的基片进行分选、焊接、包封,制成成品。
[0034] 对实施例2及对比例1和对比例2进行关键电性能项目测试以及焊接拉脱力测 试,结果如下。
[0035]
【主权项】
1. 一种陶瓷热敏电阻器真空溅射电极,包括基片表面依次溅射的过渡层、阻挡层和导 电层,其特征在于:所述过渡层为厚度4000~5000nm的镍铬合金,所述镍铬合金中按质量 百分比计,镍为80~85%,所述阻挡层为厚度4000~5000nm的镍铜合金,所述镍铜合金中 按质量百分比计,镍为25~30 %,所述导电层为厚度2000~3000nm的银。2. 根据权利要求1所述的陶瓷热敏电阻器真空溅射电极,其特征在于:所述镍铬合金 中按质量百分比计,镍为81%,所述镍铜合金中按质量百分比计,镍为29%。3. -种陶瓷热敏电阻器真空溅射电极的制造方法,包括基片生产、清洗、真空溅射,其 特征在于:所述真空派射是先用镍质量占比为80~85 %的镍络合金祀派射4000~5000nm 的镍铬合金过渡层,然后用镍质量占比为25~30%的镍铜合金靶溅射4000~5000nm的镍 铜合金阻挡层,最后用银靶溅射2000~3000nm的银导电层。4. 一种陶瓷热敏电阻器真空溅射电极的制造方法,包括基片生产、清洗、真空溅射,其 特征在于:所述真空派射是先用镍质量占比为81 %的镍络合金祀派射4000~5000nm的镍 铬合金过渡层,然后用镍质量占比为29%的镍铜合金靶溅射4000~5000nm的镍铜合金阻 挡层,最后用银革E派射2000~3000nm的银导电层。5. 根据权利要求3或4所述的陶瓷热敏电阻器真空溅射电极的制造方法,其特征在于: 所述镍铬合金过渡层分三次溅射,所述镍铜合金阻挡层分三次溅射,所述银导电层分两次 溅射。6. 根据权利要求3或4所述的陶瓷热敏电阻器真空溅射电极的制造方法,其特征在于: 所述真空溅射前对基片进行150°C预热。7. 根据权利要求3或4所述的陶瓷热敏电阻器真空溅射电极的制造方法,其特征在于: 所述真空溅射时真空度为3. 2 X 10°~8. 7 X 10 3Pa。8. 根据权利要求3或4所述的陶瓷热敏电阻器真空溅射电极的制造方法,其特征在于: 所述真空溅射时溅射电流为15~20A。
【专利摘要】本发明公开了一种陶瓷热敏电阻器真空溅射电极,包括基片表面依次溅射的过渡层、阻挡层和导电层,所述过渡层为厚度4000~5000nm的镍铬合金,所述镍铬合金中按质量百分比计,镍为80~85%,所述阻挡层为厚度4000~5000nm的镍铜合金,所述镍铜合金中按质量百分比计,镍为25~30%,所述导电层为厚度2000~3000nm的银。本发明还公开了陶瓷热敏电阻器真空溅射电极的制造方法,采用真空溅射先分三次溅射形成镍铬合金过渡层,然后分三次溅射形成镍铜合金阻挡层,再分两次溅射形成银导电层。采用本发明的陶瓷热敏电阻器具有稳定的电性能,生产效率高无污染,进行关键电性能测试能达到100%合格。
【IPC分类】H01C1/14, C23C14/14, H01C7/02, C23C14/34
【公开号】CN105006316
【申请号】CN201510298665
【发明人】何正安, 汪鹰, 孙振华
【申请人】常熟市林芝电子有限责任公司
【公开日】2015年10月28日
【申请日】2015年6月3日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1